½ÃÀ庸°í¼­
»óǰÄÚµå
1800768

ÇÁ·ÎÅ׿À¹Í½º ½ÃÀå º¸°í¼­ : ºÐ¼® À¯Çüº°, ÄÄÆ÷³ÍÆ® À¯Çüº°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº°(2025-2033³â)

Proteomics Market Report by Analysis Type, Component Type, Technology, Application, End-User (Clinical Diagnostic Laboratories, Research Organizations, and Others), and Region 2025-2033

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: IMARC | ÆäÀÌÁö Á¤º¸: ¿µ¹® 147 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°è ÇÁ·ÎÅ׿À¹Í½º ½ÃÀå ±Ô¸ð´Â 2024³â 415¾ï ´Þ·¯¿¡ ´ÞÇß½À´Ï´Ù. IMARC GroupÀº 2033³â¿¡´Â 1,394¾ï ´Þ·¯¿¡ ´ÞÇϰí, 2025-2033³â±îÁö 13.68%ÀÇ ¿¬Æò±Õ ¼ºÀå·ü(CAGR)À» º¸ÀÏ °ÍÀ¸·Î Àü¸ÁÇϰí ÀÖ½À´Ï´Ù. ºÏ¹Ì´Â ÇöÀç źźÇÑ ¿¬±¸ ÀÎÇÁ¶ó¿Í Á¦¾à ¹× »ý¸í°øÇÐ ±â¾÷ÀÇ °­·ÂÇÑ Á¸Àç°¨À¸·Î ½ÃÀåÀ» µ¶Á¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ ½ÃÀåÀº ÁÖ·Î Áú·® ºÐ¼®ÀÇ ±Þ¼ÓÇÑ ±â¼ú ¹ßÀü, ¸¸¼º Áúȯ Áõ°¡, °³ÀÎ ¸ÂÃãÇü ÀǾàǰÀ¸·ÎÀÇ ºü¸¥ Àüȯ¿¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¸Ó½Å·¯´×(ML)°ú ÀΰøÁö´É(AI)ÀÇ ÅëÇÕÀÌ ÁøÇàµÇ¾î ´Ü¹éÁú ºÐ¼®°ú µ¥ÀÌÅÍ ºÐ¼®ÀÇ °íµµÈ­°¡ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù.

ÁÖ¿ä ºÎ¹®

  • ºÐ¼® À¯Çü: ±¸Á¶ ÇÁ·ÎÅ׿À¹Í½º, ±â´É ÇÁ·ÎÅ׿À¹Í½º, ´Ü¹éÁú ¹ßÇö ÇÁ·ÎÅ׿À¹Í½º·Î ±¸ºÐµË´Ï´Ù.
  • ±¸¼º¿ä¼Ò À¯Çü: ÇÙ½É ÇÁ·ÎÅ׿À¹Í½º ¼­ºñ½º¿Í »ý¹°Á¤º¸ÇÐ ¼ÒÇÁÆ®¿þ¾î ¹× °ü·Ã ¼­ºñ½º·Î ³ª´¹´Ï´Ù.
  • ±â¼ú: ´Ü¹éÁú ¸¶ÀÌÅ©·Î¾î·¹ÀÌ´Â ´Ü¹éÁúÀÇ »óÈ£ÀÛ¿ë, ¹ßÇö, ±â´ÉÀ» ½Å¼ÓÇÏ°í ´ë±Ô¸ð·Î ºÐ¼®ÇÒ ¼ö ÀÖ¾î ½ÃÀåÀ» ¼±µµÇϰí ÀÖ½À´Ï´Ù. ³ôÀº 󸮷®À¸·Î ¹ÙÀÌ¿À¸¶Ä¿ Ž»ö ¹× Áúº´ Áø´Ü¿¡ ÀÌ»óÀûÀÔ´Ï´Ù.
  • ¿ëµµ: ´Ü¹éÁú ¹ßÇö ÇÁ·ÎÆÄÀϸµ, ÇÁ·ÎÅ×¿È ¸¶ÀÌ´×, ¹ø¿ª ÈÄ º¯ÇüÀ¸·Î ºÐ·ùµË´Ï´Ù.
  • ÃÖÁ¾ »ç¿ëÀÚ: ¿¬±¸±â°ü(½Å¾à°³¹ß)Àº ¹ÙÀÌ¿À¸¶Ä¿ ½Äº° ¹× Áúº´ ±âÀü ¿¬±¸¿¡ ÁßÁ¡À» µÎ°í ÀÖ¾î °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ¿¬±¸°³¹ß(R&D) Ȱµ¿À» °¡¼ÓÈ­Çϱâ À§ÇØ Ã·´Ü ÇÁ·ÎÅ׿À¹Í½º ±â¼ú¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù.
  • Áö¿ª: ºÏ¹Ì´Â ¿¬±¸°³¹ß¿¡ ´ëÇÑ ÅõÀÚ°¡ ³ô°í, ¹ÙÀÌ¿ÀÅ×Å© ±â¾÷ ¹× Á¦¾à±â¾÷ÀÌ ¸¹ÀÌ Á¸ÀçÇϱ⠶§¹®¿¡ ÇÁ·ÎÅ׿À¹Í½º ½ÃÀåÀ» ¼±µµÇϰí ÀÖ½À´Ï´Ù. Á¤ºÎÀÇ Áö¿ø, ¼±Áø ÀÇ·á ½Ã½ºÅÛ, Çõ½Å ±â¼úÀÇ Á¶±â µµÀÔÀº ÀÌ Áö¿ª ½ÃÀå °ßÀηÂÀ» ´õ¿í °­È­Çϰí ÀÖ½À´Ï´Ù.

ÁÖ¿ä ±â¾÷

  • ÇÁ·ÎÅ׿À¹Í½º ½ÃÀåÀÇ ÁÖ¿ä ±â¾÷À¸·Î´Â Agilent Technologies Inc. Healthcare Inc., Horiba Ltd., Luminex Corporation, Merck Group, Perkinelmer Inc. Corporation µîÀÌ ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ

