½ÃÀ庸°í¼­
»óǰÄÚµå
1570666

3D ÇÁ¸°ÆÃ¿ë °í¼º´É ÇÃ¶ó½ºÆ½ ½ÃÀå : Àç·á À¯Çü, ±â¼ú, ¿ëµµ, ÃÖÁ¾»ç¿ëÀÚº° - ¼¼°è ¿¹Ãø(2025-2030³â)

3D Printing High Performance Plastic Market by Material Type, Technology, Application, End-User - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 198 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

3D ÇÁ¸°ÆÃ¿ë °í¼º´É ÇÃ¶ó½ºÆ½ ½ÃÀåÀº 2023³â 1¾ï 4,557¸¸ ´Þ·¯·Î Æò°¡µÇ°í 2024³â¿¡´Â 1¾ï 8,262¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¿¬Æò±Õ 25.98% ¼ºÀåÇÏ¿© 2030³â¿¡´Â 7¾ï 3,346¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

3D ÇÁ¸°ÆÃ¿ë °í¼º´É ÇÃ¶ó½ºÆ½ ½ÃÀåÀº °í¿Â, ±â°èÀû ÀÀ·Â, È­ÇÐÁ¦Ç°¿¡ ´ëÇÑ ³ëÃâÀ» °ßµô ¼ö ÀÖµµ·Ï ¼³°èµÈ ÷´Ü Æú¸®¸Ó¿¡ ÁßÁ¡À» µÎ°í Á¤ÀǵǸç, PEEK, PEKK, Æú¸®¾Æ¹Ìµå µîÀÇ ¼ÒÀç´Â ³»±¸¼º°ú ¼º´ÉÀÌ Áß¿äÇÑ Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷, ÇコÄɾî, ÀüÀÚ ¹× ±âŸ »ê¾÷ ºÐ¾ß¿¡ ÇʼöÀûÀÌ´Ù, 3D ÇÁ¸°ÆÃ¿¡¼­ °í¼º´É ÇÃ¶ó½ºÆ½ÀÇ Çʿ伺Àº ¹«°á¼º°ú ¼º´ÉÀ» À¯ÁöÇϸ鼭 ±Ý¼Ó ºÎǰÀ» ´ëüÇÒ ¼ö ÀÖ´Â °¡º±°í È¿À²ÀûÀ̸ç Áö¼Ó°¡´ÉÇÑ ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó »ý°Ü³µ½À´Ï´Ù. ÁÖ¿ä ÀÀ¿ë ºÐ¾ß·Î´Â º¹ÀâÇÑ ºÎǰ Á¦Á¶, ÇÁ·ÎÅäŸÀÌÇÎ, ¸ÂÃãÇü ÀÇ·á¿ë ÀÓÇöõÆ® ¹× ±â±â Á¦ÀÛ µîÀÌ ÀÖ½À´Ï´Ù. ±â¼ú ¹ßÀüÀ¸·Î ÀÎÇØ ±¤¹üÀ§ÇÑ Ã¤ÅÃÀÌ °¡´ÉÇØÁü¿¡ µû¶ó ÃÖÁ¾ ¿ëµµ ºÐ¾ß°¡ È®´ëµÇ°í ÀÖÀ¸¸ç, °ß°íÇÑ ºÎǰÀ» À§ÇÑ Çõ½ÅÀûÀÎ ¼Ö·ç¼ÇÀ» ¿øÇÏ´Â ¹æÀ§ ¹× »ê¾÷ ºÎ¹®ÀÇ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ[2023] 1¾ï 4,557¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ[2024] 1¾ï 8,262¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ[2030] 7¾ï 3,346¸¸ ´Þ·¯
CAGR(%) 25.98%

