½ÃÀ庸°í¼­
»óǰÄÚµå
1579370

À̹漺 ÀÚ±âÀúÇ× ¼¾¼­ ½ÃÀå : ¼¾¼­º°, ±â¼úº°, Ãâ·Âº°, µ¿ÀÛ ±¸¼ºº°, ¿ëµµº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Anisotropic Magnetoresistance Sensors Market by Sensor, Technology, Output, Operational Configuration, Application - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 184 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

À̹漺 ÀÚ±âÀúÇ× ¼¾¼­ ½ÃÀåÀº 2023³â 3¾ï 7,917¸¸ ´Þ·¯·Î Æò°¡µÇ¸ç 2024³â¿¡´Â 4¾ï 29¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¿¬Æò±Õ 5.88% ¼ºÀåÇÏ¿© 2030³â¿¡´Â 5¾ï 6,600¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

À̹漺 ÀÚ±âÀúÇ×(AMR) ¼¾¼­´Â ÀÚÈ­ ¹æÇâÀÇ º¯È­¿¡ µû¸¥ Àü±â ÀúÇ×ÀÇ º¯È­¸¦ ÀÌ¿ëÇÏ¿© ÀÚ±âÀåÀ» °¨ÁöÇϰí ÃøÁ¤ÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀÌ ¼¾¼­´Â ³ôÀº °¨µµ¿Í ³·Àº Àü·Â ¼Òºñ·Î ÀÎÇØ ÀÚµ¿Â÷, ¼ÒºñÀÚ ÀüÀÚÁ¦Ç° ¹× »ê¾÷ ºÐ¾ß¿¡¼­ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀÚµ¿Â÷ ºÎ¹®¿¡¼­´Â AMR ¼¾¼­°¡ ¹ÙÄû ¼Óµµ °¨Áö, ÀüÀÚ½Ä ¾ÈÁ¤È­ Á¦¾î, ¿¬·á ·¹º§ °¨Áö¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖÀ¸¸ç, ¼ÒºñÀÚ ÀüÀÚÁ¦Ç°¿¡¼­´Â Á¤È®ÇÑ À§Ä¡ ¹× ¹æÇâ µ¥ÀÌÅͰ¡ ÇÊ¿äÇÑ ±â±â¿¡ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. ½º¸¶Æ® ÀüÀÚÁ¦Ç°ÀÇ Ã·´Ü ¼¾¼­ ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í ÀÚµ¿Â÷ »ê¾÷ÀÇ Àü±âÀÚµ¿Â÷·ÎÀÇ ÀüȯÀº AMR ¼¾¼­ÀÇ ¼ºÀå¿¡ ºñ¿ÁÇÑ Åä¾çÀÌ µÇ°í ÀÖ½À´Ï´Ù. ±â¼úÀûÀ¸·Î, ¼ÒÇüÈ­¿Í ´Ù¸¥ ¼¾¼­ ±â¼ú°úÀÇ ÅëÇÕ¿¡ ´ëÇÑ Çõ½ÅÀº ´õ ¸¹Àº »õ·Î¿î ÀÀ¿ë ºÐ¾ß¿Í ½ÃÀåÀ¸·Î ³ª¾Æ°¥ ¼ö ÀÖ´Â ±æÀ» ¿­¾îÁÙ ¼ö ÀÖ½À´Ï´Ù. ¼¼°è AMR ¼¾¼­ ½ÃÀåÀº IoT, ÀΰøÁö´ÉÀÇ ¹ßÀü, »ê¾÷ ÀÀ¿ë ºÐ¾ßÀÇ ÀÚµ¿È­ °­È­¿¡ ´ëÇÑ ¼ö¿ä¿¡ ÈûÀÔ¾î °­·ÂÇÑ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. ±×·¯³ª ½ÃÀå ¼ºÀåÀº ƯÁ¤ ½Ã³ª¸®¿À¿¡¼­ ´õ ³ªÀº ¼º´ÉÀ» Á¦°øÇÏ´Â GMR(°Å´ë ÀÚ±âÀúÇ×) ¹× TMR(ÅͳΠÀÚ±âÀúÇ×)°ú °°Àº ´ëü ±â¼ú·ÎºÎÅÍÀÇ µµÀü¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °í±Þ ¼¾¼­ ½Ã½ºÅÛ ÅëÇÕ¿¡ µû¸¥ ³ôÀº ºñ¿ë°ú ±â¼úÀû º¹À⼺Àº ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÏ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ±âȸ´Â ½ÅÈï ½ÃÀå°ú Á¤¹Ðµµ¿Í ¿¡³ÊÁö È¿À²¼ºÀÌ ¸Å¿ì Áß¿äÇÑ ºÐ¾ß·Î ÁøÃâÇÏ´Â µ¥ ÀÖ½À´Ï´Ù. ž籤 ÆÐ³Î ¹× dz·Â Åͺó À§Ä¡ ¸ð´ÏÅ͸µ°ú °°Àº Àç»ý¿¡³ÊÁö ½Ã½ºÅÛ¿¡ Àû¿ëÀ» ¸ð»öÇÏ´Â °Íµµ Å« ¼ºÀåÀÇ ±âȸ°¡ µÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ºñ¿ë È¿À²ÀûÀÎ »ý»ê ±â¼ú °³¹ß ¹× ¼¾¼­ ¿ª·® °­È­¸¦ À§ÇÑ Áö¼ÓÀûÀÎ ¿¬±¸·Î ±âÁ¸ À庮ÀÌ ÇØ¼ÒµÉ °¡´É¼ºµµ ÀÖ½À´Ï´Ù. Åë½Å ¹× µ¥ÀÌÅÍ Á¤È®µµ¸¦ Çâ»ó½Ã۱â À§ÇÑ ¹«¼± ±â¼ú°úÀÇ À¶ÇÕ Çõ½ÅÀº ¾Æ¸¶µµ ÁÖ¿ä °ü½É ºÐ¾ß°¡ µÉ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ½ÃÀåÀº ¿ªµ¿ÀûÀÌ°í °æÀïÀÌ Ä¡¿­Çϱ⠶§¹®¿¡ ±â¾÷Àº R&D¿¡ ÅõÀÚÇϰí Àü·«Àû Á¦ÈÞ¸¦ ÅëÇØ ±â¼ú·Â°ú ½ÃÀå µµ´Þ ¹üÀ§¸¦ °­È­ÇÔÀ¸·Î½á ÇÑ ¹ß ¾Õ¼­ ³ª°¡¾ß ÇÕ´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ[2023] 3¾ï 7,917¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ[2024] 4¾ï 29¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ[2030] 5¾ï 6,600¸¸ ´Þ·¯
CAGR(%) 5.88%