  • °³ÀÎ ¸ÂÃãÇü ÀÇ·á¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡: °³ÀÎ ¸ÂÃãÇü ÀÇ·á¿¡ ´ëÇÑ Á¢±Ù ¹æ½ÄÀº ÀÓ»ó ¹× Á¦¾à ºÐ¾ß¿¡¼­ ÇÁ·ÎÅ׿À¹Í½º µµ±¸ÀÇ Ã¤ÅÃÀ» ÃËÁøÇÒ °ÍÀÔ´Ï´Ù. ÇÁ·ÎÅ׿À¹Í½º´Â ƯÁ¤ ¹ÙÀÌ¿À¸¶Ä¿¸¦ ½Äº°Çϰí, Ç¥Àû ¾à¹° °³¹ßÀ» Áö¿øÇϸç, Ä¡·á °á°ú¸¦ °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù.
  • ¾Ï ¿¬±¸¿¡ ´ëÇÑ °ü½É Áõ°¡: ´Ü¹éÁúÀº Á¾¾çÀÇ »ý¹°ÇÐ, ÁøÇà, ¾à¹° ³»¼º¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÇÁ·ÎÅ׿À¹Í½º ºÐ¼®Àº ¾Ï ƯÀÌÀû ¹ÙÀÌ¿À¸¶Ä¿ ¹ß±¼, Á¶±â Áø´Ü Áö¿ø, Ç¥Àû Ä¡·áÀÇ ÁöħÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿¬±¸ ¼ö¿ä·Î ÀÎÇØ Á¾¾çÇÐ ¿¬±¸ Àü¹Ý¿¡ °ÉÃÄ ÇÁ·ÎÅ׿À¹Í½º ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ°¡ Ȱ¹ßÈ÷ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù.
  • Çмú ±â°ü°ú »ý¸í°øÇÐ ±â¾÷ °£ÀÇ ÆÄÆ®³Ê½Ê: ÆÄÆ®³Ê½ÊÀ» ÅëÇØ ÇÁ·ÎÅ׿À¹Í½º µµ±¸, Áø´Ü ¼Ö·ç¼Ç, Ä¡·áÁ¦ÀÇ ½Å¼ÓÇÑ °³¹ßÀÌ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. °øµ¿¿¬±¸´Â ¶ÇÇÑ ´õ ¸¹Àº ÀÚ±ÝÀ» ¸ðÀ¸°í, ¿¬±¸ ¿ª·®À» È®´ëÇϸç, »ó¾÷È­ ÆÄÀÌÇÁ¶óÀÎÀ» °­È­ÇÒ ¼ö ÀÖ½À´Ï´Ù.
  • ´ÜÀÏ ¼¼Æ÷ ÇÁ·ÎÅ׿À¹Í½ºÀÇ ºÎ»ó: ´ÜÀÏ ¼¼Æ÷ ÇÁ·ÎÅ׿À¹Í½ºÀÇ °³¹ß·Î ¿¬±¸ÀÚµéÀº °³º° ¼¼Æ÷ ¼öÁØ¿¡¼­ ´Ü¹éÁú ¹ßÇöÀ» ¿¬±¸ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ ±â¼ú Çõ½ÅÀº ¼¼Æ÷ÀÇ ´Ù¾ç¼º°ú Èñ±ÍÇÑ Áý´ÜÀ» ¹àÇô³»¾î Áúº´ ÀÌÇØ¿Í ½Å¾à Ÿ°ÙÆÃÀ» °­È­ÇÒ ¼ö ÀÖ½À´Ï´Ù.
  • Â÷¼¼´ë ¿°±â¼­¿­ºÐ¼®±â(NGS)ÀÇ ±â¼úÀû Áøº¸: Â÷¼¼´ë ¿°±â¼­¿­ºÐ¼®±âÀÇ ¹ßÀüÀº ¸ÖƼ¿À¹Í½º Á¢±ÙÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. NGS µ¥ÀÌÅÍ´Â ´Ü¹éÁú ¹ßÇö ¿¬±¸¿¡ À¯ÀüüÀû ¹è°æÀ» Á¦°øÇϰí, ¹ÙÀÌ¿À¸¶Ä¿ Ž»ö°ú Á¤¹ÐÀǷḦ Çâ»ó½Ãŵ´Ï´Ù.

¹Ì·¡ Àü¸Á

  • °­·ÂÇÑ ¼ºÀå Àü¸Á: ÇÁ·ÎÅ׿À¹Í½º ½ÃÀåÀº ¸ÂÃãÀÇ·á¿¡ ´ëÇÑ ³ôÀº ¼ö¿ä¿Í Áú·®ºÐ¼® ¹× ¹ÙÀÌ¿ÀÀÎÆ÷¸Åƽ½ºÀÇ Çõ½ÅÀ¸·Î Áö¼ÓÀûÀÎ ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù. ½Å¾à °³¹ß ¹× ¹ÙÀÌ¿À¸¶Ä¿ ½Äº°¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ¿¬±¸°¡ ½ÃÀå È®´ë¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
  • ½ÃÀåÀÇ ÁøÈ­: ÀÌ ºÐ¾ß´Â ±âº»ÀûÀÎ ´Ü¹éÁú ºÐ¼®¿¡¼­ ´Ü¹éÁú ¸¶ÀÌÅ©·Î¾î·¹ÀÌ, ¹ÙÀÌ¿ÀÀÎÆ÷¸Åƽ½º Åø°ú °°Àº ÷´Ü ±â¼ú·Î ÀüȯµÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º¸´Ù Ÿ°ÙÈ­µÈ µ¥ÀÌÅͺ£À̽ºÀÇ »ý¹°ÇÐÀû ¿¬±¸·ÎÀÇ ÀüȯÀ» ¹Ý¿µÇÏ¿© Áø´Ü ¹× °³ÀÎ ¸ÂÃãÇü ÀÇ·á¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

ÇÁ·ÎÅ׿À¹Í½º ½ÃÀåÀº ¼¼Æ÷ÀÇ ÀÌÁú¼º¿¡ ´ëÇÑ ±íÀº ÅëÂû·ÂÀ» Á¦°øÇÏ°í º¸´Ù Á¤È®ÇÑ Áúº´ ¸ðµ¨¸µ°ú Ä¡·á Ÿ°ÙÆÃÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ´ÜÀÏ ¼¼Æ÷ ÇÁ·ÎÅ׿À¹Í½ºÀÇ ºÎ»óÀ¸·Î È®´ëµÇ°í ÀÖ½À´Ï´Ù. Çмú ±â°ü°ú »ý¸í°øÇÐ ±â¾÷ÀÇ Çù·ÂÀº Çõ½ÅÀ» °¡¼ÓÈ­ÇÏ°í ¿¬±¸¸¦ ½Ç¿ëÀûÀÎ Áø´Ü ¹× Ä¡·á ¼Ö·ç¼ÇÀ¸·Î ºü¸£°Ô ÀüȯÇÒ ¼ö ÀÖµµ·Ï µ½°í ÀÖ½À´Ï´Ù. Áú·®ºÐ¼®, ´Ü¹éÁú ¸¶ÀÌÅ©·Î¾î·¹ÀÌ, NGSÀÇ ±â¼ú ¹ßÀüÀ¸·Î µ¥ÀÌÅÍ Á¤È®µµ, 󸮷®, ºñ¿ë È¿À²¼ºµµ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ÇÁ·ÎÅ׿À¹Í½º ÀåºñÀÇ ÀÚµ¿È­ ¹× ¼ÒÇüÈ­°¡ ÁøÇàµÇ¾î È¿À²¼ºÀÌ Çâ»óµÇ°í, ½Ã·á·®ÀÌ °¨¼ÒÇϸç, ¿î¿µºñ¿ëÀÌ °¨¼ÒÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÇÁ·ÎÅ׿À¹Í½º¿Í À¯ÀüüÇÐ, ´ë»çüÇÐ µî ´Ù¸¥ ¿À¹Í½º Ç÷§Æû°úÀÇ ÅëÇÕÀ» ÅëÇØ Á¾ÇÕÀûÀÎ »ý¹°ÇÐÀû ºÐ¼®ÀÌ °¡´ÉÇØÁ® ±× Àû¿ë ¹üÀ§°¡ ´õ¿í ³Ð¾îÁö°í ÀÖ½À´Ï´Ù. Á¤ºÎÀÇ ÀÚ±Ý Áö¿ø, ¹ÙÀÌ¿À¸¶Ä¿ ¹ß±¼¿¡ ´ëÇÑ ±ÔÁ¦ ´ç±¹ÀÇ Áö¿ø, ³ó¾÷ ¹× ȯ°æ ¸ð´ÏÅ͸µ¿¡ ´ëÇÑ ÇÁ·ÎÅ׿À¹Í½º Ȱ¿ë È®´ëµµ ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

