½ÃÀ庸°í¼­
»óǰÄÚµå
1581263

¾ÈÀüÇÑ ´ÙÀÚ°£ ¿¬»ê ½ÃÀå : Á¦Ç°, ¿î¿µ ÇÁ·¹ÀÓ¿öÅ©, º¸¾È º¸Áõ, ¿ëµµ, Àü°³ ¸ðµ¨, Á¶Á÷ ±Ô¸ð, »ê¾÷º° - ¼¼°è ¿¹Ãø(2025-2030³â)

Secure Multiparty Computation Market by Product (Services, Software), Operational Framework (Distributed Computing, Protocol-Based), Security Guarantees, Application, Deployment Model, Organization Size, Industry - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 185 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

2023³â ¾ÈÀüÇÑ ´ÙÀÚ°£ ¿¬»ê ½ÃÀå ±Ô¸ð´Â 9¾ï 3,806¸¸ ´Þ·¯, 2024³â¿¡´Â 10¾ï 3,046¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2030³â¿¡´Â 18¾ï 1,888¸¸ ´Þ·¯±îÁö ¿¬Æò±Õ 9.92% ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¾ÈÀüÇÑ ´ÙÀÚ°£ ¿¬»ê(MPC)Àº ¿©·¯ ´ç»çÀÚ°¡ ÀÔ·Â ÇÔ¼ö¸¦ ºñ°ø°³·Î °øµ¿À¸·Î °è»êÇÒ ¼ö ÀÖ´Â ¾Ïȣȭ ÇÁ·ÎÅäÄÝ·Î, ±ÝÀ¶, ÀÇ·á, Åë½Å µîÀÇ ºÐ¾ß¿¡¼­ µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹× º¸¾È¿¡ ´ëÇÑ ¿ä±¸°¡ ³ô¾ÆÁü¿¡ µû¶ó MPCÀÇ Çʿ伺ÀÌ Á¡Á¡ ´õ Ä¿Áö°í ÀÖ½À´Ï´Ù. MPCÀÇ Áß¿äÇÑ ÀÀ¿ë ºÐ¾ß´Â ±â¹Ð¼ºÀÌ À¯ÁöµÇ¾î¾ß ÇÏ´Â °øµ¿ µ¥ÀÌÅÍ ºÐ¼®¿¡ ÀÖÀ¸¸ç, ±â¹Ð Á¤º¸°¡ ³ëÃâµÇÁö ¾Êµµ·Ï º¸ÀåÇÕ´Ï´Ù. MPC¸¦ Ȱ¿ëÇÏ´Â ÃÖÁ¾ ÀÌ¿ë »ê¾÷¿¡´Â ¾ÈÀüÇÑ °Å·¡ °ËÁõÀ» À§ÇÑ ¹ðÅ·, ÇÁ¶óÀ̹ö½Ã º¸È£¸¦ À§ÇÑ À¯Àüü ºÐ¼®À» À§ÇÑ ÇコÄɾî, µ¥ÀÌÅÍ À¯ÃâÀÌ ¾ø´Â ¾ÈÀüÇÑ ±¤°í Ÿ°ÙÆÃÀ» À§ÇÑ ±¤°í µîÀÌ ÀÖ½À´Ï´Ù. GDPR ¹× CCPA¿Í °°Àº ¾ö°ÝÇÑ µ¥ÀÌÅÍ º¸È£¹ýÀÌ ¾ÈÀüÇÑ µ¥ÀÌÅÍ Ã³¸® ¼Ö·ç¼ÇÀÇ Çʿ伺À» °­Á¶Çϸ鼭 µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¿¡ ´ëÇÑ ±ÔÁ¦Àû °ü½ÉÀÌ ³ô¾ÆÁø °ÍÀÌ MPC ½ÃÀå ¼ºÀåÀÇ ÁÖ¿ä ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¾çÀÚ ÄÄÇ»ÆÃÀÇ ¹ßÀüÀº MPCÀÇ Àû¿ëÀ» ÃËÁøÇÏ´Â µ¿½Ã¿¡ ÀáÀçÀûÀÎ ¾çÀÚ °ø°Ý¿¡ ´ëÇÑ °ß°í¼ºÀ» ¿ä±¸ÇÏ´Â °úÁ¦À̱⵵ ÇÕ´Ï´Ù. ÁÖ¸ñÇÒ ¸¸ÇÑ ±âȸ´Â MPC¿Í ºí·ÏüÀÎ ±â¼úÀÇ ÅëÇÕÀ¸·Î ºÐ»êÇü ¾ÖÇø®ÄÉÀ̼ÇÀÇ º¸¾ÈÀ» °­È­ÇÏ´Â °ÍÀÔ´Ï´Ù. ±â¾÷µéÀº MPC¿Í ºí·ÏüÀÎÀ» ¸ðµÎ Ȱ¿ëÇÏ´Â ÇÏÀ̺긮µå ¼Ö·ç¼Ç °³¹ß¿¡ ÁýÁßÇÔÀ¸·Î½á Å»Áß¾ÓÈ­ ±ÝÀ¶(DeFi)°ú °°Àº ºÐ¾ß¿¡¼­ »õ·Î¿î ±âȸ¸¦ ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. ±×·¯³ª MPC ÇÁ·ÎÅäÄݰú °ü·ÃµÈ ³ôÀº °è»ê ºñ¿ë°ú º¹À⼺ µîÀÇ ¹®Á¦´Â ¿øÈ°ÇÑ Ã¤ÅÃÀ» ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. È®À强 ¹®Á¦¿Í MPC ¼Ö·ç¼ÇÀ» È¿À²ÀûÀ¸·Î ±¸ÇöÇÏ´Â µ¥ ÇÊ¿äÇÑ Àü¹® Áö½ÄÀº äÅÃÀ» ´õ¿í Á¦ÇÑÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦¸¦ ±Øº¹Çϱâ À§ÇØ ±â¾÷µéÀº MPC ÇÁ·ÎÅäÄÝ ÃÖÀûÈ­¸¦ À§ÇÑ ¿¬±¸¿¡ ÅõÀÚÇÏ¿© ¼º´É Çâ»ó°ú ºñ¿ë Àý°¨À» À§ÇØ ³ë·ÂÇØ¾ß ÇÕ´Ï´Ù. º¸¿ÏÀûÀÎ ±â¼úÀÎ µ¿Çü¾ÏÈ£ ¹× ¿µÁö½Ä Áõ¸íÀÇ Çõ½ÅÀ» ޱ¸ÇÏ´Â °ÍÀº ºñÁî´Ï½º ¼ºÀåÀÇ ±æÀ» Á¦½ÃÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÚµ¿È­µÈ ÇÁ·ÎÅäÄÝ ¼³°è, °è»ê ¿À¹öÇìµå ´ëÀÀ, ±¸ÇöÀ» ¿ëÀÌÇÏ°Ô ÇÏ´Â »ç¿ëÀÚ ÀÎÅÍÆäÀ̽º °³¼± µîÀÇ ¿¬±¸´Â MPCÀÇ Ã¤ÅÃÀ» ÃËÁøÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ÀÌ ½ÃÀåÀÇ ¼º°ÝÀº ÇöÀç °³¹ß ÁßÀÌÁö¸¸ ºü¸£°Ô ÁøÈ­Çϰí ÀÖÀ¸¸ç, Á¶Á÷ÀÌ µ¥ÀÌÅÍ ±â¹Ð¼º°ú º¸¾ÈÀ» ¾÷¹«¿¡ ¿ì¼±½ÃÇÔ¿¡ µû¶ó Å©°Ô ¼ºÀåÇÒ ¼ö ÀÖ´Â ÀáÀç·ÂÀ» °¡Áö°í ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ[2023] 9¾ï 3,806¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ[2024] 10¾ï 3,046¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ[2030] 18¾ï 1,888¸¸ ´Þ·¯
CAGR(%) 9.92%

½ÃÀå ¿ªÇÐ : ºü¸£°Ô ÁøÈ­ÇÏ´Â ¾ÈÀüÇÑ ´ÙÀÚ°£ ¿¬»ê ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

