![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1568918
¼¼°èÀÇ ¿¬·áÀüÁö ½ºÅà ÀçȰ¿ë ¹× ÀçÀÌ¿ë ½ÃÀå ¿¹Ãø(2024-2032³â)Global Fuel Cell Stack Recycling and Reuse Market Forecast 2024-2032 |
¿¬·áÀüÁö ½ºÅà ÀçȰ¿ë ¹× ÀçÀÌ¿ë ¼¼°è ½ÃÀåÀº 2032³â±îÁö 5¾ï 3,254¸¸ ´Þ·¯¿¡ ´ÞÇßÀ¸¸ç, ¿¹Ãø ±â°£ÀÎ 2024³âºÎÅÍ 2032³â±îÁö ¿¬Æò±Õ 22.36% ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Á¶»ç¿¡ °í·ÁµÈ ±âº» ¿¬µµ´Â 2023³âÀ̸ç, ÃßÁ¤ ±â°£Àº 2024³âºÎÅÍ 2032³â±îÁöÀÔ´Ï´Ù. ÀÌ ½ÃÀå Á¶»ç¿¡¼´Â COVID-19°¡ ¿¬·áÀüÁö ½ºÅà ÀçȰ¿ë ¹× ÀçÀÌ¿ë ½ÃÀå¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» Á¤¼ºÀû, Á¤·®ÀûÀ¸·Î ºÐ¼®ÇÕ´Ï´Ù.
¿¬·áÀüÁö´Â ¿¬·á(º¸Åë ¼ö¼Ò)ÀÇ ÈÇÐ ¿¡³ÊÁö¸¦ »ê¼Ò¿ÍÀÇ ¹ÝÀÀÀ» ÅëÇØ Àü±â·Î º¯È¯ÇÏ´Â Àü±âÈÇÐ ÀåÄ¡·Î, Á¦Ç°º°·Î ¹°°ú ¿À» »ý¼ºÇÕ´Ï´Ù. ±âÁ¸ÀÇ ¿¬¼Ò ¿£Áø°ú ´Þ¸® ¿¬·áÀüÁö´Â À¯ÇØÇÑ ¿À¿° ¹°Áú ´ë½Å ¼öÁõ±â¸¸ ¹èÃâÇϴ ûÁ¤ ´ëü ¿¡³ÊÁö¸¦ Á¦°øÇÕ´Ï´Ù. µû¶ó¼ ¿î¼Û, °íÁ¤½Ä ¹ßÀü, ÈÞ´ë¿ë Àü¿ø µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼ ¸Å¿ì ¸Å·ÂÀûÀÔ´Ï´Ù.
¿¬·áÀüÁö ÀÛµ¿ÀÇ ÇÙ½ÉÀº ¿¬·áÀüÁö ½ºÅÃÀ̸ç, ÀÌ´Â ±âº»ÀûÀ¸·Î ¿¬·áÀüÁö ½Ã½ºÅÛÀÇ ÇÙ½ÉÀÔ´Ï´Ù. ¿¬·áÀüÁö ½ºÅÃÀº ´õ ³ôÀº Ãâ·ÂÀÇ Àü±â¸¦ »ý»êÇϱâ À§ÇØ ¿©·¯ °³ÀÇ °³º° ¿¬·áÀüÁö¸¦ ½×¾Æ ¿Ã¸° °ÍÀÔ´Ï´Ù. °¢ ¿¬·áÀüÁö¿¡´Â Àü±âÈÇÐ ¹ÝÀÀÀÌ ÀϾ´Â ¸·Àü±ØÁ¢ÇÕü(MEA)°¡ Æ÷ÇԵǾî ÀÖÀ¸¸ç, ¹ÝÀÀ¹°ÀÇ È帧°ú Àü±âÀû ¿¬°áÀ» °ü¸®ÇÏ´Â ¾ç±Ø¼º ÆÇ¿¡ ÀÇÇØ ºÐ¸®µÇ¾î ÀÖ½À´Ï´Ù. Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ÁÖ¿ä Àç·á´Â ¹é±ÝÁ· ±Ý¼Ó(PGM)À̸ç, ƯÈ÷ ¹é±ÝÀº ¹ÝÀÀ °úÁ¤¿¡¼ Ã˸Š¿ªÇÒÀ» ÇÕ´Ï´Ù. ´Ù¸¥ Áß¿äÇÑ ºÎǰ¿¡´Â ±¸Á¶Àû ¾ÈÁ¤¼ºÀ» Á¦°øÇÏ´Â ½ºÅ×Àθ®½º ½ºÆ¿ ¹× ¾Ë·ç¹Ì´½°ú °°Àº Àç·á°¡ Æ÷ÇԵ˴ϴÙ.
