½ÃÀ庸°í¼­
»óǰÄÚµå
1576866

¼¼°èÀÇ Èæ¿¬·Î ¿øÀÚ Èí¼ö ºÐ±¤ ±¤µµ°è ½ÃÀå : Á¦Ç° À¯Çü, ÃÖÁ¾ »ç¿ëÀÚ, ¿ëµµ, ÄÄÆ÷³ÍÆ®, ¼ö¹ýº° ¿¹Ãø(2025-2030³â)

Graphite Furnace Atomic Absorption Spectrophotometer Market by Product Type (Detectors, Graphite Tubes, Hollow Cathode Lamps), End User (Chemical, Environmental Testing, Food & Beverages), Application, Component, Technique - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 195 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Èæ¿¬·Î ¿øÀÚ Èí¼ö ºÐ±¤±¤µµ°è ½ÃÀåÀº 2023³â 8¾ï 945¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2024³â¿¡´Â 8¾ï 6,432¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, CAGR 6.44%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 12¾ï 5,324¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

Èæ¿¬·Î ¿øÀÚ Èí¼ö ºÐ±¤ ±¤µµ°è(GFAAS)´Â ´Ù¾çÇÑ »ùÇÿ¡¼­ ¹Ì·® ±Ý¼ÓÀ» °ËÃâÇÏ´Â µ¥ »ç¿ëµÇ´Â °í±Þ ºÐ¼® ±â¼úÀÔ´Ï´Ù. GFAASÀÇ Çʿ伺Àº ³ôÀº °¨µµ¿Í Á¤È®¼ºÀ¸·Î ÀÎÇØ ³·Àº ³óµµÀÇ ±Ý¼ÓÀ» °ËÃâÇÏ´Â °ÍÀÌ ÇʼöÀûÀΠȯ°æ ¸ð´ÏÅ͸µ, ½Äǰ ¾ÈÀü, ÀǾàǰ, ¾ß±Ý µîÀÇ ÀÀ¿ë ºÐ¾ß¿¡ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. GFAASÀÇ Àû¿ë ¹üÀ§´Â È­ÇÐ, ±¤¾÷, Àç·á Á¦Á¶ µîÀÇ »ê¾÷ Àü¹Ý ¹× ǰÁú °ü¸®, ÄÄÇöóÀ̾𽺠½ÃÇè, Á¶»ç µîÀÇ ÃÖÁ¾ ¿ëµµ¿¡ À¯¿ëÇÕ´Ï´Ù. ½ÃÀå ¼ºÀåÀÇ ÁÖ¿ä ¿øµ¿·ÂÀº ´Ù¾çÇÑ »ê¾÷¿¡¼­ ¾ö°ÝÇÑ ±ÔÁ¦ ±âÁØÀ¸·Î Á¤È®ÇÑ ºÐ¼® Àåºñ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ´Ù´Â °ÍÀÔ´Ï´Ù. °¨µµ¿Í ÀÚµ¿È­¸¦ °­È­ÇÏ´Â ±â¼úÀÇ ¹ßÀüµµ ÁÖ¿ä ¿µÇâ¿äÀÎÀÔ´Ï´Ù. ƯÈ÷ ¾Æ½Ã¾ÆÅÂÆò¾ç°ú ¶óƾ¾Æ¸Þ¸®Ä«¿Í °°Àº »ê¾÷È­¿Í ¼Òºñ ÆÐÅÏÀÌ ºü¸£°Ô ÁøÇàµÇ´Â ½ÅÈï ½ÃÀå¿¡¼­ GFAASÀÇ »ê¾÷¿ëµµ¸¦ È®´ëÇÒ ±âȸ°¡ ÀÖ½À´Ï´Ù. ±â¾÷Àº ÈÞ´ë¿ë GFAAS À¯´Ö°ú µ¥ÀÌÅÍ °ü¸® ¹× ºÐ¼®À» °³¼±Çϱâ À§ÇÑ ¼ÒÇÁÆ®¿þ¾î ÅëÇÕ ¼Ö·ç¼Ç¿¡ ÅõÀÚÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ±âȸ¸¦ Ȱ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ÇѰ迡´Â ³ôÀº ¿î¿µ ºñ¿ë°ú ¼÷·ÃÀÚÀÇ Çʿ伺ÀÌ Æ÷ÇÔµÇ¾î ¼Ò±Ô¸ð ±â¾÷ÀÌ ÀÌ ±â¼úÀ» äÅÃÇÏ´Â °ÍÀ» ¸Á¼³ÀÏ ¼ö ÀÖ½À´Ï´Ù. ½Ã·á ÁغñÀÇ º¹À⼺°ú À¯µµ °áÇÕ ÇöóÁ Áú·® ºÐ¼®(ICP-MS)°ú °°Àº ´ëü ±â¼ú°úÀÇ °æÀï°ú °°Àº ¹®Á¦´Â ½ÃÀå ¿ªÇп¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ±â¼ú Çõ½ÅÀÇ ±æ¿¡´Â ºñ¿ë È¿À²ÀûÀÎ ¸ðµ¨ °³¹ß, ÀÚµ¿È­ ¹× ºÐ¼® ´É·Â Çâ»óÀÌ Æ÷ÇԵ˴ϴÙ. ¼³¹®Á¶»ç´Â ¿î¿µ ÇÁ·ÎÅäÄÝÀÇ ´Ü¼øÈ­¿Í ´Ù¾çÇÑ È¯°æ Á¶°ÇÀ» °ßµð´Â GFAAS ÀåºñÀÇ °ß°í¼º Çâ»ó¿¡ ÁßÁ¡À» µÑ ¼ö ÀÖ½À´Ï´Ù. °úÁ¦¿¡µµ ºÒ±¸ÇÏ°í ½ÃÀåÀº R&D ÅõÀÚ Áõ°¡·Î ÀáÀçÀûÀÎ ¼ºÀåÀ» ÀÌ·ç°í ÀÖ½À´Ï´Ù. ÀüüÀûÀ¸·Î Áö¼ÓÀûÀÎ ¼ºÀåÀº ±â¼ú Çõ½Å°ú ÁøÈ­ÇÏ´Â ±â¼úÀû¡¤½ÃÀå °íÀ¯ ¼ö¿ä¿¡ ´ëÇÑ ÀûÀÀ ´É·Â¿¡ ´Þ·Á ÀÖ´Â °ÍÀ¸·Î º¸À̸ç ÅõÀÚ¿Í È®´ë¸¦ °ËÅäÇϰí ÀÖ´Â ÀÌÇØ°ü°èÀÚ¿¡°Ô´Â À¯¸ÁÇÑ ºÐ¾ßÀÔ´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ(2023) 8¾ï 945¸¸ ´Þ·¯
¿¹Ãø³â(2024) 8¾ï 6,432¸¸ ´Þ·¯
¿¹Ãø³â(2030) 12¾ï 5,324¸¸ ´Þ·¯
CAGR(%) 6.44%

½ÃÀå ¿ªÇÐ: ±Þ¼ÓÈ÷ ÁøÈ­ÇÏ´Â Èæ¿¬·Î ¿øÀÚ Èí¼ö ºÐ±¤ ±¤µµ°è ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

