½ÃÀ庸°í¼­
»óǰÄÚµå
1801036

ÀçȰ ·Îº¿ ½ÃÀå º¸°í¼­ : À¯Çüº°, ȯÀÚ À¯Çüº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº°, 2025-2033³â

Rehabilitation Robots Market Report by Type (Therapeutic Robots, Exoskeleton Robots, Assistive Robots, and Others), Patient Type (Adult, Pediatric), End User (Rehabilitation Centers, Hospitals, and Others), and Region 2025-2033

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: IMARC | ÆäÀÌÁö Á¤º¸: ¿µ¹® 137 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

ÀçȰ ·Îº¿ ¼¼°è ½ÃÀå ±Ô¸ð´Â 2024³â 15¾ï 4,300¸¸ ´Þ·¯¿¡ ´ÞÇß½À´Ï´Ù. ÇâÈÄ ½ÃÀåÀº 2033³â±îÁö 68¾ï 910¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2025-2033³â »çÀÌ 17.9%ÀÇ ¿¬Æò±Õ ¼ºÀå·ü(CAGR)À» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. °í·ÉÈ­ Àα¸ Áõ°¡, Àå¾Ö À¯º´·ü Áõ°¡, ±â¼ú ¹ßÀü, Á¤ºÎ ÀÌ´Ï¼ÅÆ¼ºê ¹× ÀÚ±Ý Áö¿ø µîÀÌ ½ÃÀå ¼ºÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù.

ÀçȰ ·Îº¿ ½ÃÀå µ¿Çâ

°í·ÉÈ­

°í·ÉÈ­´Â ÀçȰ ·Îº¿ ½ÃÀåÀÇ ¼ºÀåÀ» Å©°Ô ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ¼¼°èº¸°Ç±â±¸(WHO)¿¡ µû¸£¸é 2020³â¿¡´Â 60¼¼ ÀÌ»ó ¼ºÀÎÀÇ ¼ö°¡ 5¼¼ ÀÌÇÏ À¯¾Æº¸´Ù ¸¹À» °ÍÀ̶ó°í ÇÕ´Ï´Ù. 2015³âºÎÅÍ 2050³â±îÁö Àü ¼¼°è 60¼¼ ÀÌ»ó Àα¸°¡ Â÷ÁöÇÏ´Â ºñÁßÀº 12%¿¡¼­ 22%·Î °ÅÀÇ µÎ ¹è·Î Áõ°¡ÇÕ´Ï´Ù. °í·ÉÈ­¿¡ µû¶ó ³úÁ¹Áß, ÆÄŲ½¼º´, °üÀý¿°, ±âŸ ¿îµ¿ Àå¾Ö µî ¿îµ¿ ´É·Â°ú ÀÚ¸³À» ÀúÇØÇÏ´Â ¸¸¼º ÁúȯÀÇ ¹ß»ý·üµµ ³ô¾ÆÁý´Ï´Ù. ¿¹¸¦ µé¾î, ¼¼°èº¸°Ç±â±¸(WHO)°¡ ¹ßÇ¥ÇÑ ÀÚ·á¿¡ µû¸£¸é °ñ°üÀý¿° ȯÀÚÀÇ ¾à 73%°¡ 55¼¼ ÀÌ»óÀÇ °í·ÉÀÚ¶ó°í ÇÕ´Ï´Ù. À̿ʹ º°°³·Î ³ëÀÎÀÇ »îÀÇ Áú°ú ÀÚ¸³À» Çâ»ó½ÃŰ´Â º¸Á¶ ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀçȰ ·Îº¿Àº ³ëÀÎÀÇ ºÎ»óÀ̳ª ¼ö¼ú ÈÄ ¿îµ¿´É·Â, ±Ù·Â, ±â´É ȸº¹À» µ½´Â °ÍÀ¸·Î ÀÌ ¹üÁÖ¿¡ ÇØ´çÇÕ´Ï´Ù. ¿¹¸¦ µé¾î, ±¹¸³ÀÇ·áµµ¼­°üÀÌ ¹ßÇ¥ÇÑ ³í¹®¿¡ µû¸£¸é, ¸ð¼Ç ÀçȰ ·Îº¿Àº ÁÖ·Î ³ëÀÎÀ» À§ÇØ ¼³°èµÇ¾úÀ¸¸ç, ȯÀÚ°¡ ´Éµ¿ÀûÀ¸·Î Á¶ÀÛÇϸ鼭 °³º°ÀûÀ¸·Î ½Åü Ȱµ¿ ·çƾÀ» º¸Á¶ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ·Îº¿Àº ȯÀÚÀÇ ÁÖ°üÀûÀΠȸº¹°ú ÀçȰ Ä¡·áÀÇ ´Ù¸¥ Ãø¸éÀ» °­È­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ ½ÃÀå ¼ö¿ä¸¦ ´õ¿í Áõ°¡½Ã۰í ÀÖ½À´Ï´Ù.