ÇÁ·ÎÅ׿À¹Í½º ½ÃÀå µ¿Çâ

¸¸¼ºÁúȯ ¹× °¨¿°¼º ÁúȯÀÇ À¯º´·ü Áõ°¡

¸¸¼ºÁúȯ°ú °¨¿°¼º ÁúȯÀÇ ³ôÀº À¯º´·üÀÌ ½ÃÀå ¼ºÀåÀ» Å©°Ô °ßÀÎÇϰí ÀÖ½À´Ï´Ù. ¾Ï, ´ç´¢º´, ½ÉÇ÷°ü Áúȯ, °¨¿°¼º Áúȯ µîÀÇ Áúº´ÀÌ ¸¸¿¬ÇÔ¿¡ µû¶ó ºÐÀÚ ¼öÁØ¿¡¼­ Áúº´ ¸ÞÄ¿´ÏÁòÀ» ÀÌÇØÇÒ Çʿ伺ÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. NIH¿¡ µû¸£¸é, 2024³â¿¡´Â ¹Ì±¹¿¡¼­ 200¸¸ 1,140°ÇÀÇ ¾ÏÀÌ »õ·Î ¹ß»ýÇÒ °ÍÀ¸·Î ¿¹»óÇß½À´Ï´Ù. ÇÁ·ÎÅ׿À¹Í½º´Â ¿¬±¸ÀÚ¿Í ÀÓ»óÀǰ¡ Áúº´ ƯÀÌÀû ¹ÙÀÌ¿À¸¶Ä¿¸¦ ½Äº°Çϰí, Áúº´ ÁøÇàÀ» ¸ð´ÏÅ͸µÇϸç, Ç¥Àû Ä¡·á¹ýÀ» °³¹ßÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ¶ÇÇÑ, ¸¸¼ºÁúȯÀ» È¿°úÀûÀ¸·Î °ü¸®Çϴµ¥ Áß¿äÇÑ Á¶±â Áø´Ü¿¡µµ µµ¿òÀÌ µË´Ï´Ù. ¸ÂÃãÀÇ·á¿Í Á¤¹ÐÄ¡·á¿¡ ´ëÇÑ ¼ö¿ä´Â ´Ü¹éÁúÀÇ »óÈ£ÀÛ¿ë°ú ±â´ÉÀ» º¸´Ù ½ÉÃþÀûÀ¸·Î ºÐ¼®ÇÒ ¼ö ÀÖ´Â ÇÁ·ÎÅ׿À¹Í½º µµ±¸ÀÇ »ç¿ëÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

ÀǾàǰ ¿¬±¸°³¹ß Ȱµ¿ Áõ°¡

ÀǾàǰ ¿¬±¸°³¹ß Ȱµ¿ÀÇ È°¼ºÈ­´Â ½ÃÀå¿¡ ±àÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. Swiss Biotech Report 2025¿¡ µû¸£¸é, ½ºÀ§½ºÀÇ ¿¬±¸°³¹ßºñ´Â 2024³â 26¾ï ½ºÀ§½ºÇÁ¶û(31¾ï 6,000¸¸ ´Þ·¯)¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¹Î°£±â¾÷ÀÌ 14¾ï ½ºÀ§½ºÇÁ¶ûÀ» ÅõÀÚÇÒ °ÍÀ¸·Î ¿¹»óÇϰí ÀÖ½À´Ï´Ù. Á¦¾àȸ»çµéÀÌ ½Å¾à°³¹ß¿¡ ÁýÁßÇϸ鼭 ´Ü¹éÁúÀÇ ±¸Á¶, ±â´É, »óÈ£ÀÛ¿ë¿¡ ´ëÇÑ ÅëÂû·ÂÀ» Á¦°øÇÒ ¼ö ÀÖ´Â °í±Þ Åø¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÇÁ·ÎÅ׿À¹Í½º´Â ¿¬±¸ÀÚµéÀÌ ÀáÀçÀûÀÎ ½Å¾à Ÿ°ÙÀ» ¹ß±¼ÇÏ°í °ËÁõÇϸç, Áúº´ °æ·Î¸¦ ÀÌÇØÇϰí, ºÐÀÚ ¼öÁØ¿¡¼­ ¾àÈ¿¿Í µ¶¼ºÀ» Æò°¡ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. Ç¥Àû Ä¡·áÁ¦ °³¹ß¿¡ ÁßÁ¡À» µÎ°í ÀÖ´Â °¡¿îµ¥, ÇÁ·ÎÅ׿À¹Í½º´Â Áúº´ ƯÀÌÀû ¹ÙÀÌ¿À¸¶Ä¿¸¦ °ËÃâÇÏ°í ±×¿¡ µû¶ó Ä¡·á¹ýÀ» Á¶Á¤ÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, »ý¹°ÇÐÀû Á¦Á¦ ¹× ¹ÙÀÌ¿À½Ã¹Ð·¯ÀÇ Ã¤ÅÃÀ¸·Î Á¤¹ÐÇÑ ´Ü¹éÁú ºÐ¼®ÀÇ Çʿ伺ÀÌ ´õ¿í Ä¿Áö°í ÀÖ½À´Ï´Ù.

AI µµÀÔ Áõ°¡

AI µµÀÔ Áõ°¡´Â µ¥ÀÌÅÍ ºÐ¼®À» °£¼ÒÈ­Çϰí, ÆÐÅÏ ÀνÄÀ» °³¼±Çϸç, ¹ÙÀÌ¿À¸¶Ä¿ ¹ß°ßÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. IMARC Group¿¡ µû¸£¸é, ¼¼°è AI ½ÃÀå ±Ô¸ð´Â 2024³â 1,156¾ï 2,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óÇß½À´Ï´Ù. ÇÁ·ÎÅ׿À¹Í½º´Â Á¤È®ÇÑ ÇØ¼®À» À§ÇØ °íµµÀÇ °è»ê µµ±¸°¡ ÇÊ¿äÇÑ ¹æ´ëÇÏ°í º¹ÀâÇÑ µ¥ÀÌÅÍ ¼¼Æ®¸¦ »ý¼ºÇÕ´Ï´Ù. AI ¾Ë°í¸®Áò, ƯÈ÷ MLÀº ƯÁ¤ Áúº´°ú °ü·ÃµÈ ¹Ì¹¦ÇÑ ´Ü¹éÁú ¹ßÇö ÆÐÅÏÀ» ½Äº°ÇÏ´Â µ¥ µµ¿òÀ» ÁÖ¾î º¸´Ù ºü¸£°í Á¤È®ÇÑ Áø´Ü°ú ÀǾàǰ °³¹ßÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. AI´Â ¶ÇÇÑ ÇÁ·ÎÅ׿À¹Í½º µ¥ÀÌÅ͸¦ ´Ù¸¥ »ý¹°ÇÐÀû µ¥ÀÌÅÍ ¼¼Æ®¿Í ÅëÇÕÇÏ¿© °³ÀÎ ¸ÂÃãÇü ÀÇ·áÀÇ ¿¹Ãø ¸ðµ¨¸µÀ» °­È­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú ½Ã³ÊÁö¸¦ ÅëÇØ Çмú ¿¬±¸¿Í Á¦¾à ¿¬±¸ ¸ðµÎ¿¡¼­ ¿¬±¸ ±â°£À» ´ÜÃàÇϰí È¿À²¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, AI¸¦ Ȱ¿ëÇÑ ÀÚµ¿È­¸¦ ÅëÇØ ÀÎÀ§ÀûÀÎ ½Ç¼ö¸¦ ÃÖ¼ÒÈ­ÇÏ°í ¿î¿µºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. Á¶Á÷ÀÌ AI¸¦ ÇÁ·ÎÅ׿À¹Í½º ¿öÅ©Ç÷ο쿡 ÅëÇÕÇÔ¿¡ µû¶ó Áúº´ ¹ß°ß ¹× Ä¡·á ºÐ¾ßÀÇ Çõ½ÅÀÌ ºü¸£°Ô ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ÇÁ·ÎÅ׿À¹Í½º ½ÃÀå º¸°í¼­¿¡ µû¸£¸é,ÀÌ ±â¼ú µ¿ÇâÀº ¾÷°èÀÇ ¹Ì·¡¸¦ Çü¼ºÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.