Èæ¿¬·Î ¿øÀÚ Èí¼ö ºÐ±¤ ±¤µµ°è ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ ÀÛ¿ë¿¡ ÀÇÇØ º¯¸ðÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐÀÇ ÁøÈ­¸¦ ÀÌÇØÇÔÀ¸·Î½á ±â¾÷Àº ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÅõÀÚ°áÁ¤, Àü·«Àû °áÁ¤ Á¤¹ÐÈ­, »õ·Î¿î ºñÁî´Ï½º ±âȸ ȹµæ¿¡ ´ëºñÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ À§ÇèÀ» ¿ÏÈ­ÇÒ ¼ö ÀÖÀ¸¸ç, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë°ú ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ»º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ȯ°æ ½ÃÇè¼Ò¿¡¼­ È¿À²ÀûÀ̰í Á¤È®ÇÑ ¹Ì·® ¿ø¼Ò ºÐ¼® ¼ö¿ä Áõ°¡
    • Èæ¿¬·Î ±â¼úÀÇ Áøº¸¿¡ ÀÇÇÑ °ËÃ⠴ɷ°ú °¨µµÀÇ Çâ»ó
    • ȯ°æ¿À¿°¹°Áú ¸ð´ÏÅ͸µ¿¡ °üÇÑ Á¤ºÎ ±ÔÁ¦¡¤±âÁØÀÇ ³ôÀ½
    • °øÁßÀ§»ý°ú ¾ÈÀü¿¡ ´ëÇÑ Àǽİú ÅõÀÚÀÇ °íÁ¶°¡ °íµµÀÇ ºÐ¼®±â±âÀÇ Ã¤¿ëÀ» ÃËÁø
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ´ëü ¿ø¼Ò ºÐ¼® ±â¼úÀÇ ÀÌ¿ë °¡´É¼º
  • ½ÃÀå ±âȸ
    • ½ÅÈï ¹ÙÀÌ¿À Å×Å©³î·ÎÁö ¿ëµµ¿¡¼­ÀÇ Èæ¿¬·Î ¿øÀÚ Èí¼ö ºÐ±¤ ±¤µµ°èÀÇ Ã¤¿ë Áõ°¡
    • ȯ°æ ¸ð´ÏÅ͸µ°ú ¿À¿° Á¦¾î¿¡ À־ÀÇ ±âÁ¸ ¹æ¹ý¿¡ ´ëÇÑ Èæ¿¬·Î ¿øÀÚ Èí¼ö ºÐ±¤ ±¤µµ°èÀÇ »ç¿ë
    • ÀǾàǰÀÇ Ç°Áú º¸Áõ ¹× °ü¸® ÇÁ·Î¼¼½º¿¡ À־ÀÇ Èæ¿¬·Î ¿øÀÚ Èí¼ö ºÐ±¤ ±¤µµ°è ¼ö¿ä Áõ°¡
  • ½ÃÀåÀÇ °úÁ¦
    • Èæ¿¬·Î ¿øÀÚ Èí¼ö ºÐ±¤ ±¤µµ°èÀÇ À¯Áö º¸¼ö ¹× ¿î¿µ°ú °ü·ÃµÈ °íºñ¿ë ºÐ¼®
    • Èæ¿¬·Î ¿øÀÚ Èí¼ö ºÐ±¤ ±¤µµ°èÀÇ »ý»ê°ú »ç¿ë¿¡ ´ëÇÑ ¾ö°ÝÇÑ Á¤ºÎ ±ÔÁ¦ÀÇ ¿µÇâ ÀÌÇØ

Porter's Five Forces: Èæ¿¬·Î ¿øÀÚ Èí¼ö ºÐ±¤ ±¤µµ°è ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Porter's Five Forces ÇÁ·¹ÀÓ ¿öÅ©´Â ½ÃÀå »óȲ°æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Porter's Five Force Framework´Â ±â¾÷ÀÇ °æÀï·ÂÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ ޱ¸ÇÏ´Â ¸íÈ®ÇÑ ±â¼úÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» °áÁ¤ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÅëÂû·ÂÀ» ÅëÇØ ±â¾÷Àº ÀÚ»çÀÇ °­Á¡À» Ȱ¿ëÇϰí, ¾àÁ¡À» ÇØ°áÇϰí, ÀáÀçÀûÀÎ °úÁ¦¸¦ ÇÇÇÒ ¼ö ÀÖÀ¸¸ç, º¸´Ù °­ÀÎÇÑ ½ÃÀå¿¡¼­ÀÇ Æ÷Áö¼Å´×À» º¸ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : Èæ¿¬·Î ¿øÀÚ Èí¼ö ºÐ±¤ ±¤µµ°è ½ÃÀå¿¡¼­ ¿ÜºÎ·ÎºÎÅÍÀÇ ¿µÇâ ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº Èæ¿¬·Î ¿øÀÚ Èí¼ö ºÐ±¤ ±¤µµ°è ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇϴµ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ»ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀÎ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¾ÕÀ¸·Î ¿¹»óµÇ´Â Àû±ØÀûÀÎ ÀÇ»ç °áÁ¤À» ÇÒ Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® : Èæ¿¬·Î ¿øÀÚ Èí¼ö ºÐ±¤ ±¤µµ°è ½ÃÀå °æÀï ±¸µµ ÆÄ¾Ç

