½ÃÀ庸°í¼­
»óǰÄÚµå
1584729

¼¼°èÀÇ Ç×°ø±â¿ë ¼¾¼­ ½ÃÀå : Ç÷§Æû, ¼¾¼­ À¯Çü, Ä¿³ØÆ¼ºñƼ, ¿ëµµ, ÃÖÁ¾ »ç¿ëÀÚº° ¿¹Ãø(2025-2030³â)

Aircraft Sensors Market by Platform, Sensor Type, Connectivity, Application, End-User - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 197 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Ç×°ø±â ¼¾¼­ ½ÃÀåÀº 2023³â¿¡ 41¾ï 7,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2024³â¿¡´Â 45¾ï 1,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 8.33%·Î ¼ºÀåÇÏ¿©, 2030³â¿¡´Â 73¾ï 1,000¸¸ ´Þ·¯°¡ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Ç×°ø±â ¼¾¼­ ½ÃÀåÀº ¿Âµµ, ¾Ð·Â, ±ÙÁ¢µµ, ¼Óµµ, °¡¼Óµµ µîÀÇ ÆÄ¶ó¹ÌÅ͸¦ ÃøÁ¤ÇÏ´Â ¼¾¼­¸¦ Æ÷ÇÔÇÑ ºñÇà ¿î¿µ, ¾ÈÀü¼º, ¼º´É ºÐ¼®¿¡ Áß¿äÇÑ µ¥ÀÌÅ͸¦ Á¦°øÇÏ´Â µ¥ ÁßÁ¡À» µÎ¾î Á¤ÀǵǾú½À´Ï´Ù. ÀÌ·¯ÇÑ ¼¾¼­ÀÇ Çʿ伺Àº ¾ÈÁ¤ÀûÀÎ ºñÇà Á¦¾î, ÃÖÀûÈ­µÈ Ç×°ø±â ¼º´É, °­È­µÈ ¾ÈÀü ´ëÃ¥À» À§ÇÑ Á¤È®ÇÑ µ¥ÀÌÅÍ È¹µæÀ» º¸ÀåÇÏ´Â ´É·Â¿¡ ÀÖ½À´Ï´Ù. Apple¸®ÄÉÀ̼ÇÀº ¹Î°£, ¹æÀ§, ÀÏ¹Ý Ç×°ø ºÎ¹®¿¡ °ÉÃÄ ÀÖÀ¸¸ç ÃÖÁ¾ »ç¿ëÀÚ´Â Ç×°ø»ç, Ç×°ø±â Á¦Á¶¾÷ü ¹× MRO ¼­ºñ½º Á¦°ø ¾÷ü¸¦ Æ÷ÇÔÇÕ´Ï´Ù. ÁÖµÈ ¼ºÀå ¿äÀÎÀ¸·Î´Â ¼ÒÇüÈ­³ª °í°¨µµÈ­ µî ¼¾¼­ ±â¼úÀÇ Áøº¸¸¦ µé ¼ö ÀÖÀ¸¸ç, º¸´Ù ½º¸¶Æ®Çϰí È¿À²ÀûÀÎ ºñÇà Á¶ÀÛ ¼ö¿ä¿¡ ºÎÀÀÇÔ°ú µ¿½Ã¿¡ º¸´Ù ¿¬ºñ È¿À²ÀÌ ³ôÀº µðÁöÅÐ ÅëÇÕÇü Ç×°ø±â¿¡ ´ëÇÑ °æÇâµµ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. »ç¹°ÀÎÅͳÝ(IoT)À» Ȱ¿ëÇÏ¿© ½Ç½Ã°£ µ¥ÀÌÅÍ ¸ð´ÏÅ͸µ ¹× ¿¹º¸º¸ÀüÀ» ¼öÇàÇÏ°í ´Ù¿îŸÀÓ°ú ¿îÇ× ºñ¿ëÀ» Àý°¨ÇÏ´Â »õ·Î¿î ºñÁî´Ï½º ±âȸ°¡ ÀÖ½À´Ï´Ù. ±×·¯³ª °í±Þ ¼¾¼­ÀÇ °íºñ¿ë, ±â¼úÀû º¹À⼺, Ç×°ø±â ½Ã½ºÅÛ¿¡ ¼¾¼­ ÅëÇÕÀ» ±ÔÁ¤ÇÏ´Â ¾ö°ÝÇÑ ±ÔÁ¦ ¿ä°Ç µîÀÇ °úÁ¦·Î ÀÎÇØ ½ÃÀå ¼ºÀåÀÌ Á¦¾àµÇ°í ÀÖ½À´Ï´Ù. ±â¼ú Çõ½ÅÀÇ °¡´É¼º¿¡´Â µ¥ÀÌÅÍ Ã³¸® ´É·Â°ú ¿¡³ÊÁö È¿À²À» ³ôÀÎ ¼¾¼­ÀÇ °³¹ßÀÌ Æ÷ÇԵǾî ÇöÀçÀÇ ÇѰ迡 ´ëóÇÏ°í ½º¸¶Æ® Ç×°ø±â ±â¼úÀÇ »õ·Î¿î ±æÀ» ¿­¾îÁÝ´Ï´Ù. ¶ÇÇÑ ÀΰøÁö´É°ú ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀ» ÅëÇÕÇÏ¿© º¹ÀâÇÑ µ¥ÀÌÅÍ ºÐ¼® ¹× ¿¹Ãø ±â´ÉÀ» °¡´ÉÇÏ°Ô ÇÏ°í ¼¾¼­ ¼º´ÉÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ±Þ¼ÓÇÑ ±â¼ú Áøº¸¿Í ½ÃÀå °æÀïÀÇ Çʿ伺À¸·Î ¾÷°è °¢ ȸ»ç´Â ¿ìÀ§¸¦ À¯ÁöÇϱâ À§ÇØ Áö¼ÓÀûÀÎ ±â¼ú Çõ½Å¿¡ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ªÇÐÀ» Á¾ÇÕÀûÀ¸·Î ÀÌÇØÇÔÀ¸·Î½á ±â¾÷Àº ¼ºÀå ±âȸ¸¦ Ȱ¿ëÇÏ¿© ¼¾¼­ÀÇ ³»±¸¼º, »óÈ£¿î¿ë¼º, ±âÁ¸ Ç×°ø±â ½Ã½ºÅÛ°úÀÇ ÅëÇÕ µî ÃÖ´ëÇÑÀÇ È¿°ú¸¦ ±â´ëÇÒ ¼ö ÀÖ´Â ºÐ¾ß·Î ¿¬±¸°³¹ß ÁýÁßÇÏ°í ¹Ì·¡ÀÇ Åº·Â¼º°ú ½ÃÀå¿¡¼­ ¸®´õ½ÊÀ» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ(2023) 41¾ï 7,000¸¸ ´Þ·¯
¿¹Ãø³â(2024) 45¾ï 1,000¸¸ ´Þ·¯
¿¹Ãø³â(2030) 73¾ï 1,000¸¸ ´Þ·¯
º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)(%) 8.33%