°£Áú ¹× ±âŸ ¸¸¼º ÁúȯÀÇ À¯º´·ü Áõ°¡

°£Áú ¹× ±âŸ ¸¸¼º ÁúȯÀÇ À¯º´·ü Áõ°¡°¡ ÀçȰ ·Îº¿¿¡ ´ëÇÑ ¼ö¿ä¸¦ °ßÀÎÇϰí ÀÖ½À´Ï´Ù. °£Áú°ú °°Àº ¸¸¼ºÁúȯÀÇ À¯º´·üÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ÀçȰ¼­ºñ½º¿¡ ´ëÇÑ ¼ö¿äµµ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀçȰ ·Îº¿Àº ÀÌ·¯ÇÑ ÁúȯÀ» ¾Î°í ÀÖ´Â »ç¶÷µéÀÇ ¹°¸®Ä¡·á¿Í ȸº¹ °úÁ¤À» µµ¿Í À̵¿¼º, ±Ù·Â, ÀÚ¸³¼º ȸº¹À» µ½½À´Ï´Ù. ¿¹¸¦ µé¾î, 2023³â 1¿ù HN Reliance Foundation Hospital(RFH)Àº Hocoma AGÀÇ Lokomat-exoskeletonÀ̶ó´Â ÀçȰ ·Îº¿À» µµÀÔÇÏ¿© Á¤¹ÐÇÑ ¹°¸®Ä¡·á¸¦ Áö¿øÇϰí ÀÖ½À´Ï´Ù. ·Îº¿¹°¸®Ä¡·á´Â ¼ö±âÄ¡·á ¹× ±âŸ ÀÇ·á Áö¿ø°ú °áÇÕÇÏ¿© ȯÀÚÀÇ ¿Ü»ó ȸº¹À» °¡¼ÓÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¸¸¼ºÁúȯÀº ÀÏ»ó»ýȰ°ú ÀçȰÀ» Áö¿øÇÏ´Â °£º´Àο¡°Ô Å« ºÎ´ãÀ» ÁÙ ¼ö ÀÖ½À´Ï´Ù. ÀçȰ ·Îº¿Àº Ä¡·á ¼¼¼ÇÀÇ º¸Á¶Àڷμ­ °£º´ÀÎÀÇ À°Ã¼Àû ºÎ´ãÀ» ÁÙÀ̰í ȯÀÚ¿¡°Ô ÀϰüµÇ°í È¿°úÀûÀÎ Ä¡·á¸¦ º¸ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, 2024³â 4¿ù ½ºÅä´Ïºê·è ´ëÇб³ ¿¬±¸ÆÀÀº ÄÄÇ»ÅÍ¿Í ÀΰøÁö´É(AI) ±â¼ú, ±â°è°øÇÐ, ÀÇ·á Àü¹®°¡ÀÇ ÄÁ¼³ÆÃÀ» ÅëÇØ ALS ȯÀÚ¿Í °£º´ÀÎÀ» À§ÇØ ÁøÇ༺ ALS¿¡ µû¸¥ ¸¹Àº ¾î·Á¿òÀ» ¿ÏÈ­ÇÏ´Â °£º´ ·Îº¿ µµ¿ì¹Ì(CART)¸¦ °³¹ßÇÒ °èȹÀÔ´Ï´Ù. °³¹ßÀ» °èȹÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ ÀçȰ ½ÃÀå Á¡À¯À²¿¡ ´õ¿í ±â¿©Çϰí ÀÖ½À´Ï´Ù.

