시장보고서
상품코드
1915693

소매용 기계학습 시장(2025-2029년)

Global Machine Learning In Retail Market 2025-2029

발행일: | 리서치사: TechNavio | 페이지 정보: 영문 294 Pages | 배송안내 : 즉시배송

    
    
    




※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

세계의 소매용 기계학습 시장은 2024-2029년에 222억 6,030만 달러의 성장이 전망되며, 예측 기간 중 CAGR은 32.7%로 예측되고 있습니다. 이 리포트에서는 세계의 소매용 기계학습 시장에 관한 종합적 분석, 시장 규모와 예측, 동향, 성장요인, 과제과 함께 약 25사의 벤더 분석을 제공하고 있습니다.

이 보고서는 현재 시장 상황, 최신 동향 및 성장요인, 시장 환경 전반에 대한 최신 분석을 제공합니다. 시장 성장 요인으로는 하이퍼 개인화의 확산과 고객 경험의 향상, 공급망과 업무 효율화의 필요성, 생성형 AI와 대화형 커머스의 부상 등을 꼽을 수 있습니다.

본 조사는 업계 주요 관계자들의 정보를 포함한 1차 정보와 2차 정보를 객관적으로 조합하여 실시되었습니다. 이 보고서에는 주요 기업 분석과 함께 종합적인 시장 규모 데이터, 지역별 분석과 함께 부문 및 공급업체 현황이 포함되어 있습니다. 보고서에는 과거 데이터와 예측 데이터가 수록되어 있습니다.

시장 범위
기준연도 2025년
대상 기간 2029년
예측 기간 2025-2029
성장 모멘텀 가속
전년대비 30.7%
CAGR 32.7%
증가액 222억 6,030만 달러

이번 조사에서는 생성형 AI를 통한 대규모 하이퍼 개인화가 향후 수년간 세계 소매 시장에서 머신러닝의 성장을 주도할 주요 요인 중 하나로 꼽혔습니다. 또한 AI 기반의 자율 운영, 강력한 공급망 관리, 매장내 분석 및 마찰 없는 상거래를 위한 컴퓨터 비전의 보급은 시장에서 상당한 수요를 창출할 것으로 예측됩니다.

목차

제1장 개요

제2장 Technavio 분석

  • 가격·수명주기·고객 구입 바스켓·채택률·구입 기준의 분석
  • 인풋의 중요성과 차별화의 요인
  • 혼란의 요인
  • 촉진요인과 과제의 영향

제3장 시장 구도

  • 시장 에코시스템
  • 시장의 특징
  • 밸류체인 분석

제4장 시장 규모

  • 시장 정의
  • 시장 부문 분석
  • 시장 규모 2024
  • 시장 전망 2024-2029

제5장 시장 규모 실적

  • 세계의 소매 시장 2019-2023
  • 부품 부문 분석 2019-2023
  • 배포 부문 분석 2019-2023
  • 최종사용자 부문 분석 2019-2023
  • 지역별 부문 분석 2019-2023
  • 국가별 부문 분석 2019-2023

제6장 Five Forces 분석

  • Five Forces 요약
  • 바이어의 교섭력
  • 공급 기업의 교섭력
  • 신규 진출업체의 위협
  • 대체품의 위협
  • 경쟁의 위협
  • 시장 현황

제7장 시장 세분화 : 컴포넌트별

  • 비교 : 컴포넌트별
  • 소프트웨어
  • 서비스
  • 시장 기회 : 컴포넌트별

제8장 시장 세분화 : 배포별

  • 비교 : 배포별
  • 클라우드 기반
  • 온프레미스
  • 시장 기회 : 배포별

제9장 시장 세분화 : 최종사용자별

  • 비교 : 최종사용자별
  • FMCG(일용 소비재)
  • 전자기기
  • 의류
  • 기타
  • 시장 기회 : 최종사용자별

제10장 고객 상황

제11장 지역별 상황

  • 지역별 세분화
  • 지역별 비교
  • 북미
    • 미국
    • 캐나다
    • 멕시코
  • 유럽
    • 독일
    • 영국
    • 프랑스
    • 이탈리아
    • 스페인
    • 네덜란드
  • 아시아태평양
    • 중국
    • 일본
    • 인도
    • 한국
    • 호주
    • 인도네시아
  • 중동 및 아프리카
    • 사우디아라비아
    • 아랍에미리트
    • 남아프리카공화국
    • 이스라엘
    • 튀르키예
  • 남미
    • 브라질
    • 콜롬비아
    • 아르헨티나
  • 시장 기회 : 지역별