½ÃÀå ¿ªÇÐ : ºü¸£°Ô ÁøÈ­ÇÏ´Â Ç×°ø±â ¼¾¼­ ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

Ç×°ø±â¿ë ¼¾¼­ ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ë¿¡ ÀÇÇØ º¯¸ð¸¦ ÀÌ·ç°í ÀÖ½À´Ï´Ù. Á¤¹ÐÈ­, »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ ȹµæ ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦ÀûÀÎ ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ °æ°¨ÇÒ ¼ö ÀÖÀ½°ú µ¿½Ã¿¡ ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë°ú ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ»º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ½Ç½Ã°£À¸·Î ÀÚµ¿È­µÈ ¿ëµµ¿¡ ´ëÇÑ ¼ö¿ä°¡ Ç×»ó ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.
    • AbbVie¿À´Ð½ºÀÇ Á߿伺À» ¼ö¹ÝÇÏ´Â ¹Î°£ Ç×°ø »ê¾÷ÀÇ ¼ºÀå
    • °¢ °æÁ¦±Ç¿¡ À־ÀÇ ±º»ç Ç×°øºñ Áõ°¡
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ¼³°è ¹× ÅëÇÕ¿¡ µå´Â ºñ¿ëÀÌ ³ôÀº Ç×°ø±â¿ë ¼¾¼­
  • ½ÃÀå ±âȸ
    • ÷´Ü Ç×°ø±â¿ë ¼¾¼­ °³¹ß Áß½Ã
    • Ç×°ø ±¸±ÞÂ÷³ª ¿¡¾î Åýà ±â¼úÀÇ Àαâ¿Í ±âÈ£ÀÇ °íÁ¶
  • ½ÃÀåÀÇ °úÁ¦
    • Ç×°ø±â ¼¾¼­¿Í °ü·ÃµÈ ¾ö°ÝÇÑ ±ÔÁ¦¿Í »çÀ̹ö º¸¾È¿¡ ´ëÇÑ ¿ì·Á°¡ Áõ°¡

Porter's Five Forces : Ç×°ø±â ¼¾¼­ ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Porter's Five Forces Framework´Â Ç×°ø±â ¼¾¼­ ½ÃÀå °æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Porter's Five Forces Framework´Â ±â¾÷ÀÇ °æÀï·ÂÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ ޱ¸ÇÏ´Â ¸íÈ®ÇÑ ±â¼úÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ© ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» °áÁ¤ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÀλçÀÌÆ®À» ÅëÇØ ±â¾÷Àº ÀÚ»çÀÇ °­Á¡À» Ȱ¿ëÇϰí, ¾àÁ¡À» ÇØ°áÇϰí, ÀáÀçÀûÀÎ °úÁ¦¸¦ ÇÇÇÒ ¼ö ÀÖÀ¸¸ç, º¸´Ù °­ÀÎÇÑ ½ÃÀå¿¡¼­ÀÇ Æ÷Áö¼Å´×À» º¸ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : Ç×°ø±â ¼¾¼­ ½ÃÀå¿¡¼­ ¿ÜºÎ ¿µÇâÀ» ÆÄ¾Ç