±â¼ú ¹ßÀü

±â¼úÀÇ ¹ßÀüÀº ÀçȰ ·Îº¿ ½ÃÀåÀ» À̲ô´Â Áß¿äÇÑ ¿ä¼Ò Áß ÇϳªÀÔ´Ï´Ù. À̵éÀº ÆÈ´Ù¸®ÀÇ ¿òÁ÷ÀÓÀ» Áö¿øÇÏ°í °­È­ÇÏ´Â ¿þ¾î·¯ºí ±â±âÀÔ´Ï´Ù. ³úÁ¹Áß, ô¼ö ¼Õ»ó, ±âŸ ½Å°æ°è ÁúȯÀ¸·Î ÀÎÇÑ ¿îµ¿ Àå¾Ö¸¦ °¡Áø »ç¶÷µéÀ» µ½½À´Ï´Ù. ÷´Ü ¿Ü°ñ°ÝÀº ¼¾¼­¸¦ »ç¿ëÇÏ¿© ¿òÁ÷ÀÓÀÇ Àǵµ¸¦ °¨ÁöÇÏ°í ±×¿¡ µû¶ó ÀÚ¿¬½º·¯¿î ¿îµ¿ ÆÐÅÏÀ» ÃËÁøÇÏ°í ±ÙÀ°ÀÇ ÇǷθ¦ °¨¼Ò½ÃŰ´Â Áö¿øÀ» ±â¼úÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ÀÌÅ»¸®¾Æ ±â¼ú ¿¬±¸¼Ò(IIT-Italian Institute of Technology)¿Í INAIL ÀÇÁ· ¼¾ÅÍ(National Institute for Insurance against WorkÀÇ ÀÇÁ· ºÎ¹®)ÀÇ °øµ¿ ¿¬±¸¼ÒÀÎ ÀçȰ ±â¼ú IIT-INAILÀº Æ®À©(TWIN)À¸·Î ¾Ë·ÁÁø »õ·Î¿î ÇÏÁö¿ë ·Îº¿ ¿Ü°ñ°ÝÀ» ¹ßÇ¥ÇÏ¿© ȯÀÚ°¡ ½±°Ô Âø¿ëÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ ¿Ü¿¡µµ AI ¾Ë°í¸®ÁòÀº ÀçȰ ·Îº¿¿¡ ÅëÇÕµÇ¾î µ¥ÀÌÅ͸¦ ºÐ¼®Çϰí, Ä¡·á ÇÁ·ÎÅäÄÝÀ» Á¶Á¤Çϰí, Ä¡·á °èȹÀ» °³ÀÎÈ­Çϱâ À§ÇØ ÀçȰ ·Îº¿¿¡ ÅëÇյǾî ÀÖ½À´Ï´Ù. ¸Ó½Å·¯´× ±â¼úÀ» ÅëÇØ ·Îº¿Àº ȯÀÚ¿ÍÀÇ »óÈ£ÀÛ¿ëÀ» ÅëÇØ ÇнÀÇϰí, º¸Á¶ ¼öÁØÀ» µ¿ÀûÀ¸·Î Á¶Á¤ÇÏ¿© ÀçȰ °á°ú¸¦ ÃÖÀûÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, 2023³â 7¿ù, ÀçȰ ·Îº¿ ¹× ÀΰøÁö´É Àü¹® Áß±¹ ±â¼ú ½ºÅ¸Æ®¾÷ÀΠǪ¸®¿¡ ÀÎÅÚ¸®Àü½º(Fourier Intelligence)´Â »óÇÏÀÌ¿¡¼­ ¿­¸° ¼¼°èÀΰøÁö´É ÄÁÆÛ·±½º¿¡¼­ 1¼¼´ë ÈÞ¸Ó³ëÀÌµå ·Îº¿À» ¹ßÇ¥ÇÏ¿´½À´Ï´Ù. ÀÌ ·Îº¿Àº ChatGPT¿Í °°Àº µµ±¸¿¡¼­ °ø±ÞµÇ´Â ÀÎÁö Áö´ÉÀ» ÅëÇØ Àΰ£°ú ´ëÈ­ÇÏ°í ´Ù¾çÇÑ µ¿ÀÛ°ú ÀÛ¾÷À» ¼öÇàÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ä¼ÒµéÀÌ »ê¾÷ÀÇ ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹üÀ§¿Í Á¶»ç ¹æ¹ý