ÇÁ·ÎÅ׿À¹Í½º ½ÃÀåÀÇ ÁÖ¿ä ¼ºÀå ¿äÀÎ

Çмú±â°ü°ú »ý¸í°øÇÐ ±â¾÷ÀÇ Á¦ÈÞ

¿¬±¸ Çõ½Å°ú »ó¾÷Àû ½ÇÇàÀ» °áÇÕÇÏ´Â Çмú ±â°ü°ú »ý¸í°øÇÐ ±â¾÷°£ÀÇ Á¦ÈÞ°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÇÁ·ÎÅ׿À¹Í½º ½ÃÀåÀÇ ¼ºÀåÀÌ Å©°Ô ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. Çаè´Â ½Éµµ ±íÀº °úÇÐÀû Áö½Ä°ú ÃÖ÷´Ü ¹ß°ßÀ» Á¦°øÇϰí, »ý¸í°øÇÐ ±â¾÷Àº ÀÌ·¯ÇÑ ¹ß°ßÀ» ½ÃÀå¿¡ Àû¿ëÇϱâ À§ÇÑ ÀÚ¿ø, ÀÎÇÁ¶ó, Àü¹® Áö½ÄÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ÆÄÆ®³Ê½ÊÀ» ÅëÇØ »õ·Î¿î ÇÁ·ÎÅ׿À¹Í½º ±â¼ú, Áø´Ü µµ±¸, Ä¡·áÁ¦ °³¹ßÀ» °¡¼ÓÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÇÕÀÛÅõÀÚ´Â ±âÃÊ ¿¬±¸¿Í ½ÇÁ¦ ÀÓ»óÀû ¿ä±¸ »çÀÌÀÇ °£±ØÀ» ¸Þ¿ì°í, Çõ½Å Áֱ⸦ °¡¼ÓÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °øµ¿¿¬±¸´Â Á¾Á¾ ¹Î°ü ¾çÃøÀ¸·ÎºÎÅÍ ÀÚ±ÝÀ» Áö¿ø¹Þ¾Æ ´ë±Ô¸ð ÇÁ·ÎÅ׿À¹Í½º ¿¬±¸¿Í °íµµÀÇ ¹ÙÀÌ¿À¸¶Ä¿ ½Äº°À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀηÂ, Àåºñ, µ¥ÀÌÅͺ£À̽º¿¡ ´ëÇÑ Á¢±ÙÀ» °øÀ¯ÇÔÀ¸·Î½á ¿¬±¸ ¼º°ú¿Í »ó¾÷Àû °¡´É¼ºÀÌ ´õ¿í °­È­µÇ°í ÀÖ½À´Ï´Ù.

´ÜÀϼ¼Æ÷ ÇÁ·ÎÅ׿À¹Í½ºÀÇ µîÀå

´ÜÀÏ ¼¼Æ÷ ÇÁ·ÎÅ׿À¹Í½ºÀÇ ÃâÇöÀ¸·Î ¿¬±¸ÀÚµéÀº °³º° ¼¼Æ÷ ¼öÁØ¿¡¼­ ´Ü¹éÁúÀ» ºÐ¼®ÇÒ ¼ö ÀÖ°Ô µÇ¾ú°í, ¼¼Æ÷ÀÇ ºÒ±ÕÀϼº ¹× Áúº´ ¸ÞÄ¿´ÏÁò¿¡ ´ëÇÑ ÅëÂû·ÂÀ» ¾òÀ» ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ´Ù¼öÀÇ ¼¼Æ÷¿¡¼­ ³ª¿À´Â ½ÅÈ£¸¦ Æò±ÕÈ­ÇÏ´Â ´ë·® ºÐ¼®°ú ´Þ¸®, ´ÜÀÏ ¼¼Æ÷ ±â¼úÀº °¢ ¼¼Æ÷ÀÇ °íÀ¯ÇÑ ÇÁ·ÎÅ׿À¹Í½º ÇÁ·ÎÆÄÀÏÀ» Æ÷ÂøÇÏ¿© ¼¼Æ÷ÀÇ °Åµ¿, ¸é¿ª ¹ÝÀÀ, ¾ÏÀÇ ÁøÇàÀ» ´õ ±íÀÌ ÀÌÇØÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ÀÌ ¼öÁØÀÇ ¼¼ºÐÈ­´Â Áúº´¿¡ °ü¿©ÇÏ´Â Èñ±ÍÇÑ ¼¼Æ÷ À¯ÇüÀ̳ª ¾ÆÁý´ÜÀ» ½Äº°ÇÏ´Â µ¥ µµ¿òÀÌ µÇ±â ¶§¹®¿¡ °³ÀÎ ¸ÂÃãÇü ÀÇ·á °³¹ß¿¡ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. °íÇØ»óµµ Áú·® ºÐ¼®±â ¹× ¸¶ÀÌÅ©·ÎÇ÷çÀ̵ñ½º Ç÷§ÆûÀÇ »ç¿ë È®´ë·Î ´ÜÀÏ ¼¼Æ÷ ÇÁ·ÎÅ׿À¹Í½ºÀÇ ½ÇÇö °¡´É¼º°ú È®À强ÀÌ ´õ¿í ³ô¾ÆÁ³½À´Ï´Ù. ¿¬±¸ÀÚµé°ú Á¦¾àȸ»çµéÀÌ ÀÌ Á¢±Ù¹ýÀ» äÅÃÇÔ¿¡ µû¶ó ¹ÙÀÌ¿À¸¶Ä¿ Ž»ö°ú Ä¡·á Ç¥Àû¿¡ ´ëÇÑ »õ·Î¿î ±æÀÌ ¿­¸®°í ÀÖ½À´Ï´Ù.

NGSÀÇ ±â¼úÀû Áøº¸

NGSÀÇ ±â¼ú ¹ßÀüÀº ¸ÖƼ¿À¹Í½ºÀÇ ÅëÇÕÀ» °­È­ÇÏ°í »ý¹°ÇÐÀû ÅëÂû·ÂÀÇ ±íÀ̸¦ È®ÀåÇϰí ÀÖ½À´Ï´Ù. NGS´Â ÁÖ·Î À¯Àüü ¹× Àü»çü ºÐ¼®¿¡ »ç¿ëµÇÁö¸¸, ÇÁ·ÎÅ׿À¹Í½º¿ÍÀÇ ½Ã³ÊÁö È¿°ú·Î ¼¼Æ÷ ±â´ÉÀ» º¸´Ù ¿Ïº®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¬±¸ÀÚµéÀº À¯ÀüÀÚ ¹ßÇö µ¥ÀÌÅ͸¦ ´Ü¹éÁú ¹ßÇö ¹× º¯Çü°ú ¿¬°ü½ÃÄÑ ¹ÙÀÌ¿À¸¶Ä¿ ½Äº° ¹× Áúº´ ¸ðµ¨¸µÀ» °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù. ´ÜÀϼ¼Æ÷ ½ÃÄö½Ì, °ø°£ Àü»çüÇÐ µîÀÇ ±â¼ú Çõ½ÅÀ¸·Î Á¶Á÷ ³» À¯ÀüÀÚ ¹× ´Ü¹éÁú ³×Æ®¿öÅ©ÀÇ °íÇØ»óµµ ¸ÅÇÎÀÌ °¡´ÉÇØÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀ» ÅëÇØ À¯Àüü Á¤º¸¸¦ ±â¹ÝÀ¸·Î ÇÑ ÇÁ·ÎÅ׿À¹Í½º ½ÇÇèÀÇ ¼³°è°¡ ¿ëÀÌÇØÁ® Á¤È®µµ¿Í ¿¬°ü¼ºÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. NGS°¡ ³Î¸® º¸±ÞµÇ¸é¼­ µ¥ÀÌÅÍ ±â¹Ý ¿¬±¸ Àü·«ÀÌ ÃËÁøµÇ°í, º¸¿ÏÀûÀÎ ÇÁ·ÎÅ׿À¹Í½º Åø¿¡ ´ëÇÑ ¼ö¿äµµ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. NGS Ç÷§ÆûÀÌ ÁøÈ­ÇÔ¿¡ µû¶ó ÇÁ·ÎÅ׿À¹Í½º ½ÃÀåÀÇ ¿ëµµ¸¦ Áö¿øÇÏ°í °è¼Ó È®ÀåÇϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹üÀ§¿Í Á¶»ç ¹æ¹ý

