![]() |
시장보고서
상품코드
1819878
데이터 웨어하우징 시장 분석 : 제공 내용별, 데이터 유형별, 전개 모델별, 기업 규모별, 최종사용자별, 지역별(2025-2033년)Data Warehousing Market Report by Offering, Data Type, Deployment Model, Enterprise Size, End User, and Region 2025-2033 |
세계 데이터 웨어하우징 시장 규모는 2024년 345억 달러에 달했습니다. 2033년에는 750억 달러에 달하고, 2025-2033년 연평균 성장률(CAGR)은 8.54%를 보일 것으로 전망됩니다. 북미는 전 세계 조직에서 생성되는 데이터의 양이 증가함에 따라 현재 시장을 독점하고 있습니다. 또한, 차세대 BI 솔루션에 대한 수요 증가가 시장 전반 수요를 자극하고 있습니다.
인공지능(AI)과 머신러닝(ML) 활용 확대
머신러닝(ML)과 인공지능(AI) 기술의 활용 확대가 시장 성장을 가속하고 있습니다. 업계 보고서에 따르면, 세계 AI 시장 규모는 2024년 6,382억 3,000만 달러에 달할 것으로 예측됩니다. AI와 ML 기술은 스마트하고 자동화된 데이터 최적화를 통해 데이터 웨어하우징를 강화하여 데이터 품질 향상, 처리 속도 향상, 수작업 감소를 실현합니다. 이러한 기술은 방대한 데이터 세트의 패턴과 추세를 인식하고 예측 분석을 통해 보다 신속하고 정확한 비즈니스 의사결정을 지원할 수 있습니다. ML 모델은 입력 데이터로부터 지속적으로 학습하고, 성능을 개선하며, 실시간 인사이트를 제공합니다. AI는 또한 기존 방법으로는 놓치기 쉬운 상관관계나 이상 징후를 자동으로 감지하여 지식 발견을 촉진합니다. 기업이 데이터 중심 전략에 의존하는 가운데, AI와 ML을 데이터 웨어하우징에 통합하면 업무 효율성과 의사결정 능력을 향상시킬 수 있습니다. 이러한 변화는 소매업, 의료, 금융 등 산업 전반에 걸쳐 높은 채용률로 이어지고 있습니다. 그 결과, 기업들은 최신 솔루션에 대한 투자를 늘리고 있으며, 이는 2025년 데이터 웨어하우징 시장 규모 확대에 기여하고 있습니다.
스마트폰 보급률 상승
데이터 웨어하우징 시장의 성장을 주도하는 것은 주로 스마트폰과 인터넷에 접속하는 사람들 증가입니다. GSMA에 따르면, 2023년 현재 전 세계 활성 iOS 및 안드로이드 스마트폰은 62억 대 이상이며, 2025년에는 74억 대에 달할 것으로 예측됩니다. 또한, 데이터 웨어하우징(DW), 비즈니스 인텔리전스(BI) 시스템, 데이터 분석 시스템 등 다양한 컴퓨터 시스템에서 모바일 기술의 활용이 증가하고 있습니다. 또한, 정보방송부에 따르면, 2022년 11월 인도의 휴대전화 가입자는 12억 명을 넘어섰으며, 그 중 스마트폰 사용자는 6억 명에 달할 전망입니다. 또한, 데이터 통신료가 상대적으로 저렴하다는 점과 스마트폰의 보급으로 개인이 모바일 단말기를 통해 많은 정보와 엔터테인먼트를 소비하게 된 것이 주요 원인으로 꼽힙니다. 이 외에도 휴대폰은 데이터베이스 역할을 하며, 상당한 양의 사용자 데이터가 저장되고, 사용자의 T&C 승인에 따라 분석 대상이 될 수 있습니다. 이 데이터는 활성 데이터 웨어하우징에 의해 활용되며, 사용자의 여러 특징을 수집할 수 있습니다. 스마트폰 사용자들은 데이터 액세스를 위해 방대한 클라우드 데이터베이스를 필요로 하기 때문에 데이터 웨어하우징 솔루션이 필요하게 되었고, 시장 성장을 가속하고 있습니다.