제12장 촉진요인·과제·기회

  • 시장 성장 촉진요인
  • 시장이 해결해야 할 과제
  • 촉진요인과 과제의 영향
  • 시장 기회

제13장 경쟁 구도

  • 개요
  • 경쟁 구도
  • 혼란 상황
  • 업계 리스크

제14장 경쟁 분석

  • 기업 개요
  • 기업 순위 지표
  • 기업의 시장 포지셔닝
  • Algolia Inc.
  • Amazon Web Services Inc.
  • BloomReach Inc.
  • Blue Yonder Group Inc.
  • Consultadoria e Inovacao Tecnologica S.A.
  • Databricks Inc.
  • Google Cloud
  • H2O.ai Inc.
  • Microsoft Corp.
  • Oracle Corp.
  • Stylumia Intelligence Technology Pvt Ltd
  • Teradata Corp.
  • Walmart Inc.

제15장 부록

KSA

The global machine learning in retail market is forecasted to grow by USD 22260.3 mn during 2024-2029, accelerating at a CAGR of 32.7% during the forecast period. The report on the global machine learning in retail market provides a holistic analysis, market size and forecast, trends, growth drivers, and challenges, as well as vendor analysis covering around 25 vendors.

The report offers an up-to-date analysis regarding the current market scenario, the latest trends and drivers, and the overall market environment. The market is driven by proliferation of hyper-personalization and enhanced customer experience, imperative for supply chain and operational efficiency, ascendance of generative AI and conversational commerce.

The study was conducted using an objective combination of primary and secondary information including inputs from key participants in the industry. The report contains a comprehensive market size data, segment with regional analysis and vendor landscape in addition to an analysis of the key companies. Reports have historic and forecast data.

Market Scope
Base Year2025
End Year2029
Series Year2025-2029
Growth MomentumAccelerate
YOY 202530.7%
CAGR32.7%
Incremental Value$22260.3 mn

Technavio's global machine learning in retail market is segmented as below:

By Component

  • Software
  • Services

By Deployment

  • Cloud-based
  • On-premises

By End-User

  • FMCG
  • Electronics
  • Apparel
  • Others

Geography

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • France
    • Italy
    • Spain
    • The Netherlands
  • APAC
    • China
    • Japan
    • India
    • South Korea
    • Australia
    • Indonesia
  • Middle East and Africa
    • UAE
    • South Africa
    • Turkey
  • South America
    • Brazil
    • Colombia
    • Argentina
  • Rest of World (ROW)

This study identifies the hyper-personalization at scale fueled by generative AI as one of the prime reasons driving the global machine learning in retail market growth during the next few years. Also, ai-driven autonomous operations and resilient supply chain management and proliferation of computer vision for in-store analytics and frictionless commerce will lead to sizable demand in the market.

The report on the global machine learning in retail market covers the following areas:

  • Global machine learning in retail market sizing
  • Global machine learning in retail market forecast
  • Global machine learning in retail market industry analysis

The robust vendor analysis is designed to help clients improve their market position, and in line with this, this report provides a detailed analysis of several leading global machine learning in retail market vendors that include Adobe Inc., Algolia Inc., Amazon Web Services Inc., BloomReach Inc., Blue Yonder Group Inc., Consultadoria e Inovacao Tecnologica S.A., Databricks Inc., Google Cloud, H2O.ai Inc., Microsoft Corp., Oracle Corp., SAP SE, SAS Institute Inc., Sephora USA Inc., Snowflake Inc., Stylumia Intelligence Technology Pvt Ltd, Teradata Corp., Walmart Inc.. Also, the global machine learning in retail market analysis report includes information on upcoming trends and challenges that will influence market growth. This is to help companies strategize and leverage all forthcoming growth opportunities.