½ÃÀå ¿ªÇÐ : ºü¸£°Ô ÁøÈ­ÇÏ´Â À̹漺 ÀÚ±âÀúÇ× ¼¾¼­ ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ®¸¦ °ø°³

À̹漺 ÀÚ±âÀúÇ× ¼¾¼­ ½ÃÀåÀº ¼ö¿ä¿Í °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ë¿¡ ÀÇÇØ º¯È­Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐÀÇ º¯È­¸¦ ÀÌÇØÇÔÀ¸·Î½á ±â¾÷Àº Á¤º¸¿¡ ÀÔ°¢ÇÑ ÅõÀÚ °áÁ¤À» ³»¸®°í, Àü·«Àû ÀÇ»ç°áÁ¤À» Á¤±³È­Çϸç, »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Æ÷ÂøÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Æ®·»µå¸¦ Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª Àü¹Ý¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ ÁÙÀÏ ¼ö ÀÖÀ¸¸ç, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë ¹× ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ÃËÁø¿äÀÎ
    • ÀÚµ¿Â÷ ¹× °¡ÀüÁ¦Ç°ÀÇ °í°¨µµ ¼¾½Ì ¹× ¾ÖÇø®ÄÉÀ̼ǿ¡ ´ëÇÑ ¼ö¿ä Áõ°¡
    • »ê¾÷ ÀÚµ¿È­ ¹× ¿¹Áöº¸Àü ¾ÖÇø®ÄÉÀ̼ǿ¡ ´ëÇÑ À̹漺 ÀÚ±âÀúÇ× ¼¾¼­ äÅà Áõ°¡
    • IoT¿Í ½º¸¶Æ® ÀÎÇÁ¶óÀÇ È®ÀåÀ¸·Î ´Ù¾çÇÑ »ê¾÷¿¡¼­ ¼¾¼­ÀÇ ÅëÇÕÀÌ °¡¼ÓÈ­µÉ °ÍÀÔ´Ï´Ù.
  • ½ÃÀå ¾ïÁ¦¿äÀÎ
    • ³ôÀº Á¦Á¶ºñ¿ë°ú °í°¡ÀÇ Á¦Á¶±â¼úÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ äÅÃÀÌ Á¦ÇÑÀûÀÔ´Ï´Ù.
  • ½ÃÀå ±âȸ
    • Çõ½ÅÀûÀÎ ¼¾¼­ ¼Ö·ç¼Ç ¿¬±¸°³¹ß¿¡ ´ëÇÑ ÅõÀÚ È®´ë
    • ¿þ¾î·¯ºí ±â±â ¹× ½º¸¶Æ® °¡Á¬À» Æ÷ÇÔÇÑ ¼ÒºñÀÚ ÀüÀÚÁ¦Ç°¿¡¼­ À̹漺 ÀÚ±âÀúÇ× ¼¾¼­ÀÇ Àû¿ë ¹üÀ§ È®´ë
  • ½ÃÀå °úÁ¦
    • ±â¼úÀû º¹À⼺°ú ¾ÖÇø®ÄÉÀ̼ÇÀÇ ÁøÈ­¿¡ ´ëÀÀÇϱâ À§ÇÑ Áö¼ÓÀûÀÎ ±â¼ú Çõ½ÅÀÇ Çʿ伺ÀÌ ´ëµÎµÇ°í ÀÖ½À´Ï´Ù.