½ÃÀå ¼ºÀåÀÇ ¿øµ¿·ÂÀº 3D ÇÁ¸°ÆÃ ±â°èÀÇ ±â¼ú ¹ßÀü, Áö¼Ó°¡´ÉÇÑ ¼ÒÀç¿¡ ´ëÇÑ Àνİú ¼ö¿ä Áõ°¡, ´ë·® ¸ÂÃãÈ­·Î ÀüȯÇÏ´Â Ãß¼¼ÀÔ´Ï´Ù. ÀûÃþ Á¦Á¶ °øÁ¤¿¡ AI¿Í ¸Ó½Å·¯´×À» ÅëÇÕÇÏ´Â µî ÃÖ±Ù Ãß¼¼´Â »ý»ê ÃÖÀûÈ­, ºñ¿ë Àý°¨, Àç·á Ư¼º °­È­¿¡ Å« ±âȸ¸¦ Á¦°øÇϰí ÀÖ½À´Ï´Ù. ±×·¯³ª ³ôÀº Àç·á ¹× ±â°è ºñ¿ë, ±ÔÁ¦ ¹®Á¦, Ç¥ÁØÈ­µÈ Å×½ºÆ® ÇÁ·ÎÅäÄÝÀÇ ºÎÁ· µî ¿©·¯ Á¦¾àÀ¸·Î ÀÎÇØ º¸±Þ¿¡ °É¸²µ¹ÀÌ µÇ°í ÀÖ½À´Ï´Ù. º¸´Ù ºñ¿ë È¿À²ÀûÀÎ °í¼º´É Æú¸®¸ÓÀÇ °³¹ß°ú ÀçȰ¿ë ±â¼úÀÇ °­È­´Â ÀÌ·¯ÇÑ ¹®Á¦¸¦ ¿ÏÈ­ÇÒ ¼ö ÀÖ´Â ÀáÀç·ÂÀ» °¡Áö°í ÀÖ½À´Ï´Ù.

»ç¾÷ ¼ºÀåÀ» À§ÇØ ±â¼ú Çõ½ÅÀº ´õ ³ªÀº Ư¼º°ú ºñ¿ë È¿À²¼ºÀÌ ³ôÀº »õ·Î¿î º¹ÇÕÀç·áÀÇ °³¹ß¿¡ ÁßÁ¡À» µÎ¾î¾ß ÇÕ´Ï´Ù. ¶ÇÇÑ Ç¥¸é ¸¶°¨ ¹× Àç·á Ư¼ºÀ» ´õ¿í Çâ»ó½Ã۱â À§ÇØ Èİ¡°ø ±â¼úÀ» °­È­ÇÏ´Â °Íµµ ¿¬±¸ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¾ß¿¡ ´ëÇÑ ³ë·ÂÀ» ÅëÇØ ±â¾÷Àº °æ·® ¹× ³»¿­¼º Àç·á°¡ Áß¿äÇÑ Àü±âÀÚµ¿Â÷ÀÇ ¼ö¿ä Áõ°¡¿Í °°Àº »õ·Î¿î ±âȸ¸¦ Ȱ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ½ÃÀåÀº º»ÁúÀûÀ¸·Î ¿ªµ¿ÀûÀ̸ç, ±Þ¼ÓÇÑ ±â¼ú º¯È­¿Í Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °­Á¶°¡ Ư¡ÀÔ´Ï´Ù. ¿¬±¸ °³¹ß¿¡ Àû±ØÀûÀ¸·Î Âü¿©Çϰí ÇÐ°è ¹× ¾÷°è¿Í ÆÄÆ®³Ê½ÊÀ» ±¸ÃàÇÏ´Â ±â¾÷Àº ÀÌ·¯ÇÑ º¯È­Çϴ ȯ°æ¿¡¼­ ¼ºÀå ±âȸ¸¦ ´õ¿í Ȱ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå ¿ªÇÐ : ºü¸£°Ô ÁøÈ­ÇÏ´Â 3D ÇÁ¸°ÆÃ¿ë °í¼º´É ÇÃ¶ó½ºÆ½ ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

3D ÇÁ¸°ÆÃ¿ë °í¼º´É ÇÃ¶ó½ºÆ½ ½ÃÀåÀº ¼ö¿ä¿Í °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ëÀ» ÅëÇØ º¯È­Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐÀÇ ÁøÈ­¸¦ ÀÌÇØÇÔÀ¸·Î½á ±â¾÷ Á¶Á÷Àº Á¤º¸¿¡ ÀÔ°¢ÇÑ ÅõÀÚ °áÁ¤À» ³»¸®°í, Àü·«Àû ÀÇ»ç°áÁ¤À» Á¤±³È­Çϸç, »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Æ÷ÂøÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Æ®·»µå¸¦ Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ ÁÙÀÏ ¼ö ÀÖÀ¸¸ç, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë ¹× ±¸¸Å °æÇâ¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëÇØ¼­µµ º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