¾ÈÀüÇÑ ´ÙÀÚ°£ ¿¬»ê ½ÃÀåÀº ¼ö¿ä¿Í °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ëÀ» ÅëÇØ º¯È­Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐÀÇ ÁøÈ­¸¦ ÀÌÇØÇÔÀ¸·Î½á ±â¾÷Àº Á¤º¸¿¡ ÀÔ°¢ÇÑ ÅõÀÚ °áÁ¤, Àü·«Àû ÀÇ»ç°áÁ¤, »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Æ÷ÂøÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Æ®·»µå¸¦ Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ ¿ÏÈ­Çϰí, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë ¹× ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ÃËÁø¿äÀÎ
    • µ¥ÀÌÅÍ Ä§ÇØ¿¡ ´ëÇÑ Àνİú »ç°Ç Áõ°¡, º¸´Ù ¾ÈÀüÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â °è»ê ¹æ¹ýÀÇ Çʿ伺ÀÌ ´ëµÎµÊ
    • ÇÁ¶óÀ̹ö½Ã º¸È£¸¦ À§ÇÑ °è»ê ¹æ½Ä¿¡ ´ëÇÑ ±â¼ú ±â¾÷ ¹× Á¤ºÎ ±â°ü °£ÀÇ Çù·Â Áõ°¡
  • ½ÃÀå ¾ïÁ¦¿äÀÎ
    • SMPC¿Í °ü·ÃµÈ µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹× º¸¾È ¹®Á¦
  • ½ÃÀå ±âȸ
    • SMPCÀÇ Áö¼ÓÀûÀÎ ¾ÏÈ£ ±â¼ú °³¹ß ¹× °è»ê È¿À² Çâ»ó
    • ȯÀÚ µ¥ÀÌÅÍÀÇ ÇÁ¶óÀ̹ö½Ã ¹× º¸¾ÈÀ» À¯ÁöÇϱâ À§ÇØ ÇコÄɾî ȯ°æ¿¡¼­ äÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
  • ½ÃÀå °úÁ¦
    • SMPC ¼Ö·ç¼ÇÀ» ±âÁ¸ ÀÎÇÁ¶ó ¹× ±â¼ú°ú ÅëÇÕÇÒ ¶§ ¹ß»ýÇÏ´Â º¹À⼺

Porter's Five Forces : ¾ÈÀüÇÑ ´ÙÀÚ°£ ¿¬»ê ½ÃÀåÀ» Ž»öÇÏ´Â Àü·«Àû µµ±¸

Porter's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ½ÃÀå »óȲÀÇ °æÀï »óȲÀ» ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Porter's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÇ °æÀï·ÂÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ Ž»öÇÒ ¼ö ÀÖ´Â ¸íÈ®ÇÑ ¹æ¹ýÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÀλçÀÌÆ®¸¦ ÅëÇØ ±â¾÷Àº °­Á¡À» Ȱ¿ëÇϰí, ¾àÁ¡À» ÇØ°áÇϰí, ÀáÀçÀûÀÎ µµÀüÀ» ÇÇÇϰí, º¸´Ù °­·ÂÇÑ ½ÃÀå Æ÷Áö¼Å´×À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : ¾ÈÀüÇÑ ´ÙÀÚ°£ ¿¬»ê ½ÃÀåÀÇ ¿ÜºÎ ¿µÇâ·Â ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº ¾ÈÀüÇÑ ´ÙÀÚ°£ ¿¬»ê ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀο¡ ´ëÇÑ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇϸç, PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀû À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£µµ, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¼±Á¦ÀûÀÌ°í ´Éµ¿ÀûÀÎ ÀÇ»ç°áÁ¤À» ³»¸± Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® : ¾ÈÀüÇÑ ´ÙÀÚ°£ ¿¬»ê ½ÃÀå¿¡¼­ÀÇ °æÀï »óȲ ÆÄ¾Ç