Porter's Five Forces : À̹漺 ÀÚ±âÀúÇ× ¼¾¼­ ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Porter's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ½ÃÀå »óȲÀÇ °æÀï »óȲÀ» ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Porter's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÇ °æÀïÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ ¸ð»öÇϱâ À§ÇÑ ¸íÈ®ÇÑ ¹æ¹ýÀ» ¼³¸íÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÀλçÀÌÆ®¸¦ ÅëÇØ ±â¾÷Àº °­Á¡À» Ȱ¿ëÇϰí, ¾àÁ¡À» º¸¿ÏÇϰí, ÀáÀçÀû µµÀüÀ» ÇÇÇÔÀ¸·Î½á º¸´Ù °­·ÂÇÑ ½ÃÀå Æ÷Áö¼Å´×À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : À̹漺 ÀÚ±âÀúÇ× ¼¾¼­ ½ÃÀåÀÇ ¿ÜºÎ ¿µÇâ ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº À̹漺 ÀÚ±âÀúÇ× ¼¾¼­ ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀο¡ ´ëÇÑ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ ´ã°í ÀÖÀ¸¸ç, PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£µµ, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¼±Á¦ÀûÀ̰í Àû±ØÀûÀÎ ÀÇ»ç°áÁ¤À» ³»¸± Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® : À̹漺 ÀÚ±âÀúÇ× ¼¾¼­ ½ÃÀå¿¡¼­ÀÇ °æÀï »óȲ ÆÄ¾Ç

À̹漺 ÀÚ±âÀúÇ× ¼¾¼­ ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¼öÀÍ, °í°´ ±â¹Ý, ¼ºÀå·ü°ú °°Àº ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀïÀû À§Ä¡¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®Àº ½ÃÀåÀÇ ÁýÁßÈ­, ¼¼ºÐÈ­ ¹× ÅëÇÕ Ãß¼¼¸¦ ÆÄ¾ÇÇÏ¿© °ø±Þ¾÷ü°¡ Ä¡¿­ÇÑ °æÀï¿¡¼­ ÀÚ½ÅÀÇ ÀÔÁö¸¦ °­È­ÇÒ ¼ö ÀÖ´Â Àü·«Àû ÀÇ»ç°áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ ÀλçÀÌÆ®¸¦ Á¦°øÇÕ´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º : À̹漺 ÀÚ±âÀúÇ× ¼¾¼­ ½ÃÀå¿¡¼­ÀÇ °ø±Þ¾÷ü ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â À̹漺 ÀÚ±âÀúÇ× ¼¾¼­ ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ ¸ÅÆ®¸¯½º¸¦ ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº º¥´õÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±â¹ÝÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ºÎÇÕÇÏ´Â Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖÀ¸¸ç, 4°³ÀÇ »çºÐ¸éÀ¸·Î º¥´õ¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ¼¼ºÐÈ­ÇÏ¿© Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê¿Í ¼Ö·ç¼ÇÀ» ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù. Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê¿Í ¼Ö·ç¼ÇÀ» ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù.

À̹漺 ÀÚ±âÀúÇ× ¼¾¼­ ½ÃÀå¿¡¼­ ¼º°øÇϱâ À§ÇÑ Àü·« ºÐ¼® ¹× ±ÇÀå »çÇ×

À̹漺 ÀÚ±âÀúÇ× ¼¾¼­ ½ÃÀåÀÇ Àü·«Àû ºÐ¼®Àº ¼¼°è ½ÃÀå¿¡¼­ ÀÔÁö¸¦ °­È­ÇϰíÀÚ ÇÏ´Â ±â¾÷¿¡°Ô ÇʼöÀûÀÔ´Ï´Ù. ÁÖ¿ä ÀÚ¿ø, ¿ª·® ¹× ¼º°ú ÁöÇ¥¸¦ °ËÅäÇÔÀ¸·Î½á ±â¾÷Àº ¼ºÀå ±âȸ¸¦ ½Äº°ÇÏ°í °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀº °æÀï ȯ°æÀÇ µµÀüÀ» ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö Àִ ü°è¸¦ ±¸ÃàÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÎ¹®¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ½ÃÀå ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõµµ: ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·Â Æò°¡.

2. ½ÃÀå °³Ã´µµ: ½ÅÈï ½ÃÀå¿¡¼­ÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇϰí, ±âÁ¸ ºÎ¹®ÀÇ È®Àå °¡´É¼ºÀ» Æò°¡Çϸç, ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» ±â¼úÇϰí ÀÖ½À´Ï´Ù.

3. ½ÃÀå ´Ù°¢È­: ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä ¹ßÀü, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸: °æÀï »óȲÀ» öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú ¹ßÀü µîÀ» °ËÅäÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å: ÇâÈÄ ½ÃÀå ¼ºÀåÀ» ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÷´Ü ±â¼ú, ¿¬±¸ °³¹ß Ȱµ¿ ¹× Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ, ÀÌÇØ°ü°èÀÚµéÀÌ ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï Áß¿äÇÑ Áú¹®¿¡ ´ëÇÑ ´äº¯µµ Á¦°øÇÕ´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå Àü¸ÁÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, Áö¿ªÀº ¾îµðÀΰ¡?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õÀÇ ½ÃÀå ÁøÀÔ ¹× ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
    • ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ±âȸ
    • °úÁ¦
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡
    • °æÁ¦
    • »çȸ
    • ±â¼ú
    • ¹ý·ü
    • ȯ°æ

Á¦6Àå À̹漺 ÀÚ±âÀúÇ× ¼¾¼­ ½ÃÀå : ¼¾¼­º°

  • ¼Ò°³
  • AMR °¢µµ ¼¾¼­
  • AMR Àü·ù ¼¾¼­
  • AMR ¸®´Ï¾î ¼¾¼­

Á¦7Àå À̹漺 ÀÚ±âÀúÇ× ¼¾¼­ ½ÃÀå : ±â¼úº°

  • ¼Ò°³
  • À̹漺 ÀÚ±âÀúÇ×
  • ÃʰŴë ÀÚ±âÀúÇ×
  • °Å´ë ÀÚ±âÀúÇ×
  • ÅͳΠÀÚ±âÀúÇ×

Á¦8Àå À̹漺 ÀÚ±âÀúÇ× ¼¾¼­ ½ÃÀå : Ãâ·Âº°

  • ¼Ò°³
  • ¾Æ³¯·Î±× Ãâ·Â
  • µðÁöÅÐ Ãâ·Â

Á¦9Àå À̹漺 ÀÚ±âÀúÇ× ¼¾¼­ ½ÃÀå : µ¿ÀÛ ±¸¼ºº°

  • ¼Ò°³
  • 2Ãà ¼¾¼­
  • ´ÙÃà ¼¾¼­
  • ´ÜÃà ¼¾¼­

Á¦10Àå À̹漺 ÀÚ±âÀúÇ× ¼¾¼­ ½ÃÀå : ¿ëµµº°

  • ¼Ò°³
  • Ç×°ø¿ìÁÖ¿Í ¹æÀ§
    • ÀÚÀ̷νºÄÚÇÁ
    • ³»ºñ°ÔÀÌ¼Ç ½Ã½ºÅÛ
    • Ç÷§Æû ¾ÈÁ¤È­
  • ÀÚµ¿Â÷
    • Àü·ù °ËÃâ
    • À§Ä¡¿Í ¼Óµµ °¨Áö
    • ½ºÆ¼¾î¸µ °¢µµ °¨Áö
  • °¡ÀüÁ¦Ç°
    • °ÔÀÓ µð¹ÙÀ̽º
    • ½º¸¶Æ® ¿þ¾î·¯ºí
    • ½º¸¶Æ®Æù
  • ¿¡³ÊÁö¡¤À¯Æ¿¸®Æ¼
    • Àü·ù ÃøÁ¤
    • ÀÚÀå °ËÃâ
  • ÀÇ·á
    • À̹Ì¡ ½Ã½ºÅÛ
    • ÀÇ·á±â±â
  • »ê¾÷
    • ¸ðÅÍ Á¦¾î
    • ±ÙÁ¢ °ËÃâ
    • ·Îº¿°øÇаú ÀÚµ¿È­

Á¦11Àå ¾Æ¸Þ¸®Ä«ÀÇ À̹漺 ÀÚ±âÀúÇ× ¼¾¼­ ½ÃÀå

  • ¼Ò°³
  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦12Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ À̹漺 ÀÚ±âÀúÇ× ¼¾¼­ ½ÃÀå

  • ¼Ò°³
  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦13Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ À̹漺 ÀÚ±âÀúÇ× ¼¾¼­ ½ÃÀå

  • ¼Ò°³
  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®
  • ¿µ±¹

Á¦14Àå °æÀï »óȲ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2023³â
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2023³â
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
  • Àü·« ºÐ¼®°ú Á¦¾È

±â¾÷ ¸®½ºÆ®

  • Allegro MicroSystems, LLC
  • Analog Devices, Inc.
  • Crocus Technology Inc.
  • Honeywell International Inc.
  • Infineon Technologies AG by Siemens AG
  • KOHDEN Co., Ltd.
  • Melexis NV
  • Memsic Inc.
  • Multidimension Technology Co. Ltd.
  • Murata Manufacturing Co., Ltd.
  • NVE Corporation
  • NXP SEMICONDUCTORS
  • Sensitec GmbH by Sinomags Technology Co., Ltd.
  • TDK Corporation
  • TE Connectivity Ltd.
  • Texas Instruments Incorporated
ksm 24.11.07

The Anisotropic Magnetoresistance Sensors Market was valued at USD 379.17 million in 2023, expected to reach USD 400.29 million in 2024, and is projected to grow at a CAGR of 5.88%, to USD 566.00 million by 2030.

Anisotropic Magnetoresistance (AMR) sensors are pivotal in detecting and measuring magnetic fields by exploiting the changes in electrical resistance due to varying directions of magnetization. These sensors are immensely important in automotive, consumer electronics, and industrial applications, thanks to their high sensitivity and low power consumption. In the automotive sector, AMR sensors are extensively used for wheel speed detection, electronic stability control, and fuel level sensing, while in consumer electronics, they find applications in devices requiring precise position and orientation data. The heightened demand for advanced sensor technology in smart electronics and the automotive industry's shift towards electric vehicles present a fertile ground for the growth of AMR sensors. Technologically, innovations in miniaturization and integration with other sensor technologies can pave the way for newer applications and markets. The global AMR sensor market is poised for robust growth, driven by advancements in IoT, artificial intelligence, and demand for enhanced automation in industrial applications. However, market growth faces challenges from alternative technologies like GMR (Giant Magnetoresistance) and TMR (Tunnel Magnetoresistance) that offer better performance in certain scenarios. Additionally, the high cost and technical complexities associated with integrating advanced sensor systems can be limiting factors. Opportunities lie in expanding into emerging markets and sectors where precision and energy efficiency are crucial. Exploring application in renewable energy systems, such as monitoring position in solar panels and wind turbines, could also offer significant growth avenues. Moreover, sustained research into developing cost-effective production techniques and enhancing sensor capabilities could eliminate some existing barriers. Innovation in fusion with wireless technologies for improved communication and data accuracy will likely be a core area of focus. As the market is dynamic and highly competitive, businesses need to stay ahead by investing in R&D and forming strategic alliances to enhance their technological capabilities and market reach.