  • Á¶»ç ¸ñÀû
  • ÀÌÇØ°ü°èÀÚ
  • µ¥ÀÌÅÍ ¼Ò½º
    • 1Â÷ Á¤º¸
    • 2Â÷ Á¤º¸
  • ½ÃÀå ÃßÁ¤
    • º¸ÅÒ¾÷ Á¢±Ù
    • Åé´Ù¿î Á¢±Ù
  • Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ¼­·Ð

Á¦5Àå ¼¼°èÀÇ ÇÁ·ÎÅ׿À¹Í½º ½ÃÀå

  • ½ÃÀå °³¿ä
  • ½ÃÀå ½ÇÀû
  • COVID-19ÀÇ ¿µÇâ
  • ½ÃÀå ¿¹Ãø

Á¦6Àå ½ÃÀå ºÐ¼® : ºÐ¼® À¯Çüº°

  • ±¸Á¶ ÇÁ·ÎÅ׿À¹Í½º
  • ±â´É ÇÁ·ÎÅ׿À¹Í½º
  • ´Ü¹éÁú ¹ßÇö ÇÁ·ÎÅ׿À¹Í½º

Á¦7Àå ½ÃÀå ºÐ¼® : ÄÄÆ÷³ÍÆ® À¯Çüº°

  • ÄÚ¾î ÇÁ·ÎÅ׿À¹Í½º ¼­ºñ½º
  • ¹ÙÀÌ¿ÀÀÎÆ÷¸Åƽ½º ¼ÒÇÁÆ®¿þ¾î ¹× °ü·Ã ¼­ºñ½º

Á¦8Àå ½ÃÀå ºÐ¼® : ±â¼úº°

  • ºÐ±¤¹ý
  • Å©·Î¸¶Åä±×·¡ÇÇ
  • Àü±â¿µµ¿
  • ´Ü¹éÁú ¸¶ÀÌÅ©·Î¾î·¹ÀÌ
  • X¼± °áÁ¤ ±¸Á¶ ºÐ¼®
  • Ç¥¸é ÇÁ¶óÁî¸ó °ø¸í
  • ±âŸ

Á¦9Àå ½ÃÀå ºÐ¼® : ¿ëµµº°

  • ´Ü¹éÁú ¹ßÇö ÇÁ·ÎÆÄÀϸµ
  • ÇÁ·ÎÅ×¿È ¸¶ÀÌ´×
  • ¹ø¿ªÈÄ º¯Çü

Á¦10Àå ½ÃÀå ºÐ¼® : ÃÖÁ¾»ç¿ëÀÚº°

  • ÀÓ»óÁø´Ü ½ÇÇè½Ç
  • ¿¬±¸±â°ü(Drug Discovery)
  • ±âŸ

Á¦11Àå ½ÃÀå ºÐ¼® : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • ÀϺ»
    • Àεµ
    • Çѱ¹
    • È£ÁÖ
    • Àεµ³×½Ã¾Æ
    • ±âŸ
  • À¯·´
    • µ¶ÀÏ
    • ÇÁ¶û½º
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ½ºÆäÀÎ
    • ·¯½Ã¾Æ
    • ±âŸ
  • ¶óƾ¾Æ¸Þ¸®Ä«
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
    • ±âŸ
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦12Àå SWOT ºÐ¼®

Á¦13Àå ¹ë·ùüÀÎ ºÐ¼®

Á¦14Àå PorterÀÇ Five Forces ºÐ¼®

Á¦15Àå °æÀï ±¸µµ

  • ½ÃÀå ±¸Á¶
  • ÁÖ¿ä ±â¾÷
  • ÁÖ¿ä ±â¾÷ °³¿ä
    • Agilent Technologies Inc.
    • Bio-RAD Laboratories Inc.
    • Bruker Corporation
    • Creative Proteomics
    • Danaher Corporation
    • GE Healthcare Inc.
    • Horiba Ltd.
    • Luminex Corporation
    • Merck Group
    • Perkinelmer Inc.
    • Promega Corporation
    • Thermo Fisher Scientific Inc.
    • Waters Corporation
LSH 25.09.08

The global proteomics market size reached USD 41.5 Billion in 2024. Looking forward, IMARC Group expects the market to reach USD 139.4 Billion by 2033, exhibiting a growth rate (CAGR) of 13.68% during 2025-2033. North America currently dominates the market, driven by its robust research infrastructure and strong presence of pharmaceutical and biotech companies. The market is primarily driven by rapid technological advancements in mass spectrometry, increasing incidents of chronic diseases, and rapid shift towards personalized medicines. Moreover, increasing integration of machine learning (ML) and artificial intelligence (AI) are upgrading protein analysis and data interpretation.

Dominant Segments:

  • Analysis Type: On the basis of analysis type, the market has been segmented into structural proteomics, functional proteomics, and protein expression proteomics.
  • Component Type: Based on component type, the market has been bifurcated into core proteomics services and bioinformatics software and related services.
  • Technology: Protein microarrays lead the market as they enable rapid, large-scale analysis of protein interactions, expressions, and functions. Their high-throughput nature makes them ideal for biomarker discovery and disease diagnostics.
  • Application: On the basis of application, the market has been classified into protein expression profiling, protein mining, and post-translational modifications.
  • End-User: Research organizations (drug discovery) hold the biggest market share because of their focus on biomarker identification and disease mechanism studies. They are heavily investing in advanced proteomic technologies to accelerate research and development (R&D) activities.
  • Region: North America leads the proteomics market due to high R&D investments and a large presence of biotech and pharmaceutical companies. Government support, advanced healthcare systems, and early adoption of innovative technologies are further driving market leadership in the region.

Key Players:

  • The leading companies in proteomics market include Agilent Technologies Inc., Bio-RAD Laboratories Inc., Bruker Corporation, Creative Proteomics, Danaher Corporation, GE Healthcare Inc., Horiba Ltd., Luminex Corporation, Merck Group, Perkinelmer Inc., Promega Corporation, Thermo Fisher Scientific Inc., Waters Corporation, etc.

Key Drivers of Market Growth:

  • Growing Demand for Personalized Medicine: The personalized approach fosters greater adoption of proteomic tools in clinical and pharmaceutical settings. Proteomics identifies specific biomarkers, supporting targeted drug development and improving therapeutic outcomes.
  • Rising Focus on Cancer Research: Proteins play a crucial role in tumor biology, progression, and drug resistance. Proteomic analysis helps identify cancer-specific biomarkers, supports early diagnosis, and guides targeted therapy. This research demand is enhancing investments in proteomic technologies across oncology studies.
  • Collaborations Between Academic Institutes and Biotech Companies: Partnerships are facilitating faster development of proteomic tools, diagnostic solutions, and therapeutics. Joint efforts also attract more funding, expand research capacity, and strengthen commercialization pipelines.
  • Emergence of Single-Cell Proteomics: The development of single-cell proteomics is allowing researchers to study protein expression at the individual cell level. This innovation reveals cellular diversity and rare populations, enhancing disease understanding and drug targeting.
  • Technological Advancements in Next-Generation Sequencing (NGS): Advancements in next-generation sequencing are enabling multi-omics approaches. NGS data provides genomic context for protein expression studies, improving biomarker discovery and precision medicine.