Èæ¿¬·Î ¿øÀÚ Èí¼ö ºÐ±¤ ±¤µµ°è ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¼öÀÍ, °í°´ ±â¹Ý, ¼ºÀå·ü µî ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀï Æ÷Áö¼Å´×À» ¹àÈú ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ½ÃÀå ÁýÁß, ´ÜÆíÈ­, ÅëÇÕ µ¿ÇâÀ» ¹àÇô³»°í º¥´õµéÀº °æÀïÀÌ Ä¡¿­ÇØÁö´Â °¡¿îµ¥ ÀÚ»çÀÇ ÁöÀ§¸¦ ³ôÀÌ´Â Àü·«Àû ÀÇ»ç °áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ Áö½ÄÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º : Èæ¿¬·Î ¿øÀÚ Èí¼ö ºÐ±¤ ±¤µµ°è ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â Èæ¿¬·Î ¿øÀÚ Èí¼ö ºÐ±¤ ±¤µµ°è ½ÃÀå¿¡¼­ °ø±Þ¾÷ü¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ Çà·ÄÀ» ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº °ø±Þ¾÷üÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±âÁØÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ¸Â´Â ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ³× °¡Áö »çºÐ¸éÀ» ÅëÇØ °ø±Þ¾÷ü¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ¼¼ºÐÈ­ÇÏ¿© Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê ¹× ¼Ö·ç¼ÇÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× ±ÇÀå : Èæ¿¬·Î ¿øÀÚ Èí¼ö ºÐ±¤ ±¤µµ°è ½ÃÀåÀÇ ¼º°ø¿¡ ´ëÇÑ °æ·Î¸¦ ±×¸®±â

Èæ¿¬·Î ¿øÀÚ Èí¼ö ºÐ±¤ ±¤µµ°è ½ÃÀåÀÇ Àü·« ºÐ¼®Àº ¼¼°è ½ÃÀå¿¡¼­ÀÇ Á¸À縦 °­È­ÇÏ·Á´Â ±â¾÷¿¡ ÇʼöÀûÀÔ´Ï´Ù. ÁÖ¿ä ÀÚ¿ø, ¿ª·® ¹× ¼º°ú ÁöÇ¥¸¦ °ËÅäÇÔÀ¸·Î½á ±â¾÷Àº ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í °³¼±À» À§ÇØ ³ë·ÂÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀ» ÅëÇØ °æÀï ±¸µµ¿¡¼­ °úÁ¦¸¦ ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö Àִ üÁ¦¸¦ ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀåÀÇ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ: ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·Â Æò°¡.