¹é±Ý°ú °°Àº Èñ±ÍÇÏ°í °ªºñ½Ñ ±Ý¼Ó¿¡ ÀÇÁ¸ÇÏ´Â ¿¬·áÀüÁö ½ºÅÃÀÇ ÀçȰ¿ë°ú Àç»ç¿ëÀº ¾÷°è¿¡¼ Áß¿äÇÑ ÃÊÁ¡ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀçȰ¿ëÀº ±ÍÁßÇÑ Àç·á¸¦ ȸ¼öÇϰí ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÁÙÀÌ´Â µ¿½Ã¿¡ ¼ö¼Ò ±â¼úÀÇ Áö¼Ó°¡´ÉÇÑ È®ÀåÀ» Áö¿øÇÕ´Ï´Ù. ¼ö¼Ò °æÁ¦°¡ ¼ºÀåÇÔ¿¡ µû¶ó ±â¾÷µéÀº ºñ¿ë È¿À²¼º°ú ÀÚ¿ø ¾ÈÀüÀ» º¸ÀåÇϱâ À§ÇØ ÀÌ·¯ÇÑ ÁÖ¿ä ºÎǰÀÇ È¸¼ö ¹× Àç»ç¿ë¿¡ ´ëÇÑ ÅõÀÚ¸¦ ´Ã¸®°í ÀÖ½À´Ï´Ù.
¿¬·áÀüÁö ½ºÅà ÀçȰ¿ë ¹× ÀçÀÌ¿ë ¼¼°è ½ÃÀå ¼ºÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎ
¿¬·áÀüÁö ½ºÅà ÀçȰ¿ë ¹æ¹ýÀÇ ±â¼úÀû ¹ßÀüÀº ÀÌ ¼ºÀå »ê¾÷ÀÇ Áö¼Ó°¡´É¼ºÀ» ³ôÀÌ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ¿ë¸Å ±â¹Ý ÀçȰ¿ë °øÁ¤ ¹× ÷´Ü Á¦·Ã ±â¼ú °³¹ß°ú °°Àº Çõ½ÅÀº ±ÍÁßÇÑ Àç·á, ƯÈ÷ ¹é±Ý ¹× ÆÈ¶óµã°ú °°Àº ¹é±ÝÁ· ±Ý¼Ó(PGM)À» º¸´Ù È¿À²ÀûÀ¸·Î ȸ¼öÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù.
À¯¹ÌÄÚ¾Æ¿Í °°Àº ±â¾÷Àº ºÒȼö¼Ò¿Í °°Àº À¯ÇØÇÑ ºÎ»ê¹°À» ¾ÈÀüÇÏ°Ô Æ÷ȹÇϱâ À§ÇØ Ä®½· ¿°À» ÅëÇÕÇÑ °í¿Â °Ç½Ä Á¦·Ã °øÁ¤À» µµÀÔÇÏ¿© ÀçȰ¿ë °øÁ¤À» º¸´Ù ¾ÈÀüÇϰí ȯ°æ Ä£ÈÀûÀ¸·Î ¸¸µé°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °øÁ¤Àº ±Ý¼Ó ¹× ºñ±Ý¼Ó ¼ººÐÀ» ¸ðµÎ ȸ¼öÇÒ ¼ö ÀÖµµ·Ï ÇÏ¿© ¹öÁø Àç·áÀÇ Çʿ伺À» ÁÙÀÌ°í ¼øÈ¯ °æÁ¦ Á¢±Ù ¹æ½ÄÀ» Áö¿øÇÕ´Ï´Ù.