Porter's Five Forces : 3D ÇÁ¸°ÆÃ¿ë °í¼º´É ÇÃ¶ó½ºÆ½ ½ÃÀå °ø·«À» À§ÇÑ Àü·«Àû µµ±¸

Porter's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â 3D ÇÁ¸°ÆÃ¿ë °í¼º´É ÇÃ¶ó½ºÆ½ ½ÃÀåÀÇ °æÀï »óȲÀ» ÀÌÇØÇÏ´Â µ¥ Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Porter's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÇ °æÀï·ÂÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ Ž»öÇÒ ¼ö ÀÖ´Â ¸íÈ®ÇÑ ¹æ¹ýÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÀλçÀÌÆ®¸¦ ÅëÇØ ±â¾÷Àº °­Á¡À» Ȱ¿ëÇϰí, ¾àÁ¡À» ÇØ°áÇϰí, ÀáÀçÀûÀÎ µµÀüÀ» ÇÇÇϰí, º¸´Ù °­·ÂÇÑ ½ÃÀå Æ÷Áö¼Å´×À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : 3D ÇÁ¸°ÆÃ¿ë °í¼º´É ÇÃ¶ó½ºÆ½ ½ÃÀå¿¡¼­ÀÇ ¿ÜºÎ ¿µÇâ ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº 3D ÇÁ¸°ÆÃ¿ë °í¼º´É ÇÃ¶ó½ºÆ½ ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ÀÖ¾î ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀο¡ ´ëÇÑ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇϸç, PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀû À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£µµ, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¼±Á¦ÀûÀÌ°í ´Éµ¿ÀûÀÎ ÀÇ»ç°áÁ¤À» ³»¸± Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® : 3D ÇÁ¸°ÆÃ¿ë °í¼º´É ÇÃ¶ó½ºÆ½ ½ÃÀåÀÇ °æÀï »óȲ ÆÄ¾Ç

3D ÇÁ¸°ÆÃ¿ë °í¼º´É ÇÃ¶ó½ºÆ½ ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ ¾÷üµéÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¼öÀÍ, °í°´ ±â¹Ý, ¼ºÀå·ü°ú °°Àº ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀïÀû À§Ä¡¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®Àº ½ÃÀåÀÇ ÁýÁßÈ­, ´ÜÆíÈ­, ÅëÇÕÀÇ Ãß¼¼¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖÀ¸¸ç, °ø±Þ¾÷ü´Â Ä¡¿­ÇÑ °æÀï ¼Ó¿¡¼­ ÀÚ½ÅÀÇ ÀÔÁö¸¦ °­È­ÇÒ ¼ö ÀÖ´Â Àü·«Àû ÀÇ»ç°áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ ÀλçÀÌÆ®¸¦ ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º : 3D ÇÁ¸°ÆÃ¿ë °í¼º´É ÇÃ¶ó½ºÆ½ ½ÃÀå¿¡¼­ º¥´õÀÇ ¼º°ú Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â 3D ÇÁ¸°ÆÃ¿ë °í¼º´É ÇÃ¶ó½ºÆ½ ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ ¸ÅÆ®¸¯½º¸¦ ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº º¥´õÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±â¹ÝÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ºÎÇÕÇÏ´Â Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖÀ¸¸ç, 4°³ÀÇ »çºÐ¸éÀ¸·Î º¥´õ¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ¼¼ºÐÈ­ÇÏ¿© Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê¿Í ¼Ö·ç¼ÇÀ» ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù. Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê¿Í ¼Ö·ç¼ÇÀ» ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× Ãßõ : 3D ÇÁ¸°ÆÃ¿ë °í¼º´É ÇÃ¶ó½ºÆ½ ½ÃÀå¿¡¼­ ¼º°øÀÇ ±æ ã±â

3D ÇÁ¸°ÆÃ¿ë °í¼º´É ÇÃ¶ó½ºÆ½ ½ÃÀåÀÇ Àü·«Àû ºÐ¼®Àº ¼¼°è ½ÃÀå¿¡¼­ ÀÔÁö¸¦ °­È­ÇϰíÀÚ ÇÏ´Â ±â¾÷¿¡°Ô ÇʼöÀûÀÔ´Ï´Ù. ÁÖ¿ä ÀÚ¿ø, ¿ª·® ¹× ¼º°ú ÁöÇ¥¸¦ °ËÅäÇÔÀ¸·Î½á ±â¾÷Àº ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀ» ÅëÇØ °æÀï ȯ°æÀÇ µµÀüÀ» ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö ÀÖµµ·Ï ÁغñÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â Á¾ÇÕÀûÀÎ ½ÃÀå ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõµµ : ÇöÀç ½ÃÀå ȯ°æ¿¡ ´ëÇØ »ó¼¼È÷ °ËÅäÇÕ´Ï´Ù.