2. ½ÃÀå °³Ã´µµ: ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡ÇÏ¸ç ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­: ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, R&D Ȱµ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¾ò°í ÀÇ»ç°áÁ¤À» ÇÒ ¼ö ÀÖµµ·Ï Áß¿äÇÑ Áú¹®¿¡ ´ë´äÇϰí ÀÖ½À´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹® ¹× Áö¿ªÀº ¾îµðÀԴϱî?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ¡¤Ã¶¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • ȯ°æ ½ÃÇè ¿¬±¸½Ç¿¡¼­ È¿À²ÀûÀ̰í Á¤È®ÇÑ ¹Ì·® ¿ø¼Ò ºÐ¼® ¼ö¿ä Áõ°¡
      • Èæ¿¬·Î ±â¼úÀÇ Áøº¸¿¡ ÀÇÇØ °ËÃ⠴ɷ°ú °¨µµ°¡ Çâ»ó
      • ȯ°æ¿À¿°¹°Áú °¨½Ã¿¡ °üÇÑ Á¤ºÎÀÇ ±ÔÁ¦¿Í ±âÁØ °­È­
      • °øÁßÀ§»ý°ú ¾ÈÀü¿¡ ´ëÇÑ Àǽİú ÅõÀÚÀÇ °íÁ¶°¡, °íµµÀÇ ºÐ¼®±â±âÀÇ µµÀÔÀ» ÃËÁø
    • ¾ïÁ¦¿äÀÎ
      • ´ëü ¿ø¼Ò ºÐ¼® ±â¼úÀÇ ÀÌ¿ë °¡´É¼º
    • ±âȸ
      • ½ÅÈï ¹ÙÀÌ¿À Å×Å©³î·ÎÁö ¿ëµµ¿¡ À־ÀÇ Èæ¿¬·Î ¿øÀÚ Èí¼ö ºÐ±¤ ±¤µµ°èÀÇ Ã¤¿ë Áõ°¡
      • ȯ°æ ¸ð´ÏÅ͸µ ¹× ¿À¿° Á¦¾î¿¡ À־ÀÇ Á¾·¡ÀÇ ¹æ¹ýº¸´Ù Èæ¿¬·Î ¿øÀÚ Èí¼ö ºÐ±¤ ±¤µµ°èÀÇ »ç¿ë
      • ÀǾàǰÀÇ Ç°Áú º¸Áõ ¹× °ü¸® ÇÁ·Î¼¼½º¿¡ À־ÀÇ Èæ¿¬·Î ¿øÀÚ Èí¼ö ºÐ±¤ ±¤µµ°è ¼ö¿ä Áõ°¡
    • °úÁ¦
      • Èæ¿¬·Î ¿øÀÚ Èí¼ö ºÐ±¤ ±¤µµ°èÀÇ À¯Áö º¸¼ö ¹× ¿î¿µ°ú °ü·ÃµÈ °íºñ¿ë ºÐ¼®
      • ¾ö°ÝÇÑ Á¤ºÎ±ÔÁ¦°¡ Èæ¿¬·Î ¿øÀÚÈí¼ö ºÐ±¤±¤µµ°èÀÇ Á¦Á¶¿Í »ç¿ë¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÀÌÇØÇÑ´Ù
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡Àû
    • °æÁ¦
    • »ç±³
    • ±â¼úÀû
    • ¹ý·ü»ó
    • ȯ°æ

Á¦6Àå Èæ¿¬·Î ¿øÀÚ Èí¼ö ºÐ±¤ ±¤µµ°è ½ÃÀå : Á¦Ç° À¯Çüº°

  • °ËÃâ±â
  • Èæ¿¬ Æ©ºê
  • Çҷοì ij¼Òµå ·¥ÇÁ

Á¦7Àå Èæ¿¬·Î ¿øÀÚ Èí¼ö ºÐ±¤ ±¤µµ°è ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • È­Çоàǰ
  • ȯ°æ½ÃÇè
  • ½Äǰ ¹× À½·á
  • Á¦¾à

Á¦8Àå Èæ¿¬·Î ¿øÀÚ Èí¼ö ºÐ±¤ ±¤µµ°è ½ÃÀå : ¿ëµµº°

  • »ýüÀÌ¿ë·ü ¿¬±¸
  • Àç·á½ÃÇè
  • µ¶¼ºÇÐ ¿¬±¸
  • ¹Ì·® ¿ø¼Ò ºÐ¼®

Á¦9Àå Èæ¿¬·Î ¿øÀÚ Èí¼ö ºÐ±¤ ±¤µµ°è ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • ¾×¼¼¼­¸®
  • Àü±Ø
    • Èæ¿¬ Àü±Ø
    • ÅÖ½ºÅÙ Àü±Ø
  • Àü¿ø ¹× ÀüÀÚ ±â±â
  • ¼ÒÇÁÆ®¿þ¾î