¶ÇÇÑ, Johnson Matthey¿Í °°Àº ¾÷°è ¸®´õµéÀÌ °³¹ßÇÑ ¿ë¸Å ¹× °è¸éȰ¼ºÁ¦ ±â¹Ý Á¢±Ù¹ý°ú °°Àº ´ëü ¹æ¹ýÀº ¼Ò°¢ÀÇ Çʿ伺À» ÇÇÇÒ ¼ö ÀÖ´Â À¯¸ÁÇÑ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº ¿¬·áÀüÁö ¸âºê·¹Àο¡¼ ¹é±Ý Ã˸Š¹× ±âŸ ¹°ÁúÀ» ºÐ¸® ¹× Àç»ç¿ëÇÒ ¼ö ÀÖ°Ô ÇÏ¿© ¿¬·áÀüÁö ÀçȰ¿ëÀÇ ½ÇÇà °¡´É¼ºÀ» Å©°Ô Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.
ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº Àç·áÀÇ È¸¼öÀ²À» Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó ±âÁ¸ ÀçȰ¿ë ¹æ¹ý°ú °ü·ÃµÈ ȯ°æ ¿µÇâÀ» ÁÙ¿© Áö¼Ó°¡´ÉÇÑ ¿¬·áÀüÁö ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇÒ ¼ö ÀÖ´Â »ê¾÷Àû ÀÔÁö¸¦ ¸¶·ÃÇϰí ÀÖ½À´Ï´Ù.
¼¼°è ¿¬·áÀüÁö ½ºÅà ÀçȰ¿ë ¹× ÀçÀÌ¿ë ½ÃÀåÀÇ ÁÖ¿ä ¼ºÀå ÀúÇØ¿äÀÎ
¿¬·áÀüÁöÀÇ º¹ÀâÇÑ ¼³°è¿Í º¹ÀâÇÑ Àç·áÀÇ »ç¿ëÀº ºÐÇØ¿¡ ¾î·Á¿òÀ» °¡Á®¿Í È¿À²ÀûÀÎ ÀçȰ¿ë¿¡ Å« °É¸²µ¹ÀÌ µÇ°í ÀÖ½À´Ï´Ù.
ºÎǰ, ƯÈ÷ ¹é±Ý Ã˸ÅÀÇ ºÐ¸®´Â Á¾Á¾ ½Ã°£°ú ºñ¿ëÀÌ ¸¹ÀÌ µå´Â Ư¼öÇÑ °øÁ¤ÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ ÀçȰ¿ë ³ë·Â¿¡ ´õ ¸¹Àº ¾î·Á¿òÀ» ÃÊ·¡ÇÕ´Ï´Ù.
¿¬·áÀüÁö ½ºÅà ÀçȰ¿ë ¹× ÀçÀÌ¿ë ¼¼°è ½ÃÀå£üÁÖ¿ä µ¿Çâ
¼¼ºÐÈ ºÐ¼®
½ÃÀå ¼¼ºÐÈ : À¯Çüº°, ÀçȰ¿ë °øÁ¤º°, ÃÖÁ¾ »ç¿ë »ê¾÷º°
À¯Çüº° ½ÃÀå
ÀçȰ¿ë ÇÁ·Î¼¼½ºº° ½ÃÀå
½À½Ä ¾ß±Ý °øÁ¤Àº ¼ö¼º ÈÇÐÀ» »ç¿ëÇÏ¿© »ç¿ëÇÑ ¿¬·áÀüÁö ½ºÅÿ¡¼ ±ÍÁßÇÑ ±Ý¼ÓÀ» ȸ¼öÇÕ´Ï´Ù. ÀÌ °øÁ¤Àº ÀϹÝÀûÀ¸·Î ħÃâÀ» Æ÷ÇÔÇϸç, »ê ¶Ç´Â ±âŸ ¿ë¸Å°¡ ±Ý¼Ó ¼ººÐÀ» ¿ëÇØÇϰí ħÀü, ¿ë¸Å ÃßÃâ ¹× ÀüÇØ ¹æÀû°ú °°Àº ´Ü°è¸¦ ÅëÇØ ±Ý¼ÓÀ» ºÐ¸® ¹× Á¤Á¦ÇÕ´Ï´Ù.