  • Á¶»ç ¸ñÀû
  • ÀÌÇØ°ü°èÀÚ
  • µ¥ÀÌÅÍ ¼Ò½º
    • 1Â÷ Á¤º¸
    • 2Â÷ Á¤º¸
  • ½ÃÀå ÃßÁ¤
    • º¸ÅÒ¾÷ Á¢±Ù
    • Åé´Ù¿î Á¢±Ù
  • Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ¼­·Ð

Á¦5Àå ¼¼°èÀÇ ÀçȰ ·Îº¿ ½ÃÀå

  • ½ÃÀå °³¿ä
  • ½ÃÀå ½ÇÀû
  • COVID-19ÀÇ ¿µÇâ
  • ½ÃÀå ¿¹Ãø

Á¦6Àå ½ÃÀå ºÐ¼® : À¯Çüº°

  • Ä¡·á¿ë ·Îº¿
  • ¿Ü°ñ°Ý ·Îº¿
  • º¸Á¶ ·Îº¿
  • ±âŸ

Á¦7Àå ½ÃÀå ºÐ¼® : ȯÀÚ À¯Çüº°

  • ¼ºÀÎ
  • ¼Ò¾Æ

Á¦8Àå ½ÃÀå ºÐ¼® : ÃÖÁ¾»ç¿ëÀÚº°

  • ÀçȰġ·á¼¾ÅÍ
  • º´¿ø
  • ±âŸ

Á¦9Àå ½ÃÀå ºÐ¼® : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • ÀϺ»
    • Àεµ
    • Çѱ¹
    • È£ÁÖ
    • Àεµ³×½Ã¾Æ
    • ±âŸ
  • À¯·´
    • µ¶ÀÏ
    • ÇÁ¶û½º
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ½ºÆäÀÎ
    • ·¯½Ã¾Æ
    • ±âŸ
  • ¶óƾ¾Æ¸Þ¸®Ä«
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
    • ±âŸ
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦10Àå SWOT ºÐ¼®

Á¦11Àå ¹ë·ùüÀÎ ºÐ¼®

Á¦12Àå PorterÀÇ Five Forces ºÐ¼®

Á¦13Àå °¡°Ý ºÐ¼®

Á¦14Àå °æÀï ±¸µµ

  • ½ÃÀå ±¸Á¶
  • ÁÖ¿ä ±â¾÷
  • ÁÖ¿ä ±â¾÷ °³¿ä
    • Bionik Laboratories Corp.
    • Ekso Bionics Holdings Inc.
    • Hocoma AG(DIH International Ltd.)
    • Kinova Inc
    • KUKA Aktiengesellschaft(Midea Group)
    • Parker-Hannifin Corporation
    • Rehab-Robotics Company Limited
    • ReWalk Robotics Ltd.
    • Rex Bionics Ltd.
    • Siemens Aktiengesellschaft
    • Tyromotion GmbH
LSH

The global rehabilitation robots market size reached USD 1,543 Million in 2024. Looking forward, the market is expected to reach USD 6,809.1 Million by 2033, exhibiting a growth rate (CAGR) of 17.9% during 2025-2033. The increasing aging population, rising prevalence of disabilities, technological advancements, and government initiatives and funds are primarily driving the market growth.