Á¦10Àå Èæ¿¬·Î ¿øÀÚ Èí¼ö ºÐ±¤ ±¤µµ°è ½ÃÀå : ±â¼úº°

  • Â÷°¡¿î Áõ±â
  • Á÷Á¢ Èí¼ö
  • ¼ö¼ÒÈ­¹° »ý¼º

Á¦11Àå ¾Æ¸Þ¸®Ä«ÀÇ Èæ¿¬·Î ¿øÀÚ Èí¼ö ºÐ±¤ ±¤µµ°è ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦12Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Èæ¿¬·Î ¿øÀÚ Èí¼ö ºÐ±¤ ±¤µµ°è ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦13Àå À¯·´¡¤Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ Èæ¿¬·Î ¿øÀÚ Èí¼ö ºÐ±¤ ±¤µµ°è ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦14Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼® 2023
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2023
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
  • Àü·« ºÐ¼®°ú Á¦¾È
JHS 24.11.01

The Graphite Furnace Atomic Absorption Spectrophotometer Market was valued at USD 809.45 million in 2023, expected to reach USD 864.32 million in 2024, and is projected to grow at a CAGR of 6.44%, to USD 1,253.24 million by 2030.

A Graphite Furnace Atomic Absorption Spectrophotometer (GFAAS) is a sophisticated analytical technique used for detecting trace amounts of metals in various samples. The necessity for GFAAS stems from its high sensitivity and precision, which are crucial for applications in environmental monitoring, food safety, pharmaceuticals, and metallurgy, where detecting low concentrations of metals is essential. The scope of GFAAS extends across industries like chemical, mining, and material manufacturing, serving end-use purposes such as quality control, compliance testing, and research. Market growth is mainly driven by the increasing demand for accurate analytical instruments due to stringent regulatory standards across various industries. Technological advancements enhancing sensitivity and automation are also key influences. Opportunities lie in expanding the industrial application of GFAAS, particularly in emerging markets with rapid industrialization and consumption patterns, like Asia-Pacific and Latin America. Companies can capitalize on these opportunities by investing in portable GFAAS units and software integration solutions for improved data management and analysis. Limitations include high operational costs and the need for skilled personnel, which may deter small-scale enterprises from adopting the technology. Challenges such as the complexity of sample preparation and competition from alternative technologies like Inductively Coupled Plasma Mass Spectrometry (ICP-MS) also affect market dynamics. Innovation avenues include the development of cost-effective models and improvements in automation and analytical capabilities. Research can focus on simplifying operational protocols and enhancing the robustness of GFAAS instruments to withstand diverse environmental conditions. Despite challenges, the market is characterized by potential growth, driven by increased investments in research and development. Overall, sustained growth will likely depend on the ability to innovate and adapt to evolving technological and market-specific demands, making it a promising area for stakeholders considering investment or expansion.

KEY MARKET STATISTICS
Base Year [2023] USD 809.45 million
Estimated Year [2024] USD 864.32 million
Forecast Year [2030] USD 1,253.24 million
CAGR (%) 6.44%

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Graphite Furnace Atomic Absorption Spectrophotometer Market

The Graphite Furnace Atomic Absorption Spectrophotometer Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Increasing demand for efficient and accurate trace element analysis in environmental testing laboratories
    • Advancements in graphite furnace technology enhancing detection capabilities and sensitivity
    • Rising governmental regulations and standards for environmental pollutants monitoring
    • Growing awareness and investment in public health and safety driving adoption of advanced analytical instruments
  • Market Restraints
    • Availability of alternative elemental analysis technologies
  • Market Opportunities
    • Increasing adoption of graphite furnace atomic absorption spectrophotometers in emerging biotechnology applications
    • Use of graphite furnace atomic absorption spectrophotometers in environmental monitoring and pollution control over traditional methods
    • Growing demand for graphite furnace atomic absorption spectrophotometers in pharmaceutical quality assurance and control processes
  • Market Challenges
    • Analyzing the high costs associated with maintenance and operation of graphite furnace atomic absorption spectrophotometers
    • Understanding the impact of strict government regulations on the production and use of graphite furnace atomic absorption spectrophotometers

Porter's Five Forces: A Strategic Tool for Navigating the Graphite Furnace Atomic Absorption Spectrophotometer Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Graphite Furnace Atomic Absorption Spectrophotometer Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Graphite Furnace Atomic Absorption Spectrophotometer Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Graphite Furnace Atomic Absorption Spectrophotometer Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Graphite Furnace Atomic Absorption Spectrophotometer Market

A detailed market share analysis in the Graphite Furnace Atomic Absorption Spectrophotometer Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Graphite Furnace Atomic Absorption Spectrophotometer Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Graphite Furnace Atomic Absorption Spectrophotometer Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Graphite Furnace Atomic Absorption Spectrophotometer Market

A strategic analysis of the Graphite Furnace Atomic Absorption Spectrophotometer Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Graphite Furnace Atomic Absorption Spectrophotometer Market, highlighting leading vendors and their innovative profiles. These include Agilent Technologies Inc., Analytik Jena AG, Aurora Biomed Inc., Beijing Beifen-Ruili Analytical Instrument (Group) Co. Ltd., Elico Ltd., GBC Scientific Equipment Pty Ltd, Hiranuma Sangyo Co., Ltd., Hitachi High-Technologies Corporation, JASCO Corporation, LAB-KITS, PerkinElmer Inc., Persee Analytics, Inc., PG Instruments Limited, Rigaku Corporation, SAFAS S.A.S., Seoul Instruments Co.,Ltd, Shimadzu Corporation, Skyray Instrument Inc., Teledyne Leeman Labs, and Thermo Fisher Scientific Inc..

Market Segmentation & Coverage

This research report categorizes the Graphite Furnace Atomic Absorption Spectrophotometer Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Product Type, market is studied across Detectors, Graphite Tubes, and Hollow Cathode Lamps.
  • Based on End User, market is studied across Chemical, Environmental Testing, Food & Beverages, and Pharmaceutical.
  • Based on Application, market is studied across Bioavailability Studies, Material Testing, Toxicology Studies, and Trace Element Analysis.
  • Based on Component, market is studied across Accessories, Electrodes, Power Supply & Electronics, and Software. The Electrodes is further studied across Graphite Electrodes and Tungsten Electrodes.
  • Based on Technique, market is studied across Cold Vapor, Direct Absorption, and Hydride Generation.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Increasing demand for efficient and accurate trace element analysis in environmental testing laboratories
      • 5.1.1.2. Advancements in graphite furnace technology enhancing detection capabilities and sensitivity
      • 5.1.1.3. Rising governmental regulations and standards for environmental pollutants monitoring
      • 5.1.1.4. Growing awareness and investment in public health and safety driving adoption of advanced analytical instruments
    • 5.1.2. Restraints
      • 5.1.2.1. Availability of alternative elemental analysis technologies
    • 5.1.3. Opportunities
      • 5.1.3.1. Increasing adoption of graphite furnace atomic absorption spectrophotometers in emerging biotechnology applications
      • 5.1.3.2. Use of graphite furnace atomic absorption spectrophotometers in environmental monitoring and pollution control over traditional methods
      • 5.1.3.3. Growing demand for graphite furnace atomic absorption spectrophotometers in pharmaceutical quality assurance and control processes
    • 5.1.4. Challenges
      • 5.1.4.1. Analyzing the high costs associated with maintenance and operation of graphite furnace atomic absorption spectrophotometers
      • 5.1.4.2. Understanding the impact of strict government regulations on the production and use of graphite furnace atomic absorption spectrophotometers
  • 5.2. Market Segmentation Analysis
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Graphite Furnace Atomic Absorption Spectrophotometer Market, by Product Type