¾ÈÀüÇÑ ´ÙÀÚ°£ ¿¬»ê ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ º¥´õÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¼öÀÍ, °í°´ ±â¹Ý, ¼ºÀå·ü°ú °°Àº ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀïÀû À§Ä¡¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®Àº ½ÃÀåÀÇ ÁýÁßÈ­, ´ÜÆíÈ­, ÅëÇÕÀÇ Ãß¼¼¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖÀ¸¸ç, °ø±Þ¾÷ü´Â Ä¡¿­ÇÑ °æÀï ¼Ó¿¡¼­ ÀÚ½ÅÀÇ ÀÔÁö¸¦ °­È­ÇÒ ¼ö ÀÖ´Â Àü·«Àû ÀÇ»ç°áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ ÀλçÀÌÆ®¸¦ ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º : ¾ÈÀüÇÑ ´ÙÀÚ°£ ¿¬»ê ½ÃÀå¿¡¼­ÀÇ º¥´õ ¼º°ú Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â ¾ÈÀüÇÑ ´ÙÀÚ°£ ¿¬»ê ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ ¸ÅÆ®¸¯½º¸¦ ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº º¥´õÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±â¹ÝÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ºÎÇÕÇÏ´Â Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖÀ¸¸ç, 4°³ÀÇ »çºÐ¸éÀ¸·Î º¥´õ¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ¼¼ºÐÈ­ÇÏ¿© Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê¿Í ¼Ö·ç¼ÇÀ» ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù. Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê¿Í ¼Ö·ç¼ÇÀ» ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù.

¾ÈÀüÇÑ ´ÙÀÚ°£ ¿¬»ê ½ÃÀå¿¡¼­ ¼º°øÇϱâ À§ÇÑ Àü·« ºÐ¼® ¹× ±ÇÀå »çÇ×

¾ÈÀüÇÑ ´ÙÀÚ°£ ¿¬»ê ½ÃÀå Àü·« ºÐ¼®Àº ¼¼°è ½ÃÀå¿¡¼­ÀÇ ÀÔÁö¸¦ °­È­ÇϰíÀÚ ÇÏ´Â ±â¾÷¿¡°Ô ÇʼöÀûÀÔ´Ï´Ù. ÁÖ¿ä ÀÚ¿ø, ¿ª·® ¹× ¼º°ú ÁöÇ¥¸¦ °ËÅäÇÔÀ¸·Î½á ±â¾÷Àº ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀ» ÅëÇØ ±â¾÷Àº °æÀï ȯ°æÀÇ µµÀüÀ» ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» ´Þ¼ºÇÒ ¼ö ÀÖµµ·Ï ÁغñÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀå¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõµµ : ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·Â Æò°¡.

2. ½ÃÀå °³Ã´µµ : ½ÅÈï ½ÃÀå¿¡¼­ÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇϰí, ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡Çϸç, ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù°¢È­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä ¹ßÀü, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï »óȲÀ» öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú ¹ßÀü µîÀ» °ËÅäÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ÇâÈÄ ½ÃÀå ¼ºÀåÀ» ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÷´Ü ±â¼ú, ¿¬±¸ °³¹ß Ȱµ¿ ¹× Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

ÀÌÇØ°ü°èÀÚµéÀÌ ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï ´ÙÀ½°ú °°Àº Áß¿äÇÑ Áú¹®¿¡ ´ëÇÑ ´äº¯µµ Á¦°øÇÕ´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå Àü¸ÁÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹®, Áö¿ªÀº ¾îµðÀΰ¡?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õÀÇ ½ÃÀå ÁøÀÔ ¹× ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
    • ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ±âȸ
    • °úÁ¦
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡
    • °æÁ¦
    • »çȸ
    • ±â¼ú
    • ¹ý·ü
    • ȯ°æ

