![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1536238
¾çÀÚ ½Ã´ëÀÇ ¸Ó½Å·¯´×°ú µö·¯´×(2024³â) : ½ÃÀå ¿¹Ãø ¹× ±â¼ú Æò°¡Machine Learning and Deep Learning in the Quantum Era 2024: A Market Forecast and Technology Assessment |
¸Ó½Å·¯´×(ML)Àº AI ½ÃÀå¿¡¼ °¡Àå ¼º¼÷ÇÑ ºÐ¾ß Áß Çϳª·Î, 1950³â´ëºÎÅÍ ½ÃÀÛµÈ ¸Ó½Å·¯´×(ML)Àº ±â°è°¡ ƯÁ¤ ÀÛ¾÷À» ¼öÇàÇϵµ·Ï °¡¸£Ä¡°í ÆÐÅÏÀ» ½Äº°ÇÏ¿© Á¤È®ÇÑ °á°ú¸¦ Á¦°øÇϵµ·Ï °¡¸£Ä¨´Ï´Ù. ¾çÀÚ ÄÄÇ»ÅÍÀÇ µîÀåÀº ¾çÀÚ ÄÄÇ»ÆÃÀÇ ÈûÀ» ML¿¡ ¾î¶»°Ô Àû¿ëÇÒ ¼ö ÀÖ´ÂÁö¿¡ ´ëÇÑ ÃßÃøÀ» ºÒ·¯ÀÏÀ¸Ä×½À´Ï´Ù. ¾çÀÚ ¸Ó½Å·¯´×(QML)Àº ½ÇÇà ½Ã°£ ´ÜÃà, ÇнÀ È¿À² Çâ»ó, ÇнÀ ´É·Â Çâ»ó Ãø¸é¿¡¼ ±âÁ¸ MLÀ» °³¼±ÇÒ ¼ö ÀÖ´Ù´Â °ø°¨´ë°¡ Çü¼ºµÇ°í ÀÖ½À´Ï´Ù.
ÀÌ º¸°í¼´Â ¾çÀÚ ½Ã´ëÀÇ ¸Ó½Å·¯´×°ú µö·¯´×¿¡ ´ëÇØ Á¶»çÇßÀ¸¸ç, QMLÀÇ ºñÁî´Ï½º ±âȸ¿Í ¿ëµµ¸¦ ÆÄ¾ÇÇϸç, ÀÌ¹Ì µîÀåÇϱ⠽ÃÀÛÇÑ °Í°ú ¾ÕÀ¸·Î µîÀåÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â °ÍµéÀ» ¼Ò°³ÇÕ´Ï´Ù. ¶ÇÇÑ, QML ±â¼úÀÌ ¾î¶»°Ô ÁøÈÇÒ °ÍÀÎÁö¿¡ ´ëÇØ ³íÀÇÇϰí, ÀÌ ºÐ¾ß¿¡¼ Ȱµ¿ÇÏ´Â 25°³ ÁÖ¿ä ±â¾÷ ¹× ¿¬±¸±â°üÇÁ·ÎÆÄÀϰú ÇÔ²² QML ¼öÀÍÀÇ 10³â ¿¹ÃøÀ» Á¦½ÃÇÕ´Ï´Ù. ¶ÇÇÑ, ¾çÀÚ ¸Ó½Å·¯´×ÀÇ ºñ¿ë°ú ¹Ì¼÷ÇÔ, QML¿¡ ÃÖÀûÈµÈ ¾Ë°í¸®ÁòÀÇ Çʿ伺, QMLÀÇ ÃÖÀû µµÀÔ ¹æ¹ý¿¡ ´ëÇÑ ´õ ±íÀº ÀÌÇØ µî QMLÀÇ ¼ºÀåÀ» ÀúÇØÇÏ´Â ¿äÀο¡ ´ëÇØ¼µµ ºÐ¼®ÇÕ´Ï´Ù.
Machine learning (ML) is one of the most mature segments of the AI market - it dates to the 1950s. ML teaches machines to perform specific tasks and provide accurate results by identifying patterns. The advent of quantum computers has led to speculations on how the power of quantum computing can be applied to ML. A consensus is building that Quantum Machine Learning (QML) can improve classical ML in terms of faster run times, increased learning efficiencies and boosted learning capacity.
In this report, IQT Research identifies QML opportunities and applications already beginning to appear and those that we believe will emerge in the future. We also discuss how QML technology will evolve and include ten-year forecasts of QML revenues, along with profiles of 25 profiles of leading firms and research institutes active in the field. The report also analyzes the factors retarding the growth of QML such as the cost and immaturity of quantum machine learning, the need for QML-optimized algorithms and a deeper understanding of how QML is best deployed.