Rehabilitation Robots Market Trends:

Aging Population

The aging population is significantly driving the growth of the rehabilitation robots market. For instance, according to the World Health Organization (WHO), in 2020, the number of adults aged 60 and older outweighed children under the age of five. Between 2015 and 2050, the share of the world's population over 60 will nearly double, from 12% to 22%. With aging comes a higher incidence of chronic diseases such as stroke, Parkinson's disease, arthritis, and other musculoskeletal disorders that impair mobility and independence. For instance, according to an article published by the World Health Organization (WHO), about 73% of people living with osteoarthritis are older than 55 years. Apart from this, there is a rising demand for assistive technologies that can improve the quality of life and independence of elderly individuals. Rehabilitation robots fit into this category by helping seniors regain mobility, strength, and functionality following injuries or surgeries. For instance, according to an article published by the National Library of Medicine, the motion rehabilitation robot is primarily designed for older people and can assist them with individualized physical activity routines while the patient is actively operating it. These robots can augment the patient's subjective recovery and other aspects of their rehabilitation treatment. These factors are further adding to the market demand.

Rising Prevalence of Epilepsy and Other Chronic Diseases

The increasing incidence of epilepsy and other chronic diseases is driving the demand for rehabilitation robots. As the incidence of chronic diseases such as epilepsy increases, so does the demand for rehabilitation services. Rehabilitation robots can assist in the physical therapy and recovery process for individuals affected by these conditions, helping them regain mobility, strength, and independence. For instance, in January 2023, HN Reliance Foundation Hospital (RFH) acquired a rehab robot called Lokomat - exoskeleton from Hocoma AG, which aids in precision physiotherapy. Robotic physiotherapy, when combined with manual therapy and other medical support, can help patients recover faster from trauma. Besides this, chronic diseases can place a significant burden on caregivers who assist with daily activities and rehabilitation exercises. Rehabilitation robots can serve as assistants in therapy sessions, reducing the physical strain on caregivers and ensuring consistent and effective therapy for patients. For instance, in April 2024, a team of Stony Brook University researchers planned to develop a Caregiving Robot Assistant (CART) for ALS patients and their caregivers to alleviate the many difficulties that accompany advancing ALS by using computer and artificial intelligence (AI) technologies, mechanical engineering, and consultation by medical experts. These factors are further contributing to the rehabilitation market share.

Technological Advancements

Technological advancements are one of the significant factors driving the rehabilitation robot's market. These are wearable devices that support and enhance the movement of limbs. They assist individuals with mobility impairments due to stroke, spinal cord injury, or other neurological conditions. Advanced exoskeletons use sensors to detect movement intentions and provide assistance, accordingly, promoting natural movement patterns and reducing muscle fatigue. For instance, Rehab Technologies IIT - INAIL, the joint laboratory of Istituto Italiano di Tecnologia (IIT-Italian Institute of Technology) and the Prosthetic Center of INAIL (the prosthetic unit of the National Institute for Insurance against Accidents at Work), launched the new robotic exoskeleton for lower limbs, known as TWIN, which will make it easier for patients to wear. Besides this, AI algorithms are being integrated into rehabilitation robots to analyze data, adapt therapy protocols, and personalize treatment plans. Machine learning techniques enable robots to learn from patient interactions and adjust their assistance levels dynamically, optimizing rehabilitation outcomes. For instance, in July 2023, Fourier Intelligence, a Chinese technology startup focused on rehabilitative robotics and artificial intelligence, launched its first-generation humanoid robot at the World Artificial Intelligence Conference in Shanghai. The robot can interact with humans and perform a variety of actions and tasks thanks to the cognitive intelligence supplied by ChatGPT-like tools. These factors are further propelling the industry's growth.

Global Rehabilitation Robots Industry Segmentation:

Breakup by Type:

  • Therapeutic Robots
  • Exoskeleton Robots
  • Assistive Robots
  • Others

According to the rehabilitation market overview, therapeutic robots are designed to assist in delivering therapeutic interventions and rehabilitation exercises to patients. They often incorporate advanced technologies such as artificial intelligence, sensors, and interactive interfaces to tailor treatment plans and monitor patient progress. Moreover, exoskeleton robots are wearable devices that augment human capabilities, particularly in mobility assistance and physical rehabilitation. They provide powered support to assist or enhance the movement of limbs, enabling individuals with mobility impairments to perform activities of daily living more independently. Besides this, assistive robots are designed to assist individuals with disabilities or age-related impairments in performing daily activities and improving their quality of life. They range from simple task-specific robots to more complex systems capable of autonomous navigation and interaction.

Breakup by Patient Type:

  • Adult
  • Pediatric

As the global population ages, there is an increasing prevalence of chronic conditions such as stroke, spinal cord injury, and orthopedic issues. Rehabilitation robots are crucial in providing intensive and effective therapy to help adults regain mobility, independence, and improve quality of life. While early intervention is crucial for children with developmental delays, cerebral palsy, and neuromuscular disorders. Rehabilitation robots provide structured and engaging therapies that promote motor development, cognitive skills, and social interaction from a young age.

Breakup by End User:

  • Rehabilitation Centers
  • Hospitals
  • Others

Rehabilitation centers utilize therapeutic robots for intensive and repetitive therapy sessions tailored to individual patient needs. These robots assist in exercises that improve motor function, range of motion, and strength following injuries or surgeries. Patients undergoing rehabilitation for neurological conditions or orthopedic injuries benefit from robot-assisted gait training devices. These systems support walking rehabilitation by providing adjustable levels of assistance and feedback to improve gait patterns and balance. While hospitals use rehabilitation robots to support recovery after joint replacements, fractures, and orthopedic surgeries. These robots facilitate early mobilization, reduce complications, and improve patient outcomes by delivering targeted exercises and monitoring progress.

Breakup by Region:

  • North America
    • United States
    • Canada
  • Asia Pacific
    • China
    • Japan
    • India
    • South Korea
    • Australia
    • Indonesia
    • Others
  • Europe
    • Germany
    • France
    • United Kingdom
    • Italy
    • Spain
    • Russia
    • Others
  • Latin America
    • Brazil
    • Mexico
    • Others
  • Middle East and Africa

The report has also provided a comprehensive analysis of all the major regional markets, which include North America (the United States and Canada); Asia Pacific (China, Japan, India, South Korea, Australia, Indonesia, and others); Europe (Germany, France, the United Kingdom, Italy, Spain, Russia, and others); Latin America (Brazil, Mexico, and others); and the Middle East and Africa.

The growth of North America is driven by advanced healthcare infrastructure, substantial investment in medical technology, and a high prevalence of chronic diseases and disabilities. Moreover, Europe is a significant market for rehabilitation robots, characterized by increasing adoption of robotic technologies in healthcare settings and supportive government initiatives. Besides this, the Asia-Pacific is experiencing rapid growth in the adoption of rehabilitation robots, fueled by increasing healthcare expenditures, improving healthcare infrastructure, and rising awareness about robotic-assisted therapies.

Competitive Landscape:

The report has also analyzed the competitive landscape of the market with some of the key players are:

  • Bionik Laboratories Corp.
  • Ekso Bionics Holdings Inc.
  • Hocoma AG (DIH International Ltd.)
  • Kinova Inc.
  • KUKA Aktiengesellschaft (Midea Group)
  • Parker-Hannifin Corporation
  • Rehab-Robotics Company Limited
  • ReWalk Robotics Ltd.
  • Rex Bionics Ltd.
  • Siemens Aktiengesellschaft
  • Tyromotion GmbH

Key Questions Answered in This Report

  • 1.How big is the rehabilitation robots market?
  • 2.What is the future outlook of rehabilitation robots market?
  • 3.What are the key factors driving the rehabilitation robots market?
  • 4.Which region accounts for the largest rehabilitation robots market share?
  • 5.Which are the leading companies in the global rehabilitation robots market?

Table of Contents

1 Preface

2 Scope and Methodology

  • 2.1 Objectives of the Study
  • 2.2 Stakeholders
  • 2.3 Data Sources
    • 2.3.1 Primary Sources
    • 2.3.2 Secondary Sources
  • 2.4 Market Estimation
    • 2.4.1 Bottom-Up Approach
    • 2.4.2 Top-Down Approach
  • 2.5 Forecasting Methodology

3 Executive Summary

4 Introduction

  • 4.1 Overview
  • 4.2 Key Industry Trends

5 Global Rehabilitation Robots Market

  • 5.1 Market Overview
  • 5.2 Market Performance
  • 5.3 Impact of COVID-19
  • 5.4 Market Forecast

6 Market Breakup by Type

  • 6.1 Therapeutic Robots
    • 6.1.1 Market Trends
    • 6.1.2 Market Forecast
  • 6.2 Exoskeleton Robots
    • 6.2.1 Market Trends
    • 6.2.2 Market Forecast
  • 6.3 Assistive Robots
    • 6.3.1 Market Trends
    • 6.3.2 Market Forecast
  • 6.4 Others
    • 6.4.1 Market Trends
    • 6.4.2 Market Forecast

7 Market Breakup by Patient Type

  • 7.1 Adult
    • 7.1.1 Market Trends
    • 7.1.2 Market Forecast
  • 7.2 Pediatric
    • 7.2.1 Market Trends
    • 7.2.2 Market Forecast

8 Market Breakup by End User

  • 8.1 Rehabilitation Centers
    • 8.1.1 Market Trends
    • 8.1.2 Market Forecast
  • 8.2 Hospitals
    • 8.2.1 Market Trends
    • 8.2.2 Market Forecast
  • 8.3 Others
    • 8.3.1 Market Trends
    • 8.3.2 Market Forecast

9 Market Breakup by Region

  • 9.1 North America
    • 9.1.1 United States
      • 9.1.1.1 Market Trends
      • 9.1.1.2 Market Forecast
    • 9.1.2 Canada
      • 9.1.2.1 Market Trends
      • 9.1.2.2 Market Forecast
  • 9.2 Asia Pacific
    • 9.2.1 China
      • 9.2.1.1 Market Trends
      • 9.2.1.2 Market Forecast
    • 9.2.2 Japan
      • 9.2.2.1 Market Trends
      • 9.2.2.2 Market Forecast
    • 9.2.3 India
      • 9.2.3.1 Market Trends
      • 9.2.3.2 Market Forecast
    • 9.2.4 South Korea
      • 9.2.4.1 Market Trends
      • 9.2.4.2 Market Forecast
    • 9.2.5 Australia
      • 9.2.5.1 Market Trends
      • 9.2.5.2 Market Forecast
    • 9.2.6 Indonesia
      • 9.2.6.1 Market Trends
      • 9.2.6.2 Market Forecast
    • 9.2.7 Others
      • 9.2.7.1 Market Trends
      • 9.2.7.2 Market Forecast
  • 9.3 Europe
    • 9.3.1 Germany
      • 9.3.1.1 Market Trends
      • 9.3.1.2 Market Forecast
    • 9.3.2 France
      • 9.3.2.1 Market Trends
      • 9.3.2.2 Market Forecast
    • 9.3.3 United Kingdom
      • 9.3.3.1 Market Trends
      • 9.3.3.2 Market Forecast
    • 9.3.4 Italy
      • 9.3.4.1 Market Trends
      • 9.3.4.2 Market Forecast
    • 9.3.5 Spain
      • 9.3.5.1 Market Trends
      • 9.3.5.2 Market Forecast
    • 9.3.6 Russia
      • 9.3.6.1 Market Trends
      • 9.3.6.2 Market Forecast
    • 9.3.7 Others
      • 9.3.7.1 Market Trends
      • 9.3.7.2 Market Forecast
  • 9.4 Latin America
    • 9.4.1 Brazil
      • 9.4.1.1 Market Trends
      • 9.4.1.2 Market Forecast
    • 9.4.2 Mexico
      • 9.4.2.1 Market Trends
      • 9.4.2.2 Market Forecast
    • 9.4.3 Others
      • 9.4.3.1 Market Trends
      • 9.4.3.2 Market Forecast
  • 9.5 Middle East and Africa
    • 9.5.1 Market Trends
    • 9.5.2 Market Breakup by Country
    • 9.5.3 Market Forecast