Future Outlook:

  • Strong Growth Outlook: The proteomics market is expected to see sustained expansion, due to high demand for personalized medicine and innovations in mass spectrometry and bioinformatics. Ongoing research in drug discovery and biomarker identification is further supporting the market expansion.
  • Market Evolution: The sector is anticipated to shift from basic protein analysis to advanced techniques like protein microarrays and bioinformatics tools. It is playing a significant role in diagnostics and personalized medicine, reflecting a shift towards more targeted and data-based biological investigations.

The proteomics market is expanding due to the rise of single-cell proteomics, which offers deep insights into cellular heterogeneity, enabling more accurate disease modeling and therapeutic targeting. Collaborations between academic institutions and biotech companies are accelerating innovations, allowing quicker translation of research into practical diagnostic and therapeutic solutions. Technological advancements in mass spectrometry, protein microarrays, and NGS are also enhancing data accuracy, throughput, and cost-efficiency. Improved automation and miniaturization of proteomics instruments are refining efficiency, reducing sample volumes, and lowering operational costs. Moreover, the integration of proteomics with other omics platforms like genomics and metabolomics is enabling comprehensive biological analysis, further broadening its applications. Government funding, regulatory support for biomarker discovery, and increasing utilization of proteomics in agriculture and environmental monitoring are also contributing to the market growth.

Proteomics Market Trends:

Growing incidence of chronic and infectious diseases

High incidence of chronic and infectious ailments is significantly fueling the growth of the market. As conditions like cancer, diabetes, cardiovascular disorders, and infectious diseases are becoming more widespread, there is a rising need to understand disease mechanisms at the molecular level. As per the NIH, in 2024, it was anticipated that there would be 2,001,140 new cancer cases in the United States. Proteomics enables researchers and clinicians to identify disease-specific biomarkers, monitor disease progression, and develop targeted therapies. It also aids in early diagnosis, which is critical in managing chronic illnesses effectively. The demand for personalized medicine and precision treatment is further promoting the use of proteomics tools, as they allow a deeper analysis of protein interactions and functions.

Increasing pharmaceutical R&D activities

The growing pharmaceutical R&D activities are positively influencing the market. As stated in the Swiss Biotech Report 2025, R&D expenditure in Switzerland amounted to SFr2.6 Billion (USD 3.16 Billion) in 2024, with SFr1.4 Billion contributed by private companies. As pharmaceutical companies are wagering on drug discovery and development, there is a rising demand for advanced tools that can offer insights into protein structures, functions, and interactions. Proteomics enables researchers to identify and validate potential drug targets, understand disease pathways, and assess drug efficacy and toxicity at the molecular level. With a strong focus on developing targeted therapies, proteomics is becoming essential for detecting disease-specific biomarkers and tailoring treatments accordingly. Additionally, the adoption of biologics and biosimilars has further intensified the need for precise protein analysis.

Rising AI adoption

Increasing AI adoption is streamlining data analysis, improving pattern recognition, and accelerating biomarker discovery. As per the IMARC Group, the global AI market size was valued at USD 115.62 Billion in 2024. Proteomics generates massive, complex datasets that require advanced computational tools for accurate interpretation. AI algorithms, particularly ML, help identify subtle protein expression patterns linked to specific diseases, enabling faster and more precise diagnostics and drug development. AI also enhances predictive modeling in personalized medicine by integrating proteomic data with other biological datasets. This technological synergy reduces research timelines and boosts efficiency in both academic and pharmaceutical research. Furthermore, AI-oriented automation minimizes human error and lowers operational costs. As organizations are integrating AI into their proteomics workflows, innovations in disease detection and treatment continue to advance rapidly. According to the proteomics market report, this technological trend plays an important role in shaping the future of the industry.

Key Growth Drivers of Proteomics Market:

Partnerships between academic institutes and biotech companies

Increasing alliances between academic institutes and biotech companies are significantly bolstering the proteomics market growth by combining research innovations with commercial execution. Academic institutions offer deep scientific knowledge and cutting-edge discoveries, while biotech firms provide resources, infrastructure, and expertise to translate these findings into market-ready applications. Such partnerships accelerate the development of novel proteomic technologies, diagnostic tools, and therapeutics. Joint ventures help bridge the gap between basic research and real-world clinical needs, leading to faster innovation cycles. These collaborations often attract funding from both public and private sectors, enabling large-scale proteomic studies and advanced biomarker identification. The shared access to talent, equipment, and databases is further strengthening research output and commercial potential.

Emergence of single-cell proteomics

The emergence of single-cell proteomics is allowing researchers to analyze proteins at an individual cell level, offering insights into cellular heterogeneity and disease mechanisms. Unlike bulk analysis, which averages signals from numerous cells, single-cell techniques capture the unique proteomic profile of each cell, enabling deeper understanding of cell behavior, immune responses, and cancer progression. This level of granularity is crucial for developing personalized medicine, as it helps identify rare cell types or subpopulations involved in disease. The growing utilization of high-resolution mass spectrometry and microfluidic platforms has made single-cell proteomics more feasible and scalable. As researchers and pharmaceutical companies are adopting this approach, it is opening new avenues for biomarker discovery and therapeutic targeting.

Technological advancements in NGS

Technological advancements in NGS are enhancing multi-omics integration and expanding the depth of biological insights. While NGS is primarily used for genomic and transcriptomic analysis, its synergy with proteomics allows a more complete understanding of cellular function. Researchers can correlate gene expression data with protein expression and modifications, leading to improved biomarker identification and disease modeling. Innovations, such as single-cell sequencing and spatial transcriptomics, are enabling high-resolution mapping of gene and protein networks within tissues. These technologies make it easier to design proteomic experiments informed by genomic context, enhancing accuracy and relevance. The widespread availability of NGS also fosters data-driven research strategies, driving the demand for complementary proteomics tools. As NGS platforms are evolving, they continue to support and broaden applications in the proteomics market.

Proteomics Market Segmentation:

Breakup by Analysis Type:

  • Structural Proteomics
  • Functional Proteomics
  • Protein Expression Proteomics

Structural proteomics is concerned with detailed analysis of protein interactions, structures, and functions. This field is required for studying disease mechanism and drug development. Advanced instruments and techniques boost growth, facilitating high-resolution structural comprehensions. Leading research institutions and companies are globally investing in structural proteomics to develop innovative therapeutic solutions.

Functional proteomics emphasizes on recognizing protein interactions and functions within a biological context. This discipline leverages advanced techniques to examine the dynamics of protein modifications, activities, and networks. In the global proteomics market, functional proteomics plays a crucial role by spurring innovations in personalized medicine, drug discovery, and disease diagnostics. By offering discernments into protein pathways and mechanisms, it encourages the development of targeted therapies and biomarker identification, substantially improving the efficacy and accuracy of medical treatments.

Protein expression proteomics examines the qualitative and quantitative aspects of protein formation within cells. It includes high-throughput techniques to compare and profile protein expression levels across various treatments or conditions. In the global proteomics market outlook, this subfield is pivotal for comprehending disease mechanisms, identifying biomarkers, and innovating novel therapeutic strategies. The proficiency of monitoring protein expression changes in response to numerous stimuli facilitates the development of enhanced and effective personalized medical initiatives and early detection of diseases.