°í¿Â¿¡ ÀÇÁ¸ÇÏ´Â °Ç½Ä Á¦·Ã°ú ´Þ¸® ½À½Ä Á¦·ÃÀº Àú¿Â¿¡¼ ÀÌ·ç¾îÁö±â ¶§¹®¿¡ ¿¡³ÊÁö ¼Òºñ°¡ Àû½À´Ï´Ù. ÀÌ °øÁ¤Àº ¹é±Ý, ÆÈ¶óµã ¹× ±âŸ ¿¬·áÀüÁö¿¡ ÀÚÁÖ »ç¿ëµÇ´Â ±ÍÁßÇÑ Àç·á¿Í °°Àº ƯÁ¤ ±Ý¼ÓÀ» ¼±ÅÃÀûÀ¸·Î Ç¥ÀûÀ¸·Î »ïÀ» ¼ö ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ ±ÍÁßÇÑ ÀÚ¿øÀ» ȸ¼öÇÏ´Â È¿°úÀûÀÎ ¹æ¹ýÀÔ´Ï´Ù.
¼ö¼Ò ¾ß±Ý °øÁ¤Àº ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀÌ Àû°í ±Ý¼Ó ȸ¼ö È¿À²ÀÌ ³ô±â ¶§¹®¿¡ ¼ö¼Ò ¿¬·áÀüÁö ÀçȰ¿ë¿¡ ´õ¿í ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÈÇÐÀû ȯ°æÀ» Á¤È®ÇÏ°Ô Á¦¾îÇÒ ¼ö Àֱ⠶§¹®¿¡ ȸ¼öµÈ ±Ý¼ÓÀÇ ¼øµµ°¡ ³ô°í ¼öÀ²ÀÌ ³ô½À´Ï´Ù.
¶ÇÇÑ, ½À½Ä ¾ß±Ý °øÁ¤Àº ÀûÀº ¿¡³ÊÁö°¡ ÇÊ¿äÇϱ⠶§¹®¿¡ ƯÈ÷ Áö¼Ó°¡´ÉÇÑ ÀçȰ¿ë ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ºñ¿ë È¿À²¼ºÀÌ ³ô¾ÆÁý´Ï´Ù. ÀÌ °øÁ¤Àº °Ç½Ä ¾ß±Ý¿¡ ºñÇØ À¯ÇØ ¹°Áú ¹èÃâÀÌ Àû¾î ȯ°æ ±ÔÁ¦ ¹× Áö¼Ó°¡´É¼º ¸ñÇ¥¿¡ ´õ ºÎÇÕÇÏ´Â °øÁ¤À̱⵵ ÇÕ´Ï´Ù.
ÃÖÁ¾ ÀÌ¿ë »ê¾÷º° ½ÃÀå
Áö¿ª ºÐ¼®
ÁÖ¿ä 4°³ ±Ç¿ªº° Á¶»ç
¾Æ½Ã¾ÆÅÂÆò¾ç, ƯÈ÷ ÀϺ», Çѱ¹, Áß±¹ µîÀº ¿¬·áÀüÁö ±â¼ú µµÀÔÀÇ ÃÖÀü¼±¿¡ ÀÖ½À´Ï´Ù. ¿¬·áÀüÁö ÀÚµ¿Â÷(FCV)¿Í °íÁ¤½Ä Àü¿ø ½Ã½ºÅÛÀÇ º¸±ÞÀ¸·Î ÀÎÇØ ¿¬·áÀüÁö »ç¿ë ÈÄ »çÀÌŬÀ» °ü¸®ÇÏ´Â È¿À²ÀûÀÎ ÀçȰ¿ë ÇÁ·Î¼¼½ºÀÇ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
Áß±¹Àº ƯÈ÷ ¼ö¼ÒÂ÷ ºÐ¾ß¿¡¼ ¼±µÎ¸¦ ´Þ¸®°í ÀÖÀ¸¸ç, ¸¸¸®À强 ÀÚµ¿Â÷¿Í °°Àº ±â¾÷µéÀº ÀçȰ¿ë °øÁ¤À» ¼ö¼Ò Àü·«¿¡ ÅëÇÕÇϰí ÀÖÀ¸¸ç, 2025³â±îÁö Áß±¹Àº ±¹³» ÀÎÇÁ¶ó¸¦ ÅëÇØ ¹é±Ý°ú °°Àº Áß¿äÇÑ Àç·á¸¦ ȸ¼öÇÏ°í »ç¿ëÇÑ ¿¬·áÀüÁö¸¦ ÀçȰ¿ëÇÏ´Â µî 1 ¸¸´ë ÀÌ»óÀÇ ¿¬·áÀüÁö ÀÚµ¿Â÷¸¦ ¿îÇàÇÏ´Â °ÍÀ» ¸ñÇ¥·Î Çϰí ÀÖ½À´Ï´Ù.