클라우드 데이터 웨어하우징의 등장
다양한 산업군에서 비즈니스 인텔리전스와 분석의 중요성이 높아지면서 데이터 웨어하우징의 새로운 트렌드 중 하나로 떠오르고 있습니다. 또한, 클라우드 데이터 웨어하우징는 대량의 데이터를 저장하기 위한 분석 및 비즈니스 인텔리전스 프로세스의 중추 역할을 합니다. 이에 따라 클라우드 서비스 도입이 확대되고 있으며, 비즈니스 인텔리전스 및 분석 기법의 도입이 더욱 가속화되고 있습니다. 다양한 산업에서 인공지능(AI)과 머신러닝(ML)의 도입이 진행됨에 따라 데이터 웨어하우징 솔루션 시장은 더욱 확대될 것으로 예측됩니다. 또한, 다양한 주요 시장 기업들이 AI를 통합한 클라우드 데이터 웨어하우징 솔루션을 제공합니다. 예를 들어, 2023년 10월 mParticle, Inc.는 클라우드 데이터 웨어하우징 환경에 대응하는 ID 해결 서비스 ComposeID를 발표했습니다. ComposeID는 IDSync를 기반으로 합니다. IDSync는 모든 데이터 아키텍처에서 모든 ID 전략을 지원하는 팀을 지원하는 것을 목표로 합니다. 마찬가지로,2023년 7월,International Business Machines Corp.(IBM)은 IBM Db2 Warehouse의 새로운 업데이트를 발표했습니다. 차세대 웨어하우스는 고급 캐싱을 지원하는 클라우드 오브젝트 스토리지를 추가하여 스토리지 비용을 34% 절감하고 쿼리 응답 속도를 4배 향상시키며, 쿼리 응답 속도를 4배 향상시킬 수 있습니다.
하이브리드 작업 모델 채택 증가
원격 근무의 급증은 현재 데이터 웨어하우징의 주요 트렌드 중 하나로 그 중요성이 커지고 있습니다. 재택근무의 새로운 트렌드는 조직이 극복해야 할 새로운 복잡한 과제를 만들어내고 있습니다. 그 결과, 기업들은 점점 더 많은 기업들이 클라우드 컴퓨팅을 채택하고 클라우드 데이터 웨어하우징로 전환하고 있습니다. 이에 따라 다양한 하이테크 기업들이 서로 협력하여 고성능 클라우드 데이터 웨어하우징를 개발하고 있습니다. 예를 들어,2022년 6월,HCL 테크놀로지스는 아마존 웹 서비스와 제휴했습니다. AWS를 통해 HCL은 확장 가능하고 비용 효율적이며 안전하고 고성능의 엔터프라이즈 데이터 웨어하우징 솔루션을 제공할 수 있게 되었습니다. Amazon Redshift는 최신 AI/ML 기능을 통해 데이터 기반의 비즈니스 인사이트를 제공하여 HCL 테크놀로지스에 업무 효율성, 의사결정 및 시장 출시 시간 단축을 가져다 줍니다. 이 밖에도 저 지연, 고속 분석에 대한 수요 증가와 기업 경영에서 비즈니스 인텔리전스의 역할이 커지면서 데이터 웨어하우징 시장 수요를 크게 견인할 것으로 예측됩니다.