Á¦6Àå ¾ÈÀüÇÑ ´ÙÀÚ°£ ¿¬»ê ½ÃÀå : Á¦Ç°º°

  • ¼­ºñ½º
  • ¼ÒÇÁÆ®¿þ¾î

Á¦7Àå ¾ÈÀüÇÑ ´ÙÀÚ°£ ¿¬»ê ½ÃÀå : ¿î¿µ ÇÁ·¹ÀÓ¿öÅ©º°

  • ºÐ»ê ÄÄÇ»ÆÃ
  • ÇÁ·ÎÅäÄÝ ±â¹Ý

Á¦8Àå ¾ÈÀüÇÑ ´ÙÀÚ°£ ¿¬»ê ½ÃÀå : º¸¾È º¸Áõº°

  • °è»ê º¸¾È
  • Á¤º¸ÀÌ·ÐÀû º¸¾È
  • ¾ÇÀÇÀû º¸¾È

Á¦9Àå ¾ÈÀüÇÑ ´ÙÀÚ°£ ¿¬»ê ½ÃÀå : ¿ëµµº°

  • µ¥ÀÌÅÍ °øÀ¯¿Í ºÐ¼®
  • ºÎÁ¤ÇàÀ§ °ËÃâ
  • ¸Ó½Å·¯´×°ú AI
  • ½º¸¶Æ® °è¾à

Á¦10Àå ¾ÈÀüÇÑ ´ÙÀÚ°£ ¿¬»ê ½ÃÀå : µµÀÔ ¸ðµ¨º°

  • Ŭ¶ó¿ìµå»ó
  • ¿ÂÇÁ·¹¹Ì½º

Á¦11Àå ¾ÈÀüÇÑ ´ÙÀÚ°£ ¿¬»ê ½ÃÀå : Á¶Á÷ ±Ô¸ðº°

  • ´ë±â¾÷
  • Áß¼Ò±â¾÷

Á¦12Àå ¾ÈÀüÇÑ ´ÙÀÚ°£ ¿¬»ê ½ÃÀå : ¾÷°èº°

  • ÆÄÀ̳½½º
  • Á¤ºÎ
  • ÇコÄɾî
  • ¼Ò¸Å¡¤E-Commerce
  • Å×Å©³î·¯Áö

Á¦13Àå ¾Æ¸Þ¸®Ä«ÀÇ ¾ÈÀüÇÑ ´ÙÀÚ°£ ¿¬»ê ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦14Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¾ÈÀüÇÑ ´ÙÀÚ°£ ¿¬»ê ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦15Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ¾ÈÀüÇÑ ´ÙÀÚ°£ ¿¬»ê ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®
  • ¿µ±¹

Á¦16Àå °æÀï »óȲ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2023³â
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2023³â
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
  • Àü·« ºÐ¼®°ú Á¦¾È

±â¾÷ ¸®½ºÆ®

  • Alibaba Group Holding Limited
  • Amazon Web Services, Inc.
  • Ant Group
  • Coinbase Global, Inc.
  • Duality Technologies Inc.
  • Enveil, Inc.
  • Fortanix Inc.
  • Google LLC by Alphabet Inc.
  • Inpher
  • Intel Corporation
  • International Business Machines Corporation
  • Meta Platforms, Inc.
  • Microsoft Corporation
  • NEC Corporation
  • Stealth Software Technologies, Inc.
ksm 24.11.08

The Secure Multiparty Computation Market was valued at USD 938.06 million in 2023, expected to reach USD 1,030.46 million in 2024, and is projected to grow at a CAGR of 9.92%, to USD 1,818.88 million by 2030.

Secure Multiparty Computation (MPC) is a cryptographic protocol that enables multiple parties to jointly compute a function over their inputs while keeping those inputs private. The necessity for MPC is increasingly driven by a growing demand for data privacy and security in sectors such as finance, healthcare, and telecommunications. Its significant application lies in collaborative data analysis where confidentiality must be maintained, ensuring that sensitive information is not exposed. End-use industries leveraging MPC include banking for secure transaction validation, healthcare for privacy-preserving genomic analysis, and advertising for secure ad targeting without data leakage. The growing regulatory concerns over data privacy are a key driver for MPC's market growth, with stringent data protection laws such as GDPR and CCPA stressing the need for secure data handling solutions. Furthermore, the advancement of quantum computing stands as both a motivating factor for MPC's application and a challenge, pushing for robustness against potential quantum attacks. A notable opportunity lies in the integration of MPC with blockchain technology, providing enhanced security for decentralized applications. Companies can focus on developing hybrid solutions that leverage both MPC and blockchain to capture new opportunities in sectors like decentralized finance (DeFi). However, challenges such as high computational costs and complexities associated with MPC protocols can hinder seamless adoption. Adoption can be further restricted by scalability issues and the expertise required to implement MPC solutions efficiently. To overcome these challenges, businesses should invest in research directed towards optimizing MPC protocols to enhance performance and reduce costs. Exploring innovations in homomorphic encryption and zero-knowledge proofs as complementary technologies can provide business growth avenues. Research in automated protocol design, addressing computational overhead, and improving user interfaces for easier implementation will drive MPC adoption forward. The market's nature is currently nascent but rapidly evolving, with potential for substantial growth as organizations prioritize data confidentiality and security in their operations.