¼¼°è ¿¬·áÀüÁö ½ºÅà ÀçȰ¿ë ¹× ÀçÀÌ¿ë ½ÃÀåÀÇ ÁÖ¿ä ±â¾÷µé
ÀÌ ±â¾÷µéÀÌ Ã¤ÅÃÇÑ ÁÖ¿ä Àü·«Àº ´ÙÀ½°ú °°½À´Ï´Ù.
10% ¹«·á Ä¿½ºÅ͸¶ÀÌ¡°ú 3°³¿ù°£ÀÇ ¾Ö³Î¸®½ºÆ® Áö¿øÀ» Á¦°øÇÕ´Ï´Ù.
ÀÚÁÖ ¹¯´Â Áú¹®(FAQ):
A: ¹é±ÝÁ· ±Ý¼Ó(PGM), ÆÈ¶óµã(Pd), ·Îµã(Rh)°ú °°Àº PGM, ½ºÅ×Àθ®½º ½ºÆ¿, ¾Ë·ç¹Ì´½ ¹× ¿¬·áÀüÁö ½ºÅÿ¡ »ç¿ëµÇ´Â ±âŸ ±¸Á¶ Àç·á°¡ ÀçȰ¿ë °úÁ¤¿¡¼ ȸ¼öµË´Ï´Ù.
A: ¾Æ½Ã¾ÆÅÂÆò¾çÀº ¼¼°è ¿¬·áÀüÁö ½ºÅà ÀçȰ¿ë ¹× ÀçÀÌ¿ë ½ÃÀå¿¡¼ °¡Àå ºü¸£°Ô ¼ºÀåÇÏ´Â Áö¿ªÀÔ´Ï´Ù.
The global fuel cell stack recycling and reuse market is expected to reach $532.54 million by 2032, growing at a CAGR of 22.36% during the forecast period, 2024-2032. The base year considered for the study is 2023, and the estimated period is between 2024 and 2032. The market study has also analyzed the impact of COVID-19 on the fuel cell stack recycling and reuse market qualitatively and quantitatively.
A fuel cell is an electrochemical device that converts chemical energy from a fuel, typically hydrogen, into electricity through a reaction with oxygen, with water and heat as by-products. Unlike traditional combustion engines, fuel cells offer a cleaner energy alternative, emitting only water vapor instead of harmful pollutants. This makes them highly attractive for various sectors, including transportation, stationary power generation, and portable power applications.
Central to the operation of a fuel cell is the fuel cell stack, which is essentially the heart of the fuel cell system. A fuel cell stack consists of multiple individual fuel cells layered together to generate a higher output of electricity. Each fuel cell contains a membrane electrode assembly (MEA), where the electrochemical reactions take place, separated by bipolar plates that manage the flow of reactants and electrical connections. The key materials involved in the MEA are platinum group metals (PGMs), especially platinum, which serve as catalysts in the reaction process. Other critical components include materials like stainless steel and aluminum that provide structural stability.
Given the reliance on rare and expensive metals like platinum, the recycling and reuse of fuel cell stacks have become a critical focus for the industry. Recycling recovers valuable materials and reduces environmental impacts, while supporting the sustainable scaling of hydrogen technologies. As the hydrogen economy grows, companies are increasingly investing in the recovery and reuse of these key components to ensure cost-efficiency and resource security.