2. ½ÃÀå °³Ã´µµ : ½ÅÈï ½ÃÀå¿¡¼­ÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇϰí, ±âÁ¸ ºÎ¹®ÀÇ È®Àå °¡´É¼ºÀ» Æò°¡Çϸç, ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù°¢È­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä ¹ßÀü, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï »óȲÀ» öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú ¹ßÀü µîÀ» Á¶»çÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ÇâÈÄ ½ÃÀå ¼ºÀåÀ» ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÷´Ü ±â¼ú, ¿¬±¸ °³¹ß Ȱµ¿ ¹× Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

ÀÌÇØ°ü°èÀÚµéÀÌ Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï ´ÙÀ½°ú °°Àº Áß¿äÇÑ Áú¹®¿¡ ´ëÇÑ ´äº¯µµ Á¦°øÇÕ´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå Àü¸ÁÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹®, Áö¿ªÀº ¾îµðÀΰ¡?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õÀÇ ½ÃÀå ÁøÀÔ ¹× ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
    • ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ±âȸ
    • °úÁ¦
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTLE ºÐ¼®
    • Á¤Ä¡Àû
    • °æÁ¦Àû
    • »çȸÀû
    • ±â¼úÀû
    • ¹ýÀû
    • ȯ°æÀû

Á¦6Àå 3D ÇÁ¸°ÆÃ¿ë °í¼º´É ÇÃ¶ó½ºÆ½ ½ÃÀå : ¼ÒÀç À¯Çüº°

  • Æú¸®¾Æ¸±¿¡Å׸£ÄÉÅæ(PAEK)
  • Æú¸®¿¡Å׸£¿¡Å׸£ÄÉÅæ(PEEK)
  • Æú¸®¿¡Å׸£À̵̹å(PEI)
  • Æú¸®Æä´Ò¼³Æù(PPSU)

Á¦7Àå 3D ÇÁ¸°ÆÃ¿ë °í¼º´É ÇÃ¶ó½ºÆ½ ½ÃÀå : ±â¼úº°

  • µðÁöÅÐ ±¤Ã³¸®(DLP)
  • ¿­¿ëÇØ ÀûÃþ¹ý(FDM)
  • ¸ÖƼÁ¬ Ç»Àü(MJF)
  • Æú¸®Á¬
  • ¼±ÅÃÀû ·¹ÀÌÀú ¼Ò°á(SLS)
  • ½ºÅ×·¹¿À¸®¼Ò±×·¡ÇÇ(SLA)

Á¦8Àå 3D ÇÁ¸°ÆÃ¿ë °í¼º´É ÇÃ¶ó½ºÆ½ ½ÃÀå : ¿ëµµº°

  • Ç×°ø¿ìÁÖ ¹× ¹æÀ§
  • ÀÚµ¿Â÷
  • ÀÏ·ºÆ®·Î´Ð½º
  • ¿£Áö´Ï¾î¸µ
  • ÀÇ·á¿Í Ä¡°ú

Á¦9Àå 3D ÇÁ¸°ÆÃ¿ë °í¼º´É ÇÃ¶ó½ºÆ½ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • Ç×°ø¿ìÁÖ
  • ÀÚµ¿Â÷
  • ÀÏ·ºÆ®·Î´Ð½º
  • ÇコÄɾî
  • »ê¾÷

Á¦10Àå ¾Æ¸Þ¸®Ä«ÀÇ 3D ÇÁ¸°ÆÃ¿ë °í¼º´É ÇÃ¶ó½ºÆ½ ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦11Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ 3D ÇÁ¸°ÆÃ¿ë °í¼º´É ÇÃ¶ó½ºÆ½ ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦12Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ 3D ÇÁ¸°ÆÃ¿ë °í¼º´É ÇÃ¶ó½ºÆ½ ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®
  • ¿µ±¹

Á¦13Àå °æÀï »óȲ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2023³â
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2023³â
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
  • Àü·« ºÐ¼®°ú Á¦¾È
ksm 24.11.01

The 3D Printing High Performance Plastic Market was valued at USD 145.57 million in 2023, expected to reach USD 182.62 million in 2024, and is projected to grow at a CAGR of 25.98%, to USD 733.46 million by 2030.