KEY MARKET STATISTICS
Base Year [2023] USD 938.06 million
Estimated Year [2024] USD 1,030.46 million
Forecast Year [2030] USD 1,818.88 million
CAGR (%) 9.92%

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Secure Multiparty Computation Market

The Secure Multiparty Computation Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Rising awareness and incidents of data breaches and the need for more secure and reliable computational methods
    • Growing collaboration among tech firms and government organizations for privacy-preserving computation methodologies
  • Market Restraints
    • Data privacy and security concerns associated with SMPC
  • Market Opportunities
    • Ongoing development in cryptographic techniques and enhanced computational efficiency for SMPC
    • Increasing adoption in healthcare settings to maintain the privacy and security of patient data
  • Market Challenges
    • Complexities associated with integrating SMPC solutions with existing infrastructures and technologies

Porter's Five Forces: A Strategic Tool for Navigating the Secure Multiparty Computation Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Secure Multiparty Computation Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Secure Multiparty Computation Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Secure Multiparty Computation Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Secure Multiparty Computation Market

A detailed market share analysis in the Secure Multiparty Computation Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Secure Multiparty Computation Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Secure Multiparty Computation Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Secure Multiparty Computation Market

A strategic analysis of the Secure Multiparty Computation Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Secure Multiparty Computation Market, highlighting leading vendors and their innovative profiles. These include Alibaba Group Holding Limited, Amazon Web Services, Inc., Ant Group, Coinbase Global, Inc., Duality Technologies Inc., Enveil, Inc., Fortanix Inc., Google LLC by Alphabet Inc., Inpher, Intel Corporation, International Business Machines Corporation, Meta Platforms, Inc., Microsoft Corporation, NEC Corporation, and Stealth Software Technologies, Inc..

Market Segmentation & Coverage

This research report categorizes the Secure Multiparty Computation Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Product, market is studied across Services and Software.
  • Based on Operational Framework, market is studied across Distributed Computing and Protocol-Based.
  • Based on Security Guarantees, market is studied across Computational Security, Information-Theoretic Security, and Malicious Security.
  • Based on Application, market is studied across Data Sharing & Analysis, Fraud Detection, Machine Learning & AI, and Smart Contracts.
  • Based on Deployment Model, market is studied across On-Cloud and On-Premises.
  • Based on Organization Size, market is studied across Large Enterprises and Small & Medium Enterprises (SMEs).
  • Based on Industry, market is studied across Finance, Government, Healthcare, Retail & E-commerce, and Technology.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Rising awareness and incidents of data breaches and the need for more secure and reliable computational methods
      • 5.1.1.2. Growing collaboration among tech firms and government organizations for privacy-preserving computation methodologies
    • 5.1.2. Restraints
      • 5.1.2.1. Data privacy and security concerns associated with SMPC
    • 5.1.3. Opportunities
      • 5.1.3.1. Ongoing development in cryptographic techniques and enhanced computational efficiency for SMPC
      • 5.1.3.2. Increasing adoption in healthcare settings to maintain the privacy and security of patient data
    • 5.1.4. Challenges
      • 5.1.4.1. Complexities associated with integrating SMPC solutions with existing infrastructures and technologies
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Product: Introduction of advanced SMPC software for confidential communication and data analysis
    • 5.2.2. Application: Utilization of SMPC in BFSI sector to identify potential fraudulent activities and ensure client confidentiality
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Secure Multiparty Computation Market, by Product