The publisher presents a detailed picture of the market by the way of study, synthesis, and summation of data from multiple sources by an analysis of key parameters such as profit, pricing, competition, and promotions. It presents various market facets by identifying the key industry influencers. The data presented is comprehensive, reliable, and a result of extensive primary and secondary research. The market research reports provide a complete competitive landscape and an in-depth vendor selection methodology and analysis using qualitative and quantitative research to forecast accurate market growth.

Table of Contents

1 Executive Summary

  • 1.1 Market overview
    • Executive Summary - Chart on Market Overview
    • Executive Summary - Data Table on Market Overview
    • Executive Summary - Chart on Global Market Characteristics
    • Executive Summary - Chart on Market by Geography
    • Executive Summary - Chart on Market Segmentation by Component
    • Executive Summary - Chart on Market Segmentation by Deployment
    • Executive Summary - Chart on Market Segmentation by End-user
    • Executive Summary - Chart on Incremental Growth
    • Executive Summary - Data Table on Incremental Growth
    • Executive Summary - Chart on Company Market Positioning

2 Technavio Analysis

  • 2.1 Analysis of price sensitivity, lifecycle, customer purchase basket, adoption rates, and purchase criteria
    • Analysis of price sensitivity, lifecycle, customer purchase basket, adoption rates, and purchase criteria
  • 2.2 Criticality of inputs and Factors of differentiation
  • 2.3 Factors of disruption
  • 2.4 Impact of drivers and challenges

3 Market Landscape

  • 3.1 Market ecosystem
  • 3.2 Market characteristics
  • 3.3 Value chain analysis

4 Market Sizing

  • 4.1 Market definition
  • 4.2 Market segment analysis
    • Market segments
  • 4.3 Market size 2024
  • 4.4 Market outlook: Forecast for 2024-2029

5 Historic Market Size

  • 5.1 Global Machine Learning In Retail Market 2019 - 2023
    • Historic Market Size - Data Table on Global Machine Learning In Retail Market 2019 - 2023 ($ million)
  • 5.2 Component segment analysis 2019 - 2023
    • Historic Market Size - Component Segment 2019 - 2023 ($ million)
  • 5.3 Deployment segment analysis 2019 - 2023
    • Historic Market Size - Deployment Segment 2019 - 2023 ($ million)
  • 5.4 End-user segment analysis 2019 - 2023
    • Historic Market Size - End-user Segment 2019 - 2023 ($ million)
  • 5.5 Geography segment analysis 2019 - 2023
    • Historic Market Size - Geography Segment 2019 - 2023 ($ million)
  • 5.6 Country segment analysis 2019 - 2023
    • Historic Market Size - Country Segment 2019 - 2023 ($ million)

6 Five Forces Analysis

  • 6.1 Five forces summary
    • Five forces analysis - Comparison between 2024 and 2029
  • 6.2 Bargaining power of buyers
    • Bargaining power of buyers - Impact of key factors 2024 and 2029
  • 6.3 Bargaining power of suppliers
    • Bargaining power of suppliers - Impact of key factors in 2024 and 2029
  • 6.4 Threat of new entrants
    • Threat of new entrants - Impact of key factors in 2024 and 2029
  • 6.5 Threat of substitutes
    • Threat of substitutes - Impact of key factors in 2024 and 2029
  • 6.6 Threat of rivalry
    • Threat of rivalry - Impact of key factors in 2024 and 2029
  • 6.7 Market condition

7 Market Segmentation by Component

  • 7.1 Market segments
  • 7.2 Comparison by Component
  • 7.3 Software - Market size and forecast 2024-2029
  • 7.4 Services - Market size and forecast 2024-2029
  • 7.5 Market opportunity by Component
    • Market opportunity by Component ($ million)