Key enablers of the global fuel cell stack recycling and reuse market growth:
Technological advancements in recycling methods for fuel cell stacks are critical to enhancing the sustainability of this growing industry. Innovations such as the development of solvent-based recycling processes and advanced smelting techniques have allowed for more efficient recovery of valuable materials, particularly platinum group metals (PGMs) like platinum and palladium.
Companies like Umicore have implemented high-temperature pyrometallurgical processes, which incorporate calcium salts to safely capture hazardous by-products like hydrogen fluoride, making the recycling process safer and more environmentally friendly. These processes enable the recovery of both metals and non-metallic components, reducing the need for virgin materials and supporting a circular economy approach.
Moreover, alternative methods such as solvent and surfactant-based approaches, as developed by industry leaders like Johnson Matthey, offer promising solutions that avoid the need for incineration. These advancements allow for the separation and reuse of platinum catalysts and other materials from fuel cell membranes, significantly enhancing the viability of fuel cell recycling.
Such innovations not only improve material recovery rates but also reduce the environmental impact associated with traditional recycling methods, positioning the industry to meet the rising demand for sustainable fuel cell technologies.
Key growth restraining factors of the global fuel cell stack recycling and reuse market:
The intricate design and the use of complex materials in fuel cells create challenges for disassembly, posing a major obstacle to efficient recycling.
Separating the components, particularly the platinum catalyst, involves specialized processes that are often time-consuming and expensive, adding further difficulty to recycling efforts.
Global Fuel Cell Stack Recycling and Reuse Market | Top Trends
SEGMENTATION ANALYSIS
Market Segmentation - Type, Recycling Process, and End Use Industry -
Market by Type:
Market by Recycling Process:
The hydrometallurgical process involves the use of aqueous chemistry to recover valuable metals from spent fuel cell stacks. This process typically includes leaching, where acids or other solvents dissolve the metal components, followed by steps like precipitation, solvent extraction, and electro-winning to isolate and purify the metals.
Unlike pyrometallurgy, which relies on high temperatures, hydrometallurgy operates at lower temperatures, making it less energy-intensive. The process is capable of selectively targeting specific metals, such as platinum, palladium, and other precious materials commonly found in fuel cells, making it an effective method for recovering these valuable resources.
Hydrometallurgical processes are more popular in hydrogen fuel cell recycling due to their lower environmental impact and greater efficiency in metal recovery. The ability to precisely control the chemical environment allows for higher purity and better yields of recovered metals.
Additionally, the lower energy requirements make hydrometallurgy more cost-effective, especially as the demand for sustainable recycling solutions grows. The process also generates fewer hazardous emissions compared to pyrometallurgy, aligning better with environmental regulations and sustainability goals
Market by End Use Industry:
REGIONAL ANALYSIS
Geographical Study Based on Four Major Regions:
The Asia-Pacific, particularly countries like Japan, South Korea, and China, is at the forefront of adopting fuel cell technology. This widespread deployment of fuel cell vehicles (FCVs) and stationary power systems leads to a growing need for efficient recycling processes to manage the end-of-life cycle of these cells.
China is leading the charge, particularly in the hydrogen vehicle sector, with companies like Great Wall Motor integrating recycling processes into their hydrogen strategy. By 2025, the country aims to have over 10,000 fuel cell vehicles on the road, underpinned by domestic infrastructure for recycling end-of-life fuel cells and recovering critical materials such as platinum.
Major players in the global fuel cell stack recycling and reuse market:
Key strategies adopted by some of these companies:
We Offer 10% Free Customization and 3 Months Analyst Support
Frequently Asked Questions (FAQs):
A: Platinum group metals (PGMs) and other PGMs like palladium (Pd) and rhodium (Rh), as well as stainless steel, aluminum, and other structural materials used in the fuel cell stack, are recovered during the recycling process.
A: Asia-Pacific is the fastest-growing region in the global fuel cell stack recycling and reuse market.