  • 6.1. Introduction
  • 6.2. Services
  • 6.3. Software

7. Secure Multiparty Computation Market, by Operational Framework

  • 7.1. Introduction
  • 7.2. Distributed Computing
  • 7.3. Protocol-Based

8. Secure Multiparty Computation Market, by Security Guarantees

  • 8.1. Introduction
  • 8.2. Computational Security
  • 8.3. Information-Theoretic Security
  • 8.4. Malicious Security

9. Secure Multiparty Computation Market, by Application

  • 9.1. Introduction
  • 9.2. Data Sharing & Analysis
  • 9.3. Fraud Detection
  • 9.4. Machine Learning & AI
  • 9.5. Smart Contracts

10. Secure Multiparty Computation Market, by Deployment Model

  • 10.1. Introduction
  • 10.2. On-Cloud
  • 10.3. On-Premises

11. Secure Multiparty Computation Market, by Organization Size

  • 11.1. Introduction
  • 11.2. Large Enterprises
  • 11.3. Small & Medium Enterprises (SMEs)

12. Secure Multiparty Computation Market, by Industry

  • 12.1. Introduction
  • 12.2. Finance
  • 12.3. Government
  • 12.4. Healthcare
  • 12.5. Retail & E-commerce
  • 12.6. Technology

13. Americas Secure Multiparty Computation Market

  • 13.1. Introduction
  • 13.2. Argentina
  • 13.3. Brazil
  • 13.4. Canada
  • 13.5. Mexico
  • 13.6. United States

14. Asia-Pacific Secure Multiparty Computation Market

  • 14.1. Introduction
  • 14.2. Australia
  • 14.3. China
  • 14.4. India
  • 14.5. Indonesia
  • 14.6. Japan
  • 14.7. Malaysia
  • 14.8. Philippines
  • 14.9. Singapore
  • 14.10. South Korea
  • 14.11. Taiwan
  • 14.12. Thailand
  • 14.13. Vietnam

15. Europe, Middle East & Africa Secure Multiparty Computation Market

  • 15.1. Introduction
  • 15.2. Denmark
  • 15.3. Egypt
  • 15.4. Finland
  • 15.5. France
  • 15.6. Germany
  • 15.7. Israel
  • 15.8. Italy
  • 15.9. Netherlands
  • 15.10. Nigeria
  • 15.11. Norway
  • 15.12. Poland
  • 15.13. Qatar
  • 15.14. Russia
  • 15.15. Saudi Arabia
  • 15.16. South Africa
  • 15.17. Spain
  • 15.18. Sweden
  • 15.19. Switzerland
  • 15.20. Turkey
  • 15.21. United Arab Emirates
  • 15.22. United Kingdom

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2023
  • 16.2. FPNV Positioning Matrix, 2023
  • 16.3. Competitive Scenario Analysis
    • 16.3.1. Startup Pyte Secures USD 5 Million to Revolutionize Secure Data Collaboration in Finance and Healthcare
    • 16.3.2. Inpher Unveils SecurAI, a No-Cost, Privacy-Focused AI Solution Using a Trusted Execution Environment to Secure Sensitive Data
    • 16.3.3. Trust Stamp Partners with Partisia to Enhance Data Privacy and Comply with Global Regulations Using Secure Multiparty Computation Technology
  • 16.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Alibaba Group Holding Limited
  • 2. Amazon Web Services, Inc.
  • 3. Ant Group
  • 4. Coinbase Global, Inc.
  • 5. Duality Technologies Inc.
  • 6. Enveil, Inc.
  • 7. Fortanix Inc.
  • 8. Google LLC by Alphabet Inc.
  • 9. Inpher
  • 10. Intel Corporation
  • 11. International Business Machines Corporation
  • 12. Meta Platforms, Inc.
  • 13. Microsoft Corporation
  • 14. NEC Corporation
  • 15. Stealth Software Technologies, Inc.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