Breakup by Component Type:

  • Core Proteomics Services
  • Bioinformatics Software and Related Services

Core proteomics services include the protein identification, quantification, and analysis by leveraging advanced techniques such as chromatography and mass spectrometry. These services permit researchers to interpret complex protein interactions and functions, streamlining discoveries in therapeutic targets, disease mechanisms, and biomarker identification. Specialization in data acquisition, interpretation, and sample preparation is crucial for accurate results.

Bioinformatics software and related services provide crucial tools for data visualization and analysis. These services feature algorithms for protein structural prediction, sequence alignment, and functional annotation. Incorporating bioinformatics with proteomics propels research by reconfiguring raw data into meaningful biological insights, endorsing advancements in drug development and personalized medicine. For instance, in October 2023, Ionpath, a high-definition spatial proteomics developer, launched user-friendly bioinformatics tools named MIBIplus and MIBIsight that offers controlled data interpretation by using mass spectrometry to study various proteins associated with immune-oncology.

Breakup by Technology:

  • Spectroscopy
  • Chromatography
  • Electrophoresis
  • Protein Microarrays
  • X-Ray Crystallography
  • Surface Plasmon Resonance
  • Others

Protein microarrays represent the leading market segment

Protein microarrays demonstrate a high-throughput platform in proteomics market, allowing simultaneous analysis of numerous protein samples. By immobilizing proteins on solid surfaces, these arrays foster rapid quantification and detection, promoting therapeutic development, biomarker discovery and diagnostics within the global proteomics market. For instance, in February 2024, Infinity Bio launched new technology, based on MIPSA technology, that leverages protein microarray method to analyze antibody-antigen binding. Maryland-based PTX Capital and Blackbird BioVentures granted USD 4 million fund to Infinity for the development of this technology, allowing the production of large arrays of proteins or peptides in a highly programmed manner. It also aids in combining full-length proteins and peptides in a single reaction, which allows researchers to study antibodies interaction with the 3D structure of full proteins and collect information on the specific peptide sequences that function as antibody epitopes.

Breakup by Application:

  • Protein Expression Profiling
  • Proteome Mining
  • Post-translational Modifications

Protein expression profiling is a pivotal technique permitting the quantification and identification of proteins within a specific biological sample. This process offers valuable analysis of disease mechanisms and cellular functions, promoting the development of personalized medicine and targeted therapeutics by locating specific protein markers associated with numerous conditions.

Proteome mining is an inclusive approach that encompasses the systematic assessment of the entire proteome to discover novel proteins and apprehend their functions. This method propels advancements in drug development and biomarker discovery, presenting an in-depth understanding of potential therapeutic targets and biological processes for numerous diseases.

Post-translational modification (PTM) analysis targets the chemical modifications post the synthesis of proteins. These modifications greatly influence protein stability, function, and interactions. In the global proteomics market, PTM analysis aids in elucidating complex regulatory mechanisms, promoting the development of innovative diagnostics and treatments.

Breakup by End-User:

  • Clinical Diagnostic Laboratories
  • Research Organizations (Drug Discovery)
  • Others

Research organizations dominate the market

By utilizing proteomic data, research organizations uncover new drug targets, expound disease mechanisms, and boost the development of effective treatments, consequently spurring advancements in biotechnological and pharmaceutical sectors. For instance, in July 2024, Olink Holding AB, a leading proteomics company, launched its network of Olink Certified Service Providers that will represent service labs and contract research organization (CROs) worldwide.

Breakup by Region:

  • North America
    • United States
    • Canada
  • Asia Pacific
    • China
    • Japan
    • India
    • South Korea
    • Australia
    • Indonesia
    • Others
  • Europe
    • Germany
    • France
    • United Kingdom
    • Italy
    • Spain
    • Russia
    • Others
  • Latin America
    • Brazil
    • Mexico
    • Others
  • Middle East and Africa

North America leads the market, accounting for the largest proteomics market share

The report has also provided a comprehensive analysis of all the major regional markets, which include North America (the United States and Canada); Europe (Germany, France, the United Kingdom, Italy, Spain, Russia, and others); Asia Pacific (China, Japan, India, South Korea, Australia, Indonesia, and others); Latin America (Brazil, Mexico, and others); and the Middle East and Africa. According to the report, North America represents the largest regional market, holding the largest share of the proteomics market revenue.

The market in North America is undergoing notable growth, principally driven by significant investments in research and development, and upgraded healthcare infrastructure. Furthermore, the increasing incidents of chronic diseases and intensifying focus on personalized medicine is boosting the market growth. In additional, robust support by government and funding initiatives escalate the utilization of proteomics technology in academic and clinical research. For instance, in September 2023, Multiomics CRO Psomagen launched its Spatial Biology services for 10X Genomics Xenium in North America. Psomagen's Xenium Service integrates various omics platforms, including proteomics, genomics, and transcriptomics.

Competitive Landscape:

  • The market research report has also provided a comprehensive analysis of the competitive landscape in the market. Detailed profiles of all major companies have also been provided. Some of the major market players in the proteomics industry include Agilent Technologies Inc., Bio-RAD Laboratories Inc., Bruker Corporation, Creative Proteomics, Danaher Corporation, GE Healthcare Inc., Horiba Ltd., Luminex Corporation, Merck Group, Perkinelmer Inc., Promega Corporation, Thermo Fisher Scientific Inc., Waters Corporation, etc.

(Please note that this is only a partial list of the key players, and the complete list is provided in the report.)

  • The competitive landscape of the global proteomics market is represented by the presence of major companies that are actively competing to strengthen their market position through strategic collaborations and technological advancements. For instance, in April 2024, Biognosys and Alamar Biosciences announced that they have entered into a strategic partnership for joint scientific research in biofluid-based proteomics. This partnership brings together Biognosys' expertise in data independent acquisition mass spectrometry (DIA-MS) and Alamar's cutting-edge immunoassays. Market players are currently emphasizing on research and development investment and expansion of their product portfolios to lead this swiftly evolving sector. Acquisitions and mergers are also common, aimed at unifying resources and expertise. The market is currently experiencing intense competition, fueled by escalating demand for advanced diagnostic tools and precision medicine, mandating continuous innovation.

Key Questions Answered in This Report

  • 1.How big is the global proteomics market?
  • 2.What is the expected growth rate of the global proteomics market during 2025-2033?
  • 3.What are the key factors driving the global proteomics market?
  • 4.What has been the impact of COVID-19 on the global proteomics market?
  • 5.What is the breakup of the global proteomics market based on the technology?
  • 6.What is the breakup of the global proteomics market based on the end-user?
  • 7.What are the key regions in the global proteomics market?
  • 8.Who are the key players/companies in the global proteomics market?

Table of Contents

1 Preface

2 Scope and Methodology

  • 2.1 Objectives of the Study
  • 2.2 Stakeholders
  • 2.3 Data Sources
    • 2.3.1 Primary Sources
    • 2.3.2 Secondary Sources
  • 2.4 Market Estimation
    • 2.4.1 Bottom-Up Approach
    • 2.4.2 Top-Down Approach
  • 2.5 Forecasting Methodology

3 Executive Summary

4 Introduction

  • 4.1 Overview
  • 4.2 Key Industry Trends

5 Global Proteomics Market

  • 5.1 Market Overview
  • 5.2 Market Performance
  • 5.3 Impact of COVID-19
  • 5.4 Market Forecast

6 Market Breakup by Analysis Type

  • 6.1 Structural Proteomics
    • 6.1.1 Market Trends
    • 6.1.2 Market Forecast
  • 6.2 Functional Proteomics
    • 6.2.1 Market Trends
    • 6.2.2 Market Forecast
  • 6.3 Protein Expression Proteomics
    • 6.3.1 Market Trends
    • 6.3.2 Market Forecast

7 Market Breakup by Component Type

  • 7.1 Core Proteomics Services
    • 7.1.1 Market Trends
    • 7.1.2 Market Forecast
  • 7.2 Bioinformatics Software and Related Services
    • 7.2.1 Market Trends
    • 7.2.2 Market Forecast

8 Market Breakup by Technology

  • 8.1 Spectroscopy
    • 8.1.1 Market Trends
    • 8.1.2 Market Forecast
  • 8.2 Chromatography
    • 8.2.1 Market Trends
    • 8.2.2 Market Forecast
  • 8.3 Electrophoresis
    • 8.3.1 Market Trends
    • 8.3.2 Market Forecast
  • 8.4 Protein Microarrays
    • 8.4.1 Market Trends
    • 8.4.2 Market Forecast
  • 8.5 X-Ray Crystallography
    • 8.5.1 Market Trends
    • 8.5.2 Market Forecast
  • 8.6 Surface Plasmon Resonance
    • 8.6.1 Market Trends
    • 8.6.2 Market Forecast
  • 8.7 Others
    • 8.7.1 Market Trends
    • 8.7.2 Market Forecast

9 Market Breakup by Application

  • 9.1 Protein Expression Profiling
    • 9.1.1 Market Trends
    • 9.1.2 Market Forecast
  • 9.2 Proteome Mining
    • 9.2.1 Market Trends
    • 9.2.2 Market Forecast
  • 9.3 Post-translational Modifications
    • 9.3.1 Market Trends
    • 9.3.2 Market Forecast

10 Market Breakup by End-User

  • 10.1 Clinical Diagnostic Laboratories
    • 10.1.1 Market Trends
    • 10.1.2 Market Forecast
  • 10.2 Research Organizations (Drug Discovery)
    • 10.2.1 Market Trends
    • 10.2.2 Market Forecast
  • 10.3 Others
    • 10.3.1 Market Trends
    • 10.3.2 Market Forecast

11 Market Breakup by Region

  • 11.1 North America
    • 11.1.1 United States
      • 11.1.1.1 Market Trends
      • 11.1.1.2 Market Forecast
    • 11.1.2 Canada
      • 11.1.2.1 Market Trends
      • 11.1.2.2 Market Forecast
  • 11.2 Asia Pacific
    • 11.2.1 China
      • 11.2.1.1 Market Trends
      • 11.2.1.2 Market Forecast
    • 11.2.2 Japan
      • 11.2.2.1 Market Trends
      • 11.2.2.2 Market Forecast
    • 11.2.3 India
      • 11.2.3.1 Market Trends
      • 11.2.3.2 Market Forecast
    • 11.2.4 South Korea
      • 11.2.4.1 Market Trends
      • 11.2.4.2 Market Forecast
    • 11.2.5 Australia
      • 11.2.5.1 Market Trends
      • 11.2.5.2 Market Forecast
    • 11.2.6 Indonesia
      • 11.2.6.1 Market Trends
      • 11.2.6.2 Market Forecast
    • 11.2.7 Others
      • 11.2.7.1 Market Trends
      • 11.2.7.2 Market Forecast
  • 11.3 Europe
    • 11.3.1 Germany
      • 11.3.1.1 Market Trends
      • 11.3.1.2 Market Forecast
    • 11.3.2 France
      • 11.3.2.1 Market Trends
      • 11.3.2.2 Market Forecast
    • 11.3.3 United Kingdom
      • 11.3.3.1 Market Trends
      • 11.3.3.2 Market Forecast
    • 11.3.4 Italy
      • 11.3.4.1 Market Trends
      • 11.3.4.2 Market Forecast
    • 11.3.5 Spain
      • 11.3.5.1 Market Trends
      • 11.3.5.2 Market Forecast
    • 11.3.6 Russia
      • 11.3.6.1 Market Trends
      • 11.3.6.2 Market Forecast
    • 11.3.7 Others
      • 11.3.7.1 Market Trends
      • 11.3.7.2 Market Forecast
  • 11.4 Latin America
    • 11.4.1 Brazil
      • 11.4.1.1 Market Trends
      • 11.4.1.2 Market Forecast
    • 11.4.2 Mexico
      • 11.4.2.1 Market Trends
      • 11.4.2.2 Market Forecast
    • 11.4.3 Others
      • 11.4.3.1 Market Trends
      • 11.4.3.2 Market Forecast
  • 11.5 Middle East and Africa
    • 11.5.1 Market Trends
    • 11.5.2 Market Breakup by Country
    • 11.5.3 Market Forecast

12 SWOT Analysis

  • 12.1 Overview
  • 12.2 Strengths
  • 12.3 Weaknesses
  • 12.4 Opportunities
  • 12.5 Threats

13 Value Chain Analysis

14 Porters Five Forces Analysis

  • 14.1 Overview
  • 14.2 Bargaining Power of Buyers
  • 14.3 Bargaining Power of Suppliers
  • 14.4 Degree of Competition
  • 14.5 Threat of New Entrants
  • 14.6 Threat of Substitutes

15 Competitive Landscape

  • 15.1 Market Structure
  • 15.2 Key Players
  • 15.3 Profiles of Key Players
    • 15.3.1 Agilent Technologies Inc.
      • 15.3.1.1 Company Overview
      • 15.3.1.2 Product Portfolio
      • 15.3.1.3 Financials
      • 15.3.1.4 SWOT Analysis
    • 15.3.2 Bio-RAD Laboratories Inc.
      • 15.3.2.1 Company Overview
      • 15.3.2.2 Product Portfolio
      • 15.3.2.3 Financials
      • 15.3.2.4 SWOT Analysis
    • 15.3.3 Bruker Corporation
      • 15.3.3.1 Company Overview
      • 15.3.3.2 Product Portfolio
      • 15.3.3.3 Financials
      • 15.3.3.4 SWOT Analysis
    • 15.3.4 Creative Proteomics
      • 15.3.4.1 Company Overview
      • 15.3.4.2 Product Portfolio
    • 15.3.5 Danaher Corporation
      • 15.3.5.1 Company Overview
      • 15.3.5.2 Product Portfolio
      • 15.3.5.3 Financials
      • 15.3.5.4 SWOT Analysis
    • 15.3.6 GE Healthcare Inc.
      • 15.3.6.1 Company Overview
      • 15.3.6.2 Product Portfolio
    • 15.3.7 Horiba Ltd.
      • 15.3.7.1 Company Overview
      • 15.3.7.2 Product Portfolio
      • 15.3.7.3 Financials
    • 15.3.8 Luminex Corporation
      • 15.3.8.1 Company Overview
      • 15.3.8.2 Product Portfolio
      • 15.3.8.3 Financials
      • 15.3.8.4 SWOT Analysis
    • 15.3.9 Merck Group
      • 15.3.9.1 Company Overview
      • 15.3.9.2 Product Portfolio
      • 15.3.9.3 Financials
      • 15.3.9.4 SWOT Analysis
    • 15.3.10 Perkinelmer Inc.
      • 15.3.10.1 Company Overview
      • 15.3.10.2 Product Portfolio
      • 15.3.10.3 Financials
      • 15.3.10.4 SWOT Analysis
    • 15.3.11 Promega Corporation
      • 15.3.11.1 Company Overview
      • 15.3.11.2 Product Portfolio
    • 15.3.12 Thermo Fisher Scientific Inc.
      • 15.3.12.1 Company Overview
      • 15.3.12.2 Product Portfolio
      • 15.3.12.3 Financials
      • 15.3.12.4 SWOT Analysis
    • 15.3.13 Waters Corporation
      • 15.3.13.1 Company Overview
      • 15.3.13.2 Product Portfolio
      • 15.3.13.3 Financials
      • 15.3.13.4 SWOT Analysis
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