  • 6.1. Introduction
  • 6.2. Detectors
  • 6.3. Graphite Tubes
  • 6.4. Hollow Cathode Lamps

7. Graphite Furnace Atomic Absorption Spectrophotometer Market, by End User

  • 7.1. Introduction
  • 7.2. Chemical
  • 7.3. Environmental Testing
  • 7.4. Food & Beverages
  • 7.5. Pharmaceutical

8. Graphite Furnace Atomic Absorption Spectrophotometer Market, by Application

  • 8.1. Introduction
  • 8.2. Bioavailability Studies
  • 8.3. Material Testing
  • 8.4. Toxicology Studies
  • 8.5. Trace Element Analysis

9. Graphite Furnace Atomic Absorption Spectrophotometer Market, by Component

  • 9.1. Introduction
  • 9.2. Accessories
  • 9.3. Electrodes
    • 9.3.1. Graphite Electrodes
    • 9.3.2. Tungsten Electrodes
  • 9.4. Power Supply & Electronics
  • 9.5. Software

10. Graphite Furnace Atomic Absorption Spectrophotometer Market, by Technique

  • 10.1. Introduction
  • 10.2. Cold Vapor
  • 10.3. Direct Absorption
  • 10.4. Hydride Generation

11. Americas Graphite Furnace Atomic Absorption Spectrophotometer Market

  • 11.1. Introduction
  • 11.2. Argentina
  • 11.3. Brazil
  • 11.4. Canada
  • 11.5. Mexico
  • 11.6. United States

12. Asia-Pacific Graphite Furnace Atomic Absorption Spectrophotometer Market

  • 12.1. Introduction
  • 12.2. Australia
  • 12.3. China
  • 12.4. India
  • 12.5. Indonesia
  • 12.6. Japan
  • 12.7. Malaysia
  • 12.8. Philippines
  • 12.9. Singapore
  • 12.10. South Korea
  • 12.11. Taiwan
  • 12.12. Thailand
  • 12.13. Vietnam

13. Europe, Middle East & Africa Graphite Furnace Atomic Absorption Spectrophotometer Market

  • 13.1. Introduction
  • 13.2. Denmark
  • 13.3. Egypt
  • 13.4. Finland
  • 13.5. France
  • 13.6. Germany
  • 13.7. Israel
  • 13.8. Italy
  • 13.9. Netherlands
  • 13.10. Nigeria
  • 13.11. Norway
  • 13.12. Poland
  • 13.13. Qatar
  • 13.14. Russia
  • 13.15. Saudi Arabia
  • 13.16. South Africa
  • 13.17. Spain
  • 13.18. Sweden
  • 13.19. Switzerland
  • 13.20. Turkey
  • 13.21. United Arab Emirates
  • 13.22. United Kingdom

14. Competitive Landscape

  • 14.1. Market Share Analysis, 2023
  • 14.2. FPNV Positioning Matrix, 2023
  • 14.3. Competitive Scenario Analysis
  • 14.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Agilent Technologies Inc.
  • 2. Analytik Jena AG
  • 3. Aurora Biomed Inc.
  • 4. Beijing Beifen-Ruili Analytical Instrument (Group) Co. Ltd.
  • 5. Elico Ltd.
  • 6. GBC Scientific Equipment Pty Ltd
  • 7. Hiranuma Sangyo Co., Ltd.
  • 8. Hitachi High-Technologies Corporation
  • 9. JASCO Corporation
  • 10. LAB-KITS
  • 11. PerkinElmer Inc.
  • 12. Persee Analytics, Inc.
  • 13. PG Instruments Limited
  • 14. Rigaku Corporation
  • 15. SAFAS S.A.S.
  • 16. Seoul Instruments Co.,Ltd
  • 17. Shimadzu Corporation
  • 18. Skyray Instrument Inc.
  • 19. Teledyne Leeman Labs
  • 20. Thermo Fisher Scientific Inc.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