The global data warehousing market size reached USD 34.5 Billion in 2024. The market is projected to reach USD 75.0 Billion by 2033, exhibiting a growth rate (CAGR) of 8.54% during 2025-2033. North America currently dominates the market on account of the increasing amount of data generated by organizations across the globe. In addition, the rising demand for next-generation BI solutions is catalyzing the overall demand
Growing Utilization of Artificial Intelligence (AI) and Machine Learning (ML)
Rising employment of ML and AI technologies is propelling the market growth. As per industry reports, the global AI market size was valued at USD 638.23 Billion in 2024. AI and ML technologies enhance data warehousing by enabling smart and automated data optimization, which improves data quality, speeds up processing, and reduces manual efforts. These technologies assist in recognizing patterns and trends in extensive datasets, allowing predictive analysis that supports faster and more accurate business decisions. ML models continuously learn from incoming data, improving performance and offering real-time insights. AI also facilitates knowledge discovery by automatically detecting correlations and anomalies that traditional methods may miss. As organizations continue to rely on data-oriented strategies, the integration of AI and ML into data warehousing is boosting operational efficiency and decision-making capabilities. This shift is leading to higher adoption across industries, such as retail, healthcare, and finance. Consequently, businesses are investing more in modern solutions, contributing to the expansion of the data warehousing market size 2025.
Rising Penetration of Smartphones
The increasing number of people with smartphones and internet connections is primarily driving the data warehousing market growth. According to the GSMA, there are more than 6.2 Billion active iOS and android smartphones worldwide as of 2023, and it is expected to reach 7.4 Billion by 2025. Additionally, the usage of mobile technology is increasing across a range of computer systems, including Data Warehouse (DW), Business Intelligence (BI) systems, and Data Analytic systems. Moreover, according to the Ministry of Information and Broadcasting, in November 2022, India had more than 1.2 Billion mobile phone subscribers, including 600 million smartphone users. Furthermore, it was mentioned that in addition to having relatively cheap data rates, the widespread usage of smartphones has resulted in individuals consuming a lot of information and entertainment on their mobile devices. Besides this, mobile phones act as a database, where a considerable amount of user data is stored, which can be subjected to analysis as per the T&C approval by the user. The data can be utilized by active data warehouses to collect multiple traits of the user. Smartphone users need a vast cloud database for data access, thereby needing data warehousing solutions, driving market growth.
Emergence of Cloud Data Warehouses
The rising importance of business intelligence and analytics across different business verticals is emerging as one of the new trends in data warehousing. Moreover, cloud data warehouses act as a backbone in analytics and business intelligence processes for storing large amounts of data. In line with this, the escalating adoption of cloud services is further augmenting the adoption of business intelligence and analytic practices as they aid organizations in deriving actionable insights. The shift towards the implementation of Artificial Intelligence (AI) and Machine Learning (ML) across different industries is further expected to bolster the market for data warehousing solutions. Moreover, various key market players are AI-integrated cloud data warehousing solutions. For instance, in October 2023, mParticle, Inc. announced the launch of ComposeID, an identity resolution service compatible with cloud data warehousing environments. ComposeID is based on IDSync. IDSync is intended to assist teams in supporting any identity strategy on any data architecture. Similarly, in July 2023, International Business Machines Corp. (IBM) announced new updates in the IBM Db2 Warehouse. The next generation of the warehouse can add cloud object storage with the support of advanced caching, delivering four times faster query response while cutting storage costs by 34%.
Increasing Adoption of Hybrid Work Models
The surge in remote work arrangements is gaining significance among the current key trends in data warehousing. The emerging trend of work-from-home has generated new complicated challenges for organizations to overcome. As a result, businesses are increasingly embracing cloud computing and migrating to cloud data warehouses. In line with this, various tech giants are partnering with each other to develop high-performing cloud data warehouses. For instance, in June 2022, HCL Technologies partnered with Amazon Web Services. AWS allows HCL to offer scalable, cost-effective, secure, and high-performing enterprise data warehouse solutions. Amazon Redshift provides data-driven business insights enabled by modern AI/ML capabilities to improve operational efficiency, decision-making, and faster time to market to HCL Technologies. Besides this, the rising need for low latency and high-speed analytics, combined with the growing role of business intelligence in enterprise management, is expected to drive the data warehousing market demand significantly.