10 SWOT Analysis

  • 10.1 Overview
  • 10.2 Strengths
  • 10.3 Weaknesses
  • 10.4 Opportunities
  • 10.5 Threats

11 Value Chain Analysis

12 Porters Five Forces Analysis

  • 12.1 Overview
  • 12.2 Bargaining Power of Buyers
  • 12.3 Bargaining Power of Suppliers
  • 12.4 Degree of Competition
  • 12.5 Threat of New Entrants
  • 12.6 Threat of Substitutes

13 Price Analysis

14 Competitive Landscape

  • 14.1 Market Structure
  • 14.2 Key Players
  • 14.3 Profiles of Key Players
    • 14.3.1 Bionik Laboratories Corp.
      • 14.3.1.1 Company Overview
      • 14.3.1.2 Product Portfolio
      • 14.3.1.3 Financials
    • 14.3.2 Ekso Bionics Holdings Inc.
      • 14.3.2.1 Company Overview
      • 14.3.2.2 Product Portfolio
      • 14.3.2.3 Financials
    • 14.3.3 Hocoma AG (DIH International Ltd.)
      • 14.3.3.1 Company Overview
      • 14.3.3.2 Product Portfolio
    • 14.3.4 Kinova Inc
      • 14.3.4.1 Company Overview
      • 14.3.4.2 Product Portfolio
    • 14.3.5 KUKA Aktiengesellschaft (Midea Group)
      • 14.3.5.1 Company Overview
      • 14.3.5.2 Product Portfolio
      • 14.3.5.3 Financials
      • 14.3.5.4 SWOT Analysis
    • 14.3.6 Parker-Hannifin Corporation
      • 14.3.6.1 Company Overview
      • 14.3.6.2 Product Portfolio
      • 14.3.6.3 Financials
      • 14.3.6.4 SWOT Analysis
    • 14.3.7 Rehab-Robotics Company Limited
      • 14.3.7.1 Company Overview
      • 14.3.7.2 Product Portfolio
    • 14.3.8 ReWalk Robotics Ltd.
      • 14.3.8.1 Company Overview
      • 14.3.8.2 Product Portfolio
      • 14.3.8.3 Financials
    • 14.3.9 Rex Bionics Ltd.
      • 14.3.9.1 Company Overview
      • 14.3.9.2 Product Portfolio
    • 14.3.10 Siemens Aktiengesellschaft
      • 14.3.10.1 Company Overview
      • 14.3.10.2 Product Portfolio
      • 14.3.10.3 Financials
      • 14.3.10.4 SWOT Analysis
    • 14.3.11 Tyromotion GmbH
      • 14.3.11.1 Company Overview
      • 14.3.11.2 Product Portfolio
      • 14.3.11.3 Financials
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