8 Market Segmentation by Deployment

  • 8.1 Market segments
  • 8.2 Comparison by Deployment
  • 8.3 Cloud-based - Market size and forecast 2024-2029
  • 8.4 On-premises - Market size and forecast 2024-2029
  • 8.5 Market opportunity by Deployment
    • Market opportunity by Deployment ($ million)

9 Market Segmentation by End-user

  • 9.1 Market segments
  • 9.2 Comparison by End-user
  • 9.3 FMCG - Market size and forecast 2024-2029
  • 9.4 Electronics - Market size and forecast 2024-2029
  • 9.5 Apparel - Market size and forecast 2024-2029
  • 9.6 Others - Market size and forecast 2024-2029
  • 9.7 Market opportunity by End-user
    • Market opportunity by End-user ($ million)

10 Customer Landscape

  • 10.1 Customer landscape overview
    • Analysis of price sensitivity, lifecycle, customer purchase basket, adoption rates, and purchase criteria

11 Geographic Landscape

  • 11.1 Geographic segmentation
  • 11.2 Geographic comparison
  • 11.3 North America - Market size and forecast 2024-2029
    • 11.3.1 US - Market size and forecast 2024-2029
    • 11.3.2 Canada - Market size and forecast 2024-2029
    • 11.3.3 Mexico - Market size and forecast 2024-2029
  • 11.4 Europe - Market size and forecast 2024-2029
    • 11.4.1 Germany - Market size and forecast 2024-2029
    • 11.4.2 UK - Market size and forecast 2024-2029
    • 11.4.3 France - Market size and forecast 2024-2029
    • 11.4.4 Italy - Market size and forecast 2024-2029
    • 11.4.5 Spain - Market size and forecast 2024-2029
    • 11.4.6 The Netherlands - Market size and forecast 2024-2029
  • 11.5 APAC - Market size and forecast 2024-2029
    • 11.5.1 China - Market size and forecast 2024-2029
    • 11.5.2 Japan - Market size and forecast 2024-2029
    • 11.5.3 India - Market size and forecast 2024-2029
    • 11.5.4 South Korea - Market size and forecast 2024-2029
    • 11.5.5 Australia - Market size and forecast 2024-2029
    • 11.5.6 Indonesia - Market size and forecast 2024-2029
  • 11.6 Middle East and Africa - Market size and forecast 2024-2029
    • 11.6.1 Saudi Arabia - Market size and forecast 2024-2029
    • 11.6.2 UAE - Market size and forecast 2024-2029
    • 11.6.3 South Africa - Market size and forecast 2024-2029
    • 11.6.4 Israel - Market size and forecast 2024-2029
    • 11.6.5 Turkey - Market size and forecast 2024-2029
  • 11.7 South America - Market size and forecast 2024-2029
    • 11.7.1 Brazil - Market size and forecast 2024-2029
    • 11.7.2 Colombia - Market size and forecast 2024-2029
    • 11.7.3 Argentina - Market size and forecast 2024-2029
  • 11.8 Market opportunity by geography
    • Market opportunity by geography ($ million)
    • Data Tables on Market opportunity by geography ($ million)

12 Drivers, Challenges, and Opportunity

  • 12.1 Market drivers
    • Proliferation of hyper-personalization and enhanced customer experience
    • Imperative for supply chain and operational efficiency
    • Ascendance of generative AI and conversational commerce
  • 12.2 Market challenges
    • Data privacy, security, and regulatory compliance
    • High implementation costs and scarcity of specialized talent
    • Integration complexity, model interpretability, and ethical concerns
  • 12.3 Impact of drivers and challenges
    • Impact of drivers and challenges in 2024 and 2029
  • 12.4 Market opportunities
    • Hyper-personalization at scale fueled by generative AI
    • AI-driven autonomous operations and resilient supply chain management
    • Proliferation of computer vision for in-store analytics and frictionless commerce

13 Competitive Landscape

  • 13.1 Overview
  • 13.2 Competitive Landscape
    • Overview on criticality of inputs and factors of differentiation
  • 13.3 Landscape disruption
    • Overview on factors of disruption
  • 13.4 Industry risks
    • Impact of key risks on business

14 Competitive Analysis

  • 14.1 Companies profiled
    • Companies covered
  • 14.2 Company ranking index
    • Company ranking index
  • 14.3 Market positioning of companies
    • Matrix on companies position and classification
  • 14.4 Algolia Inc.
    • Algolia Inc. - Overview
    • Algolia Inc. - Product / Service
    • Algolia Inc. - Key offerings
    • SWOT
  • 14.5 Amazon Web Services Inc.
    • Amazon Web Services Inc. - Overview
    • Amazon Web Services Inc. - Product / Service
    • Amazon Web Services Inc. - Key news
    • Amazon Web Services Inc. - Key offerings
    • SWOT
  • 14.6 BloomReach Inc.
    • BloomReach Inc. - Overview
    • BloomReach Inc. - Product / Service
    • BloomReach Inc. - Key offerings
    • SWOT
  • 14.7 Blue Yonder Group Inc.
    • Blue Yonder Group Inc. - Overview
    • Blue Yonder Group Inc. - Product / Service
    • Blue Yonder Group Inc. - Key offerings
    • SWOT
  • 14.8 Consultadoria e Inovacao Tecnologica S.A.
    • Consultadoria e Inovacao Tecnologica S.A. - Overview
    • Consultadoria e Inovacao Tecnologica S.A. - Product / Service
    • Consultadoria e Inovacao Tecnologica S.A. - Key offerings
    • SWOT
  • 14.9 Databricks Inc.
    • Databricks Inc. - Overview
    • Databricks Inc. - Product / Service
    • Databricks Inc. - Key offerings
    • SWOT
  • 14.10 Google Cloud
    • Google Cloud - Overview
    • Google Cloud - Product / Service
    • Google Cloud - Key offerings
    • SWOT
  • 14.11 H2O.ai Inc.
    • H2O.ai Inc. - Overview
    • H2O.ai Inc. - Product / Service
    • H2O.ai Inc. - Key offerings
    • SWOT
  • 14.12 Microsoft Corp.
    • Microsoft Corp. - Overview
    • Microsoft Corp. - Business segments
    • Microsoft Corp. - Key news
    • Microsoft Corp. - Key offerings
    • Microsoft Corp. - Segment focus
    • SWOT
  • 14.13 Oracle Corp.
    • Oracle Corp. - Overview
    • Oracle Corp. - Business segments
    • Oracle Corp. - Key news
    • Oracle Corp. - Key offerings
    • Oracle Corp. - Segment focus
    • SWOT
  • 14.14 Stylumia Intelligence Technology Pvt Ltd
    • Stylumia Intelligence Technology Pvt Ltd - Overview
    • Stylumia Intelligence Technology Pvt Ltd - Product / Service
    • Stylumia Intelligence Technology Pvt Ltd - Key offerings
    • SWOT
  • 14.15 Teradata Corp.
    • Teradata Corp. - Overview
    • Teradata Corp. - Business segments
    • Teradata Corp. - Key news
    • Teradata Corp. - Key offerings
    • Teradata Corp. - Segment focus
    • SWOT
  • 14.16 Walmart Inc.
    • Walmart Inc. - Overview
    • Walmart Inc. - Business segments
    • Walmart Inc. - Key news
    • Walmart Inc. - Key offerings
    • Walmart Inc. - Segment focus
    • SWOT

15 Appendix

  • 15.1 Scope of the report
    • Market definition
    • Objectives
    • Notes and caveats
  • 15.2 Inclusions and exclusions checklist
    • Inclusions checklist
    • Exclusions checklist
  • 15.3 Currency conversion rates for US$
    • Currency conversion rates for US$
  • 15.4 Research methodology
    • Research methodology
  • 15.5 Data procurement
    • Information sources
  • 15.6 Data validation
    • Data validation
  • 15.7 Validation techniques employed for market sizing
    • Validation techniques employed for market sizing
  • 15.8 Data synthesis
    • Data synthesis
  • 15.9 360 degree market analysis
    • 360 degree market analysis
  • 15.10 List of abbreviations
    • List of abbreviations
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제