ETL solutions hold the majority of the total market share
Based on the offering, the global data warehousing market can be segmented into ETL solutions, statistical analysis, data mining, and others. According to the report, ETL solutions hold the majority of the total market share.
Extract, transform, and load (ETL) refers to a process through which data is extracted from a source and then moved to a central host. The process is high in demand as it runs in parallel to save time. For instance, during data extraction, transformation can begin processing the received data simultaneously to prepare it for loading. This allows the loading process to work on the prepared data without waiting for the entire extraction process to finish.
Semi-structured and structured data currently accounts for the largest market share
Based on the data type, the global data warehousing market has been divided into unstructured data and semi-structured and structured data. According to the report, semi-structured and structured data currently accounts for the largest market share.
Structured data is information that has been formatted and transformed into a well-defined data model. The raw data is mapped into predesigned fields that can then be extracted and read through SQL easily. Due to the organization of structured data, it is easier to analyze and drive insights from it. While on the other hand semi-structured data or partially structured data is another category between structured and unstructured data. Semi-structured data is a type of data that has some consistent and definite characteristics. Businesses generally use organizational properties like metadata or semantics tags with semi-structured data to make it more manageable.
On-premises exhibit a clear dominance in the market
Based on the deployment model, the global data warehousing market can be categorized into on-premises, cloud-based, and hybrid. According to the report, on-premises exhibit a clear dominance in the market.
In an on-premises deployment model, the service is purchased and installed on the user server. This service is maintained by the IT specialists in the end-user organization. The growing demand for the on-premises model can be attributed to factors such as the high cost involved with the implementation and up-gradation and fewer options for scalability. These solutions offer features such as workflow streamlining, control, speed, security, governance, and reporting.
Large enterprises currently hold the majority of the global market share
Based on the enterprise size, the global data warehousing market has been segregated into large enterprises and small and medium-sized enterprises, where large enterprises currently hold the majority of the global market share.
Large enterprises generally have more complex data management requirements on account of their scale and diverse operations, which may require a combination of on-premises solutions, cloud-based services, and hybrid deployments to meet their complex business needs. Large enterprises also need more customization, integration with existing systems, and advanced features such as data governance, analytics, and security.
The BFSI sector exhibits a clear dominance in the market
Based on the end user, the global data warehousing market can be bifurcated into BFSI, IT and telecom, government, manufacturing, retail, healthcare, media and entertainment, and others. According to the report, the BFSI sector exhibits a clear dominance in the market.
The banking, financial services, and insurance (BFSI) sector is highly lucrative for growth in the Data Warehouse-as-a-Service market as it deals with massive customer data generated regularly. Due to the large amount of data generated across the BFSI sector, enterprises need data warehousing solutions to automatically track the performance and behavior of the information stored in their systems. Numerous banks, including BNY Mellon, Morgan Stanley, Bank of America, Credit Suisse, and PNC are already working on strategies around Big Data in Banking, and other banks are rapidly catching up.
North America currently dominates the global market
On a regional level, the market has been classified into North America, Asia-Pacific, Europe, Latin America, and Middle East and Africa, where North America currently dominates the global market.
North America is anticipated to have a significant market share owing to the availability of technologically advanced data warehouse infrastructure. U.S. organizations are rapidly adopting analytics solutions across several verticals. They are considered the leading country in the market due to the significant demand for managing operational data and the increased emergence of cloud solution providers. Moreover, various enterprises in the region are extensively investing in the deployment of robust data warehousing solutions to manage and utilize data effectively. For instance, in January 2023, Eucloid, a Data & Growth Intelligence company, announced a partnership with Databricks to make the Lakehouse Platform available to its Fortune 500 clients. The company's Lakehouse platform provides a single solution for all significant data tasks, which integrates several data warehouse and data lake features.
The market research report has provided a comprehensive analysis of the competitive landscape and outlook. Detailed profiles of all major companies have also been provided. Some of the key players in the market include: