½ÃÀ庸°í¼­
»óǰÄÚµå
1581216

ModelOps ½ÃÀå : Ç÷§Æû À¯Çüº°, ¼­ºñ½ºº°, ¸ðµ¨ À¯Çüº°, Á¶Á÷ ±Ô¸ðº°, µµÀÔ Çüź°, ¾÷°èº° - ¼¼°è ¿¹Ãø(2025-2030³â)

ModelOps Market by Platform Type, Services, Model Type, Organization Size, Deployment Mode, Verticals - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 184 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

ModelOps ½ÃÀåÀº 2023³â¿¡ 254¾ï ´Þ·¯·Î Æò°¡µÇ¸ç, 2024³â¿¡´Â 287¾ï 6,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, CAGR 14.45%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 653¾ï 6,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ModelOps(Model OperationsÀÇ ¾àÀÚ)´Â AI ¹× ¸Ó½Å·¯´× ¸ðµ¨ÀÇ ¼ö¸íÁÖ±â°ü¸®¿¡ ÃÊÁ¡À» ¸ÂÃá Á¾ÇÕÀûÀÎ ºÎ¹®ÀÔ´Ï´Ù. ModelOpsÀÇ Çʿ伺Àº ½ÇÁ¦ ¿ëµµ¿¡¼­ ¿øÈ°ÇÑ ÅëÇÕ°ú ±â´ÉÀ» º¸ÀåÇÏ´Â °ÍÀÌ Áß¿äÇÑ »ê¾÷ Àü¹Ý¿¡¼­ ML ¸ðµ¨ÀÇ »ç¿ëÀÌ È®´ëµÇ°í ÀÖÀ¸¹Ç·Î ½ÇÁ¦ ȯ°æ¿¡¼­ ¸ðµ¨ÀÇ ¹èÆ÷, ¸ð´ÏÅ͸µ, °Å¹ö³Í½º ¹× È®Àå¿¡ ´ëÇÑ Çʿ伺ÀÌ ´ëµÎµÇ°í Àֱ⠶§¹®ÀÔ´Ï´Ù. ¿¹Ãø Á¤È®µµ¿Í °­·ÂÇÑ ¿î¿µ ¸ð´ÏÅ͸µÀÌ ¸Å¿ì Áß¿äÇÑ ±ÝÀ¶, ÀÇ·á, ¼Ò¸Å µî ´Ù¾çÇÑ ºÐ¾ß¿¡ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. ÃÖÁ¾ ¿ëµµ¿¡´Â °ø±Þ¸Á ÃÖÀûÈ­, °í°´ °æÇè °³¼±, ÀÇ»ç°áÁ¤ ÇÁ·Î¼¼½º °³¼± µîÀÌ Æ÷ÇԵǴ °æ¿ì°¡ ¸¹½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ[2023³â] 254¾ï ´Þ·¯
¿¹Ãø³â[2024³â] 287¾ï 6,000¸¸ ´Þ·¯
¿¹Ãø³â[2030³â] 653¾ï 6,000¸¸ ´Þ·¯
CAGR(%) 14.45%

°æÀï»ç ºÐ¼®¿¡ µû¸£¸é ÁÖ¿ä ¼ºÀå ¿äÀÎÀ¸·Î ºòµ¥ÀÌÅÍÀÇ È®»ê, AI µµÀÔ Áõ°¡, µðÁöÅÐ ÀüȯÀ» ÅëÇÑ ±â¾÷ÀÇ °æÀï·Â À¯Áö°¡ ½Ã±ÞÇÑ °ÍÀ¸·Î ³ªÅ¸³µ½À´Ï´Ù. °³ÀÎÈ­µÈ ¼­ºñ½º¿Í ÀÚµ¿È­¸¦ À§ÇØ AI¸¦ Ȱ¿ëÇϰíÀÚ ÇÏ´Â ºÎ¹®¿¡´Â ±âȸ°¡ ³ÑÃijª°í ÀÖ½À´Ï´Ù. ±â¾÷Àº ModelOps ÇÁ·Î¼¼½º¿Í ±âÁ¸ IT ÀÎÇÁ¶óÀÇ ÅëÇÕÀ» °£¼ÒÈ­ÇÏ´Â Ç÷§Æû¿¡ ÅõÀÚÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ±âȸ¸¦ Ȱ¿ëÇÏ°í ½ÃÀå Ãâ½Ã ½Ã°£À» ´ÜÃàÇϰí ROI¸¦ Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.

±×·¯³ª ½ÃÀåÀº ¼÷·ÃµÈ Àη ºÎÁ·, µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹®Á¦, ´Ù¾çÇÑ µ¥ÀÌÅͼ¼Æ® ÅëÇÕÀÇ º¹À⼺ µîÀÇ ¹®Á¦¿¡ Á÷¸éÇØ ÀÖÀ¸¸ç, ÀÌ´Â ¼ºÀåÀ» ÀúÇØÇÏ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ AI °á°ú¹°ÀÇ À±¸®Àû ó¸®¿Í ±¹Á¦ ±ÔÁ¦ ±âÁØ Áؼö¿¡µµ ÇѰ谡 ÀÖ½À´Ï´Ù.

AI ¸ðµ¨ÀÇ ÇØ¼® °¡´É¼º°ú Åõ¸í¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ´Â ÀÚµ¿È­ Åø °³¹ß¿¡ ÁýÁßÇØ¾ß ÇÕ´Ï´Ù. ¼³¸í °¡´ÉÇÑ AI¿Í °­·ÂÇÑ ¼º´É ¸ð´ÏÅ͸µ ¼Ö·ç¼ÇÀÇ ¹ßÀüÀº ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ±â¾÷Àº ModelOps ¹èÆ÷¿¡ ÇÊ¿äÇÑ È®À强À» Á¦°øÇÏ´Â ÇÏÀ̺긮µå Ŭ¶ó¿ìµå ¼Ö·ç¼ÇÀ» Ȱ¿ëÇϸé Å« ÀÌÁ¡À» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ µ¥ÀÌÅÍ »çÀÌ¾ðÆ¼½ºÆ®¿Í ¿î¿µÆÀÀÇ Çù¾÷À» ÃËÁøÇÏ¿© º¸´Ù ÀÀÁý·Â ÀÖ°í ¹ÎøÇÑ ¸ðµ¨ °ü¸® Àü·«À» ½ÇÇöÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀüüÀûÀ¸·Î ModelOps ½ÃÀåÀº ±â¼ú ¹ßÀü°ú µðÁöÅÐ ÀüȯÀÇ Çʿ伺¿¡ ÈûÀÔ¾î ¿ªµ¿ÀûÀÎ ½ÃÀåÀ¸·Î ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. °úÁ¦¸¦ ÇØ°áÇÏ°í »õ·Î¿î ±âȸ¸¦ Æ÷ÂøÇÔÀ¸·Î½á ±â¾÷Àº Áö¼Ó°¡´ÉÇÑ ¼ºÀåÀ» º¸ÀåÇÏ°í °æÀï·ÂÀ» À¯ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå ¿ªÇÐ: ºü¸£°Ô ÁøÈ­ÇÏ´Â ModelOps ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

ModelOps ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ë¿¡ ÀÇÇØ º¯È­Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐÀÇ º¯È­¸¦ ÀÌÇØÇÔÀ¸·Î½á ±â¾÷Àº Á¤º¸¿¡ ÀÔ°¢ÇÑ ÅõÀÚ °áÁ¤À» ³»¸®°í, Àü·«ÀûÀÎ ÀÇ»ç°áÁ¤À» Á¤±³È­Çϸç, »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Æ÷ÂøÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¿ªÀû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª Àü¹Ý¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ ÁÙÀÏ ¼ö ÀÖÀ¸¸ç, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë ¹× ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • È®Àå °¡´ÉÇÑ ¸ðµ¨ ¿î¿µÀ» À§ÇÑ Å¬¶ó¿ìµå ³×ÀÌÆ¼ºê ¼Ö·ç¼Ç ¹× ÀÎÇÁ¶ó·ÎÀÇ Àüȯ
    • ±ÔÁ¦ ±âÁØ Áؼö¸¦ º¸ÀåÇϱâ À§ÇØ ¸ðµ¨ÀÇ ÇØ¼® °¡´É¼º°ú Åõ¸í¼º¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.
    • ½Ç½Ã°£ ºÐ¼® ¹× ¸ðµ¨ ¾÷µ¥ÀÌÆ®°¡ ÇÊ¿äÇÑ ºñÁî´Ï½º ÀÌ¿ë »ç·Ê ±ÞÁõ
    • µ¥ÀÌÅÍ »çÀ̾𽺠ÆÀ°ú IT ¿î¿µ ÆÀ °£ÀÇ Çù¾÷À» Ȱ¼ºÈ­ÇÏ¿© ¸ðµ¨ ¼ö¸íÁÖ±â°ü¸® °£¼ÒÈ­¸¦ À§ÇÑ Çù¾÷ Ȱ¼ºÈ­
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ModelOps µµÀÔ ¹× ÀÎÇÁ¶ó À¯Áö¸¦ À§ÇÑ Ãʱ⠼³Á¤ ¹× ¿î¿µ ºñ¿ëÀÇ ³ôÀº ¼öÁØ
    • ModelOps ½Ã½ºÅÛ¿¡¼­ ±â¹Ð µ¥ÀÌÅÍ ÅëÇÕ ¹× °ü¸®¿Í °ü·ÃµÈ µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹× º¸¾È ¹®Á¦
  • ½ÃÀå ±âȸ
    • ÷´ÜÈ­µÈ ModelOps¸¦ Ȱ¿ëÇÑ »ê¾÷ Àü¹ÝÀÇ AI ¹× ¸Ó½Å·¯´× ÃÖÀûÈ­
    • ModelOps¿Í ºòµ¥ÀÌÅÍ ºÐ¼®ÀÇ ÅëÇÕÀ¸·Î ½Ç½Ã°£ ÀÇ»ç°áÁ¤ ±â´É Á¦°ø
    • ModelOps ÇÁ·¹ÀÓ¿öÅ© °­È­·Î °­·ÂÇϰí È®À强ÀÌ ¶Ù¾î³­ AI ±â¹Ý ºñÁî´Ï½º ¼Ö·ç¼Ç Á¦°ø
  • ½ÃÀå °úÁ¦
    • ModelOps¸¦ ±âÁ¸ µ¥ÀÌÅÍ ÆÄÀÌÇÁ¶óÀÎ ¹× ¿öÅ©Ç÷οì¿Í ÅëÇÕÇÏ¿© ¾÷¹«¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈ­ÇØ¾ß ÇÕ´Ï´Ù.
    • ºü¸£°Ô º¯È­ÇÏ´Â µ¥ÀÌÅÍ¿Í ºñÁî´Ï½º »óȲ¿¡ ´ëÀÀÇϱâ À§ÇØ ÇÁ·Î´ö¼Ç ȯ°æ¿¡¼­ ¸ðµ¨À» À¯Áö ¹× ¾÷µ¥ÀÌÆ®ÇÏ´Â °Í

Portre's Five Forces: ModelOps ½ÃÀå °ø·«À» À§ÇÑ Àü·«Àû Åø

Portre's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ½ÃÀå »óȲ°æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ ÅøÀÔ´Ï´Ù. Portre's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÇ °æÀïÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ ¸ð»öÇϱâ À§ÇÑ ¸íÈ®ÇÑ ¹æ¹ýÀ» ¼³¸íÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÀλçÀÌÆ®À» ÅëÇØ ±â¾÷Àº °­Á¡À» Ȱ¿ëÇϰí, ¾àÁ¡À» º¸¿ÏÇϰí, ÀáÀçÀû µµÀüÀ» ÇÇÇÔÀ¸·Î½á º¸´Ù °­·ÂÇÑ ½ÃÀå Æ÷Áö¼Å´×À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : ModelOps ½ÃÀåÀÇ ¿ÜºÎ ¿µÇâ·Â ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº ModelOps ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀο¡ ´ëÇÑ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ ´ã°í ÀÖÀ¸¸ç, PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£µµ, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¼±Á¦ÀûÀ̰í Àû±ØÀûÀÎ ÀÇ»ç°áÁ¤À» ³»¸± Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® : ModelOps ½ÃÀå¿¡¼­ °æÀï ±¸µµ ÆÄ¾Ç

ModelOps ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ º¥´õÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¸ÅÃâ, °í°´ ±â¹Ý, ¼ºÀå·ü°ú °°Àº ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀïÀû À§Ä¡¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®Àº ½ÃÀåÀÇ ÁýÁßÈ­, ¼¼ºÐÈ­ ¹× ÅëÇÕ Ãß¼¼¸¦ ÆÄ¾ÇÇÏ¿© °ø±Þ¾÷ü°¡ Ä¡¿­ÇÑ °æÀï¿¡¼­ ÀÚ½ÅÀÇ ÀÔÁö¸¦ °­È­ÇÒ ¼ö ÀÖ´Â Àü·«Àû ÀÇ»ç°áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ ÀλçÀÌÆ®À» Á¦°øÇÕ´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º ModelOps ½ÃÀå¿¡¼­ÀÇ º¥´õ ¼º°ú Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â ModelOps ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡ÇÒ ¼ö ÀÖ´Â Áß¿äÇÑ ÅøÀÔ´Ï´Ù. ÀÌ ¸ÅÆ®¸¯½º¸¦ ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº º¥´õÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±â¹ÝÀ¸·Î º¥´õ¸¦ Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ºÎÇÕÇÏ´Â Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖÀ¸¸ç, 4°³ÀÇ »çºÐ¸éÀ¸·Î º¥´õ¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ¼¼ºÐÈ­ÇÏ¿© Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê¿Í ¼Ö·ç¼ÇÀ» ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù. Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê¿Í ¼Ö·ç¼ÇÀ» ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù.

ModelOps ½ÃÀå¿¡¼­ ¼º°øÇϱâ À§ÇÑ Àü·« ºÐ¼® ¹× Ãßõ ModelOps ½ÃÀå ¼º°ø °æ·Î¸¦ Á¦½ÃÇÕ´Ï´Ù.

ModelOps ½ÃÀå Àü·« ºÐ¼®Àº ¼¼°è ½ÃÀå¿¡¼­ÀÇ ÀÔÁö¸¦ °­È­ÇϰíÀÚ ÇÏ´Â ±â¾÷¿¡°Ô ÇʼöÀûÀÔ´Ï´Ù. ÁÖ¿ä ÀÚ¿ø, ¿ª·® ¹× ¼º°ú ÁöÇ¥¸¦ °ËÅäÇÔÀ¸·Î½á ±â¾÷Àº ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀº °æÀï ȯ°æÀÇ µµÀüÀ» ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö Àִ ü°è¸¦ ±¸ÃàÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÎ¹®¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ½ÃÀå ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõµµ : ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·Â Æò°¡.

2. ½ÃÀå °³Ã´µµ: ½ÅÈï ½ÃÀå¿¡¼­ÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇϰí, ±âÁ¸ ºÎ¹®ÀÇ È®Àå °¡´É¼ºÀ» Æò°¡Çϸç, ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» ±â¼úÇϰí ÀÖ½À´Ï´Ù.

3. ½ÃÀå ´Ù°¢È­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä ¹ßÀü, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú ¹ßÀü µîÀ» °ËÅäÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÷´Ü ±â¼ú, ¿¬±¸°³¹ß Ȱµ¿ ¹× Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚµéÀÌ Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸®´Â µ¥ µµ¿òÀÌ µÇ´Â Áß¿äÇÑ Áú¹®¿¡ ´ëÇÑ ´äº¯µµ Á¦°øÇÕ´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå Àü¸ÁÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, Áö¿ªÀº?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5.º¥´õ ½ÃÀå ÁøÀÔ ¹× ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÔ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå °³¿ä

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
    • ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ±âȸ
    • °úÁ¦
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡
    • °æÁ¦
    • »çȸ
    • ±â¼ú
    • ¹ý·ü
    • ȯ°æ

Á¦6Àå ModelOps ½ÃÀå : Ç÷§Æû À¯Çüº°

  • ¼­·Ð
  • ÀÚµ¿ ±â°èÇнÀ(AutoML) Ç÷§Æû
  • °³¹ß°ú ½ÇÇè Ç÷§Æû
  • ¸ðµ¨ ¼³¸í °¡´É¼º°ú ÇØ¼® °¡´É¼º Åø
  • °¨½Ã¿Í °üÃø Åø
  • ÆÛÆ÷¸Õ½º ÃßÀû°ú °ü¸® Ç÷§Æû
  • ¼­ºñ½º¿Í µµÀÔ Åø

Á¦7Àå ModelOps ½ÃÀå : ¼­ºñ½ºº°

  • ¼­·Ð
  • ÄÁ¼³ÆÃ ¼­ºñ½º
  • ¹èÆ÷¿Í ÅëÇÕ
  • ½Ã½ºÅÛ°ú Á¤ºñ

Á¦8Àå ModelOps ½ÃÀå : ¸ðµ¨ À¯Çüº°

  • ¼­·Ð
  • ¿¡ÀÌÀüÆ® ±â¹Ý ¸ðµ¨
  • BYOM(Bring Your Own Models)
  • ±×·¡ÇÁ ±â¹Ý ¸ðµ¨
  • ¾ð¾î ¸ðµ¨
  • ML ¸ðµ¨
  • ·ê°ú ÈÞ¸®½ºÆ½ ¸ðµ¨

Á¦9Àå ModelOps ½ÃÀå : Á¶Á÷ ±Ô¸ðº°

  • ¼­·Ð
  • ´ë±â¾÷
  • Áß¼Ò±â¾÷

Á¦10Àå ModelOps ½ÃÀå : µµÀÔ Çüź°

  • ¼­·Ð
  • Ŭ¶ó¿ìµå
  • ¿ÂÇÁ·¹¹Ì½º

Á¦11Àå ModelOps ½ÃÀå : ¾÷°èº°

  • ¼­·Ð
  • ÀºÇà, ±ÝÀ¶ ¼­ºñ½º, º¸Çè
  • ¿¡³ÊÁö¡¤À¯Æ¿¸®Æ¼
  • Á¤ºÎ¿Í ¹æÀ§
  • ÀÇ·á¿Í »ý¸í°úÇÐ
  • Á¤º¸±â¼ú°ú Åë½Å
  • Á¦Á¶¾÷
  • ¼Ò¸Å¾÷°ú E-Commerce
  • ¿î¼Û¡¤¹°·ù

Á¦12Àå ¾Æ¸Þ¸®Ä«ÀÇ ModelOps ½ÃÀå

  • ¼­·Ð
  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦13Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ModelOps ½ÃÀå

  • ¼­·Ð
  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦14Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ModelOps ½ÃÀå

  • ¼­·Ð
  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®
  • ¿µ±¹

Á¦15Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2023³â
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2023³â
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
  • Àü·« ºÐ¼®°ú Á¦¾È

¾ð±ÞµÈ ±â¾÷

  • Alteryx, Inc.
  • Amazon Web Services, Inc.
  • Anaconda, Inc.
  • Cloudera, Inc.
  • Databricks, Inc.
  • DataRobot, Inc.
  • Domino Data Lab, Inc.
  • Fair, Isaac and Company
  • Google LLC by Alphabet Inc.
  • H2O.ai, Inc.
  • Iguazio Ltd.
  • International Business Machines Corporation
  • ltair Engineering Inc.
  • Microsoft Corporation
  • Oracle Corporation
  • Paperspace, Co.
  • SAS Institute Inc.
  • Seldon Technologies Limited
  • TIBCO Software Inc.
  • Valohai
KSA 24.11.12

The ModelOps Market was valued at USD 25.40 billion in 2023, expected to reach USD 28.76 billion in 2024, and is projected to grow at a CAGR of 14.45%, to USD 65.36 billion by 2030.

ModelOps, short for Model Operations, is a comprehensive discipline focused on the lifecycle management of AI and machine learning models. It encompasses the deployment, monitoring, governance, and scaling of models in a production environment. The necessity of ModelOps stems from the growing use of ML models across industries, where ensuring seamless integration and functioning in real-world applications is critical. Its application spans sectors like finance, healthcare, and retail, where predictive accuracy and robust operational oversight are pivotal. End-use scope often includes optimizing supply chains, enhancing customer experiences, and improving decision-making processes.

KEY MARKET STATISTICS
Base Year [2023] USD 25.40 billion
Estimated Year [2024] USD 28.76 billion
Forecast Year [2030] USD 65.36 billion
CAGR (%) 14.45%

Market insights reveal that key growth factors include the proliferation of big data, increased AI adoption, and the pressing need for businesses to remain competitive through digital transformation. Opportunities abound in sectors seeking to leverage AI for personalized services and automation. Companies can capitalize on these opportunities by investing in platforms that streamline the integration of ModelOps processes with their existing IT infrastructure, thereby reducing time to market and improving ROI.

However, the market faces challenges such as the scarcity of skilled personnel, data privacy concerns, and the complexity of integrating diverse datasets, which can impede growth. Limitations also involve the ethical handling of AI outputs and compliance with international regulatory standards.

Innovation and research in ModelOps should focus on developing automated tools that enhance the interpretability and transparency of AI models. Advancements in explainable AI and robust performance monitoring solutions are crucial. Businesses can benefit significantly by leveraging hybrid cloud solutions that offer the scalability needed for ModelOps deployment. Additionally, fostering collaboration between data scientists and operations teams can lead to more cohesive and agile model management strategies.

Overall, the ModelOps market is dynamic, fueled by technological advances and digital transformation imperatives. By addressing the challenges and seizing emerging opportunities, businesses can ensure sustainable growth and maintain a competitive edge.

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving ModelOps Market

The ModelOps Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Shift towards cloud-native solutions and infrastructure for scalable model operations
    • Rising focus on model interpretability and transparency to ensure compliance with regulatory standards
    • Proliferation of business use cases requiring real-time analytics and model updates
    • Increased collaboration between data science and IT operations teams to streamline model lifecycle management
  • Market Restraints
    • High initial setup and operational costs for modelops deployment and infrastructure maintenance
    • Data privacy and security concerns associated with integrating and managing sensitive data in modelops systems
  • Market Opportunities
    • Leveraging advanced ModelOps for cross-industry AI and machine learning optimization
    • Integrating ModelOps with big data analytics for real-time decision-making capabilities
    • Enhancing ModelOps frameworks for robust and scalable AI-driven business solutions
  • Market Challenges
    • Integrating ModelOps with existing data pipelines and workflows while minimizing disruption to business operations
    • Maintaining and updating models in production to adapt to rapidly changing data and business conditions

Porter's Five Forces: A Strategic Tool for Navigating the ModelOps Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the ModelOps Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the ModelOps Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the ModelOps Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the ModelOps Market

A detailed market share analysis in the ModelOps Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the ModelOps Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the ModelOps Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the ModelOps Market

A strategic analysis of the ModelOps Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the ModelOps Market, highlighting leading vendors and their innovative profiles. These include Alteryx, Inc., Amazon Web Services, Inc., Anaconda, Inc., Cloudera, Inc., Databricks, Inc., DataRobot, Inc., Domino Data Lab, Inc., Fair, Isaac and Company, Google LLC by Alphabet Inc., H2O.ai, Inc., Iguazio Ltd., International Business Machines Corporation, ltair Engineering Inc., Microsoft Corporation, Oracle Corporation, Paperspace, Co., SAS Institute Inc., Seldon Technologies Limited, TIBCO Software Inc., and Valohai.

Market Segmentation & Coverage

This research report categorizes the ModelOps Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Platform Type, market is studied across Automated Machine Learning (AutoML) Platforms, Development & Experimentation Platforms, Model Explainability & Interpretability Tools, Monitoring & Observability Tools, Performance Tracking & Management Platforms, and Serving & Deployment Tools.
  • Based on Services, market is studied across Consulting Services, Deployment & Integration, and System & Maintenance.
  • Based on Model Type, market is studied across Agent-Based Models, Bring Your Own Models, Graph-Based Models, Linguistic Models, ML Models, and Rule & Heuristic Models.
  • Based on Organization Size, market is studied across large enterprises and small and medium-sized enterprises (SMEs).
  • Based on Deployment Mode, market is studied across Cloud and On-Premises.
  • Based on Verticals, market is studied across Banking, Financial Services & Insurance, Energy & Utilities, Government & Defense, Healthcare & Life sciences, Information Technology & Telecommunications, Manufacturing, Retail & eCommerce, and Transportation & Logistics.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Shift towards cloud-native solutions and infrastructure for scalable model operations
      • 5.1.1.2. Rising focus on model interpretability and transparency to ensure compliance with regulatory standards
      • 5.1.1.3. Proliferation of business use cases requiring real-time analytics and model updates
      • 5.1.1.4. Increased collaboration between data science and IT operations teams to streamline model lifecycle management
    • 5.1.2. Restraints
      • 5.1.2.1. High initial setup and operational costs for modelops deployment and infrastructure maintenance
      • 5.1.2.2. Data privacy and security concerns associated with integrating and managing sensitive data in modelops systems
    • 5.1.3. Opportunities
      • 5.1.3.1. Leveraging advanced ModelOps for cross-industry AI and machine learning optimization
      • 5.1.3.2. Integrating ModelOps with big data analytics for real-time decision-making capabilities
      • 5.1.3.3. Enhancing ModelOps frameworks for robust and scalable AI-driven business solutions
    • 5.1.4. Challenges
      • 5.1.4.1. Integrating ModelOps with existing data pipelines and workflows while minimizing disruption to business operations
      • 5.1.4.2. Maintaining and updating models in production to adapt to rapidly changing data and business conditions
  • 5.2. Market Segmentation Analysis
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. ModelOps Market, by Platform Type

  • 6.1. Introduction
  • 6.2. Automated Machine Learning (AutoML) Platforms
  • 6.3. Development & Experimentation Platforms
  • 6.4. Model Explainability & Interpretability Tools
  • 6.5. Monitoring & Observability Tools
  • 6.6. Performance Tracking & Management Platforms
  • 6.7. Serving & Deployment Tools

7. ModelOps Market, by Services

  • 7.1. Introduction
  • 7.2. Consulting Services
  • 7.3. Deployment & Integration
  • 7.4. System & Maintenance

8. ModelOps Market, by Model Type

  • 8.1. Introduction
  • 8.2. Agent-Based Models
  • 8.3. Bring Your Own Models
  • 8.4. Graph-Based Models
  • 8.5. Linguistic Models
  • 8.6. ML Models
  • 8.7. Rule & Heuristic Models

9. ModelOps Market, by Organization Size

  • 9.1. Introduction
  • 9.2. large enterprises
  • 9.3. small and medium-sized enterprises (SMEs)

10. ModelOps Market, by Deployment Mode

  • 10.1. Introduction
  • 10.2. Cloud
  • 10.3. On-Premises

11. ModelOps Market, by Verticals

  • 11.1. Introduction
  • 11.2. Banking, Financial Services & Insurance
  • 11.3. Energy & Utilities
  • 11.4. Government & Defense
  • 11.5. Healthcare & Life sciences
  • 11.6. Information Technology & Telecommunications
  • 11.7. Manufacturing
  • 11.8. Retail & eCommerce
  • 11.9. Transportation & Logistics

12. Americas ModelOps Market

  • 12.1. Introduction
  • 12.2. Argentina
  • 12.3. Brazil
  • 12.4. Canada
  • 12.5. Mexico
  • 12.6. United States

13. Asia-Pacific ModelOps Market

  • 13.1. Introduction
  • 13.2. Australia
  • 13.3. China
  • 13.4. India
  • 13.5. Indonesia
  • 13.6. Japan
  • 13.7. Malaysia
  • 13.8. Philippines
  • 13.9. Singapore
  • 13.10. South Korea
  • 13.11. Taiwan
  • 13.12. Thailand
  • 13.13. Vietnam

14. Europe, Middle East & Africa ModelOps Market

  • 14.1. Introduction
  • 14.2. Denmark
  • 14.3. Egypt
  • 14.4. Finland
  • 14.5. France
  • 14.6. Germany
  • 14.7. Israel
  • 14.8. Italy
  • 14.9. Netherlands
  • 14.10. Nigeria
  • 14.11. Norway
  • 14.12. Poland
  • 14.13. Qatar
  • 14.14. Russia
  • 14.15. Saudi Arabia
  • 14.16. South Africa
  • 14.17. Spain
  • 14.18. Sweden
  • 14.19. Switzerland
  • 14.20. Turkey
  • 14.21. United Arab Emirates
  • 14.22. United Kingdom

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2023
  • 15.2. FPNV Positioning Matrix, 2023
  • 15.3. Competitive Scenario Analysis
  • 15.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Alteryx, Inc.
  • 2. Amazon Web Services, Inc.
  • 3. Anaconda, Inc.
  • 4. Cloudera, Inc.
  • 5. Databricks, Inc.
  • 6. DataRobot, Inc.
  • 7. Domino Data Lab, Inc.
  • 8. Fair, Isaac and Company
  • 9. Google LLC by Alphabet Inc.
  • 10. H2O.ai, Inc.
  • 11. Iguazio Ltd.
  • 12. International Business Machines Corporation
  • 13. ltair Engineering Inc.
  • 14. Microsoft Corporation
  • 15. Oracle Corporation
  • 16. Paperspace, Co.
  • 17. SAS Institute Inc.
  • 18. Seldon Technologies Limited
  • 19. TIBCO Software Inc.
  • 20. Valohai
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