The 3D Printing High Performance Plastic market is defined by its focus on advanced polymers designed to withstand high temperatures, mechanical stress, and chemical exposure. These materials, such as PEEK, PEKK, and polyamide, are vital for applications in industries like aerospace, automotive, healthcare, and electronics, where durability and performance are critical. The necessity for high-performance plastics in 3D printing arises from the growing demand for lightweight, efficient, and sustainable materials that can replace metal components while maintaining integrity and performance. Key applications include the production of complex components, prototyping, and creating customized medical implants and devices. End-use sectors are expanding as technological advancements enable broader adoption, with significant interest from defense and industrial sectors seeking innovative solutions for robust components.

KEY MARKET STATISTICS
Base Year [2023] USD 145.57 million
Estimated Year [2024] USD 182.62 million
Forecast Year [2030] USD 733.46 million
CAGR (%) 25.98%

Market growth is driven by technological advancements in 3D printing machinery, increasing awareness and demand for sustainable materials, and the ongoing shift towards mass customization. Recent developments, such as the integration of AI and machine learning in additive manufacturing processes, offer significant opportunities to optimize production, reduce costs, and enhance material properties. However, limitations include high costs of materials and machinery, regulatory challenges, and a lack of standardized testing protocols, which can hinder widespread adoption. The development of more cost-effective high-performance polymers and enhanced recycling technologies could mitigate these issues.

For business growth, innovation should focus on developing new composite materials that offer superior attributes and are more cost-efficient. Research can also explore the enhancement of post-processing techniques to improve surface finishes and material properties further. By addressing these areas, companies can leverage new opportunities, such as the expanding demand for electric vehicles where lightweight and heat-resistant materials are crucial. The market is inherently dynamic, characterized by rapid technological shifts and a strong emphasis on sustainability. Companies that actively engage in R&D and create partnerships with academia and industry can further capitalize on growth opportunities in this evolving landscape.

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving 3D Printing High Performance Plastic Market

The 3D Printing High Performance Plastic Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Increasing demand for electric and autonomous vehicle production
    • Government initiatives and funding to promote 3d printing technology adoption across various industries
    • Proliferation of 3D printing service bureaus offering high-performance plastic components
  • Market Restraints
    • Limited availability of high-quality raw materials affecting production consistency and scalability
  • Market Opportunities
    • Growing integration with advanced manufacturing and IoT technologies
    • Increasing focus on sustainability and eco-friendly solutions
  • Market Challenges
    • Environmental impact and recycling issues associated with the 3D printing with high performance plastics

Porter's Five Forces: A Strategic Tool for Navigating the 3D Printing High Performance Plastic Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the 3D Printing High Performance Plastic Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the 3D Printing High Performance Plastic Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the 3D Printing High Performance Plastic Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the 3D Printing High Performance Plastic Market

A detailed market share analysis in the 3D Printing High Performance Plastic Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the 3D Printing High Performance Plastic Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the 3D Printing High Performance Plastic Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the 3D Printing High Performance Plastic Market

A strategic analysis of the 3D Printing High Performance Plastic Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the 3D Printing High Performance Plastic Market, highlighting leading vendors and their innovative profiles. These include 3D Systems Corporation, Arkema S.A., BASF SE, Clariant International Ltd., Covestro AG, DuPont de Nemours, Inc., Ensinger GmbH, EnvisionTEC GmbH, EOS GmbH, Evonik Industries AG, HP Inc., Lehmann&Voss&Co., Materialise NV, Royal DSM N.V., Rochling Group, SABIC (Saudi Basic Industries Corporation), Solvay S.A., Stratasys Ltd., Toray Industries, Inc., and Victrex plc.