KEY MARKET STATISTICS
Base Year [2023] USD 379.17 million
Estimated Year [2024] USD 400.29 million
Forecast Year [2030] USD 566.00 million
CAGR (%) 5.88%

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Anisotropic Magnetoresistance Sensors Market

The Anisotropic Magnetoresistance Sensors Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Increasing demand for highly sensitive sensing applications in automotive and consumer electronics
    • Increased adoption of anisotropic magnetoresistance sensors for industrial automation and predictive maintenance applications
    • Expansion of IoT and smart infrastructure propelling sensor integration across various industries
  • Market Restraints
    • Limited adoption due to high production costs and need for costly manufacturing technologies
  • Market Opportunities
    • Growing investment in research and development for innovative sensor solutions
    • Expanding applications of anisotropic magnetoresistance sensors in consumer electronics, including wearable devices and smart gadgets
  • Market Challenges
    • Technological complexities and the necessity for continuous innovation to meet the evolving demands of applications

Porter's Five Forces: A Strategic Tool for Navigating the Anisotropic Magnetoresistance Sensors Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Anisotropic Magnetoresistance Sensors Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Anisotropic Magnetoresistance Sensors Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Anisotropic Magnetoresistance Sensors Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Anisotropic Magnetoresistance Sensors Market

A detailed market share analysis in the Anisotropic Magnetoresistance Sensors Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Anisotropic Magnetoresistance Sensors Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Anisotropic Magnetoresistance Sensors Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Anisotropic Magnetoresistance Sensors Market

A strategic analysis of the Anisotropic Magnetoresistance Sensors Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Anisotropic Magnetoresistance Sensors Market, highlighting leading vendors and their innovative profiles. These include Allegro MicroSystems, LLC, Analog Devices, Inc., Crocus Technology Inc., Honeywell International Inc., Infineon Technologies AG by Siemens AG, KOHDEN Co., Ltd., Melexis NV, Memsic Inc., Multidimension Technology Co. Ltd., Murata Manufacturing Co., Ltd., NVE Corporation, NXP SEMICONDUCTORS, Sensitec GmbH by Sinomags Technology Co., Ltd., TDK Corporation, TE Connectivity Ltd., and Texas Instruments Incorporated.

Market Segmentation & Coverage

This research report categorizes the Anisotropic Magnetoresistance Sensors Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Sensor, market is studied across AMR Angle Sensors, AMR current sensor, and AMR Linear Sensors.
  • Based on Technology, market is studied across Anisotropic Magnetoresistance, Colossal Magnetoresistance, Giant Magnetoresistance, and Tunnel Magnetoresistance.
  • Based on Output, market is studied across Analog Output and Digital Output.
  • Based on Operational Configuration, market is studied across Dual-Axis Sensors, Multi-Axis Sensors, and Single-Axis Sensors.
  • Based on Application, market is studied across Aerospace & Defense, Automotive, Consumer Electronics, Energy & Utilities, Healthcare, and Industrial. The Aerospace & Defense is further studied across Gyroscopes, Navigation Systems, and Platform Stabilization. The Automotive is further studied across Current Sensing, Position and Speed Sensing, and Steering Angle Sensing. The Consumer Electronics is further studied across Gaming Devices, Smart Wearables, and Smartphones. The Energy & Utilities is further studied across Current Measurement and Magnetic Field Detection. The Healthcare is further studied across Imaging Systems and Medical Devices. The Industrial is further studied across Motor Control, Proximity Detection, and Robotics and Automation.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Increasing demand for highly sensitive sensing applications in automotive and consumer electronics
      • 5.1.1.2. Increased adoption of anisotropic magnetoresistance sensors for industrial automation and predictive maintenance applications
      • 5.1.1.3. Expansion of IoT and smart infrastructure propelling sensor integration across various industries
    • 5.1.2. Restraints
      • 5.1.2.1. Limited adoption due to high production costs and need for costly manufacturing technologies
    • 5.1.3. Opportunities
      • 5.1.3.1. Growing investment in research and development for innovative sensor solutions
      • 5.1.3.2. Expanding applications of anisotropic magnetoresistance sensors in consumer electronics, including wearable devices and smart gadgets
    • 5.1.4. Challenges
      • 5.1.4.1. Technological complexities and the necessity for continuous innovation to meet the evolving demands of applications
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Sensor: Increasing demand for AMR angle sensors due to their high precision in detecting angular positions
    • 5.2.2. Application: Expanding application of AMR sensors in the aerospace and defense sector for navigation and control systems in aircraft and missiles
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Anisotropic Magnetoresistance Sensors Market, by Sensor

  • 6.1. Introduction
  • 6.2. AMR Angle Sensors
  • 6.3. AMR current sensor
  • 6.4. AMR Linear Sensors

7. Anisotropic Magnetoresistance Sensors Market, by Technology

  • 7.1. Introduction
  • 7.2. Anisotropic Magnetoresistance
  • 7.3. Colossal Magnetoresistance
  • 7.4. Giant Magnetoresistance
  • 7.5. Tunnel Magnetoresistance

8. Anisotropic Magnetoresistance Sensors Market, by Output

  • 8.1. Introduction
  • 8.2. Analog Output
  • 8.3. Digital Output

9. Anisotropic Magnetoresistance Sensors Market, by Operational Configuration

  • 9.1. Introduction
  • 9.2. Dual-Axis Sensors
  • 9.3. Multi-Axis Sensors
  • 9.4. Single-Axis Sensors

10. Anisotropic Magnetoresistance Sensors Market, by Application

  • 10.1. Introduction
  • 10.2. Aerospace & Defense
    • 10.2.1. Gyroscopes
    • 10.2.2. Navigation Systems
    • 10.2.3. Platform Stabilization
  • 10.3. Automotive
    • 10.3.1. Current Sensing
    • 10.3.2. Position and Speed Sensing
    • 10.3.3. Steering Angle Sensing
  • 10.4. Consumer Electronics
    • 10.4.1. Gaming Devices
    • 10.4.2. Smart Wearables
    • 10.4.3. Smartphones
  • 10.5. Energy & Utilities
    • 10.5.1. Current Measurement
    • 10.5.2. Magnetic Field Detection
  • 10.6. Healthcare
    • 10.6.1. Imaging Systems
    • 10.6.2. Medical Devices
  • 10.7. Industrial
    • 10.7.1. Motor Control
    • 10.7.2. Proximity Detection
    • 10.7.3. Robotics and Automation

11. Americas Anisotropic Magnetoresistance Sensors Market

  • 11.1. Introduction
  • 11.2. Argentina
  • 11.3. Brazil
  • 11.4. Canada
  • 11.5. Mexico
  • 11.6. United States

12. Asia-Pacific Anisotropic Magnetoresistance Sensors Market

  • 12.1. Introduction
  • 12.2. Australia
  • 12.3. China
  • 12.4. India
  • 12.5. Indonesia
  • 12.6. Japan
  • 12.7. Malaysia
  • 12.8. Philippines
  • 12.9. Singapore
  • 12.10. South Korea
  • 12.11. Taiwan
  • 12.12. Thailand
  • 12.13. Vietnam

13. Europe, Middle East & Africa Anisotropic Magnetoresistance Sensors Market

  • 13.1. Introduction
  • 13.2. Denmark
  • 13.3. Egypt
  • 13.4. Finland
  • 13.5. France
  • 13.6. Germany
  • 13.7. Israel
  • 13.8. Italy
  • 13.9. Netherlands
  • 13.10. Nigeria
  • 13.11. Norway
  • 13.12. Poland
  • 13.13. Qatar
  • 13.14. Russia
  • 13.15. Saudi Arabia
  • 13.16. South Africa
  • 13.17. Spain
  • 13.18. Sweden
  • 13.19. Switzerland
  • 13.20. Turkey
  • 13.21. United Arab Emirates
  • 13.22. United Kingdom

14. Competitive Landscape

  • 14.1. Market Share Analysis, 2023
  • 14.2. FPNV Positioning Matrix, 2023
  • 14.3. Competitive Scenario Analysis
    • 14.3.1. MEMSIC unveils MMC5616WA AMR magnetometer with high precision, low noise, and reduced power consumption
  • 14.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Allegro MicroSystems, LLC
  • 2. Analog Devices, Inc.
  • 3. Crocus Technology Inc.
  • 4. Honeywell International Inc.
  • 5. Infineon Technologies AG by Siemens AG
  • 6. KOHDEN Co., Ltd.
  • 7. Melexis NV
  • 8. Memsic Inc.
  • 9. Multidimension Technology Co. Ltd.
  • 10. Murata Manufacturing Co., Ltd.
  • 11. NVE Corporation
  • 12. NXP SEMICONDUCTORS
  • 13. Sensitec GmbH by Sinomags Technology Co., Ltd.
  • 14. TDK Corporation
  • 15. TE Connectivity Ltd.
  • 16. Texas Instruments Incorporated
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