Market Segmentation & Coverage

This research report categorizes the 3D Printing High Performance Plastic Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Material Type, market is studied across Polyaryletherketone (PAEK), Polyether Ether Ketone (PEEK), Polyetherimide (PEI), and Polyphenylsulfone (PPSU).
  • Based on Technology, market is studied across Digital Light Processing (DLP), Fused Deposition Modeling (FDM), Multi Jet Fusion (MJF), PolyJet, Selective Laser Sintering (SLS), and Stereolithography (SLA).
  • Based on Application, market is studied across Aerospace and Defense, Automotive, Electronics, Engineering, and Medical and Dental.
  • Based on End-User, market is studied across Aerospace, Automotive, Electronics, Healthcare, and Industrial.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Increasing demand for electric and autonomous vehicle production
      • 5.1.1.2. Government initiatives and funding to promote 3d printing technology adoption across various industries
      • 5.1.1.3. Proliferation of 3D printing service bureaus offering high-performance plastic components
    • 5.1.2. Restraints
      • 5.1.2.1. Limited availability of high-quality raw materials affecting production consistency and scalability
    • 5.1.3. Opportunities
      • 5.1.3.1. Growing integration with advanced manufacturing and IoT technologies
      • 5.1.3.2. Increasing focus on sustainability and eco-friendly solutions
    • 5.1.4. Challenges
      • 5.1.4.1. Environmental impact and recycling issues associated with the 3D printing with high performance plastics
  • 5.2. Market Segmentation Analysis
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. 3D Printing High Performance Plastic Market, by Material Type

  • 6.1. Introduction
  • 6.2. Polyaryletherketone (PAEK)
  • 6.3. Polyether Ether Ketone (PEEK)
  • 6.4. Polyetherimide (PEI)
  • 6.5. Polyphenylsulfone (PPSU)

7. 3D Printing High Performance Plastic Market, by Technology

  • 7.1. Introduction
  • 7.2. Digital Light Processing (DLP)
  • 7.3. Fused Deposition Modeling (FDM)
  • 7.4. Multi Jet Fusion (MJF)
  • 7.5. PolyJet
  • 7.6. Selective Laser Sintering (SLS)
  • 7.7. Stereolithography (SLA)

8. 3D Printing High Performance Plastic Market, by Application

  • 8.1. Introduction
  • 8.2. Aerospace and Defense
  • 8.3. Automotive
  • 8.4. Electronics
  • 8.5. Engineering
  • 8.6. Medical and Dental

9. 3D Printing High Performance Plastic Market, by End-User

  • 9.1. Introduction
  • 9.2. Aerospace
  • 9.3. Automotive
  • 9.4. Electronics
  • 9.5. Healthcare
  • 9.6. Industrial

10. Americas 3D Printing High Performance Plastic Market

  • 10.1. Introduction
  • 10.2. Argentina
  • 10.3. Brazil
  • 10.4. Canada
  • 10.5. Mexico
  • 10.6. United States

11. Asia-Pacific 3D Printing High Performance Plastic Market

  • 11.1. Introduction
  • 11.2. Australia
  • 11.3. China
  • 11.4. India
  • 11.5. Indonesia
  • 11.6. Japan
  • 11.7. Malaysia
  • 11.8. Philippines
  • 11.9. Singapore
  • 11.10. South Korea
  • 11.11. Taiwan
  • 11.12. Thailand
  • 11.13. Vietnam

12. Europe, Middle East & Africa 3D Printing High Performance Plastic Market

  • 12.1. Introduction
  • 12.2. Denmark
  • 12.3. Egypt
  • 12.4. Finland
  • 12.5. France
  • 12.6. Germany
  • 12.7. Israel
  • 12.8. Italy
  • 12.9. Netherlands
  • 12.10. Nigeria
  • 12.11. Norway
  • 12.12. Poland
  • 12.13. Qatar
  • 12.14. Russia
  • 12.15. Saudi Arabia
  • 12.16. South Africa
  • 12.17. Spain
  • 12.18. Sweden
  • 12.19. Switzerland
  • 12.20. Turkey
  • 12.21. United Arab Emirates
  • 12.22. United Kingdom

13. Competitive Landscape

  • 13.1. Market Share Analysis, 2023
  • 13.2. FPNV Positioning Matrix, 2023
  • 13.3. Competitive Scenario Analysis
  • 13.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. 3D Systems Corporation
  • 2. Arkema S.A.
  • 3. BASF SE
  • 4. Clariant International Ltd.
  • 5. Covestro AG
  • 6. DuPont de Nemours, Inc.
  • 7. Ensinger GmbH
  • 8. EnvisionTEC GmbH
  • 9. EOS GmbH
  • 10. Evonik Industries AG
  • 11. HP Inc.
  • 12. Lehmann&Voss&Co.
  • 13. Materialise NV
  • 14. Royal DSM N.V.
  • 15. Rochling Group
  • 16. SABIC (Saudi Basic Industries Corporation)
  • 17. Solvay S.A.
  • 18. Stratasys Ltd.
  • 19. Toray Industries, Inc.
  • 20. Victrex plc
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