¿ÜºÎ °Å½ÃÀû ȯ°æ ¿äÀÎÀº Ç×°ø±â ¼¾¼­ ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇϴµ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀÎ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¾ÕÀ¸·Î ¿¹»óµÇ´Â Àû±ØÀûÀÎ ÀÇ»ç °áÁ¤À» ÇÒ Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® : Ç×°ø±â ¼¾¼­ ½ÃÀå °æÀï ±¸µµ ÆÄ¾Ç

Ç×°ø±â ¼¾¼­ ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¼öÀÍ, °í°´ ±â¹Ý, ¼ºÀå·ü µî ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀï Æ÷Áö¼Å´×À» ¹àÈú ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ½ÃÀå ÁýÁß, ´ÜÆíÈ­, ÅëÇÕ µ¿ÇâÀ» ¹àÇô³»°í °ø±Þ¾÷ü´Â °æÀïÀÌ Ä¡¿­ÇØÁö¸é¼­ ÀÚ»çÀÇ ÁöÀ§¸¦ ³ôÀÌ´Â Àü·«Àû ÀÇ»ç °áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ Áö½ÄÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º Ç×°ø±â ¼¾¼­ ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â Ç×°ø±â ¼¾¼­ ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ¿¡ ±â¹ÝÇÑ ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. 4°³ÀÇ »çºÐ¸éÀ» ÅëÇØ º¥´õ¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ºÎ¹®È­Çϰí Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê ¹× ¼Ö·ç¼ÇÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× ±ÇÀå Ç×°ø±â ¼¾¼­ ½ÃÀå¿¡¼­ ¼º°ø¿¡ ´ëÇÑ ±æÀ» ±×¸³´Ï´Ù.

Ç×°ø±â ¼¾¼­ ½ÃÀåÀÇ Àü·« ºÐ¼®Àº ½ÃÀå¿¡¼­ÀÇ ÇÁ·¹Á𽺠°­È­¸¦ ¸ñÇ¥·Î ÇÏ´Â ±â¾÷¿¡ ÇʼöÀûÀÎ ¿ä¼ÒÀÔ´Ï´Ù. ÀÌ Á¢±Ù¹ýÀ» ÅëÇØ °æÀï ±¸µµ¿¡¼­ °úÁ¦¸¦ ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö ÀÖ´Â ½Ã½ºÅÛÀ» ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀåÀÇ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ : ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·Â Æò°¡.

2. ½ÃÀå °³Ã´µµ : ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡ÇÏ¸ç ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, R&D Ȱµ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¾ò°í ÀÇ»ç°áÁ¤À» ÇÒ ¼ö ÀÖµµ·Ï Áß¿äÇÑ Áú¹®¿¡ ´ë´äÇϰí ÀÖ½À´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹® ¹× Áö¿ªÀº ¾îµðÀԴϱî?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ, ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • ½Ç½Ã°£ ¹× ÀÚµ¿È­ ¿ëµµ¿¡ ´ëÇÑ ¼ö¿ä°¡ ²÷ÀÓ¾øÀÌ Áõ°¡
      • Ç×°øÀüÀÚ°øÇÐÀÇ Á߿伺°ú ÇÔ²² ¼ºÀåÇÏ´Â »ó¾÷Ç×°ø»ê¾÷
      • °¢±¹ÀÇ ±º»çÇ×°ø ÁöÃâÀÌ Áõ°¡
    • ¾ïÁ¦¿äÀÎ
      • Ç×°ø±â¿ë ¼¾¼­ÀÇ ¼³°è¿Í ÅëÇÕ¿¡ µå´Â ºñ¿ëÀÌ ³ô´Ù
    • ±âȸ
      • °í±Þ Ç×°ø±â¿ë ¼¾¼­ÀÇ °³¹ßÀ» Áß½Ã
      • Ç×°ø ±¸±ÞÂ÷¿Í Ç×°ø Åýà ±â¼úÀÇ Àαâ¿Í È£°¨µµ Áõ°¡
    • °úÁ¦
      • Ç×°ø±â ¼¾¼­¿Í °ü·ÃµÈ ¾ö°ÝÇÑ ±ÔÁ¦ ¹× »çÀ̹ö º¸¾È ¿ì·Á°¡ Áõ°¡
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡Àû
    • °æÁ¦
    • »ç±³
    • ±â¼úÀû
    • ¹ý·ü»ó
    • ȯ°æ

Á¦6Àå Ç×°ø±â¿ë ¼¾¼­ ½ÃÀå : Ç÷§Æûº°

  • Àüµ¿ ¼öÁ÷ ÀÌÂø·ú
    • ±¸±ÞÇ×°ø
    • ¿¡¾îÅýÃ
    • È­¹° Ç×°ø±â
  • °íÁ¤ÀÍ Ç×°ø±â
    • ºñÁî´Ï½º Á¦Æ®¿Í ÀÏ¹Ý Ç×°ø
    • »ó¿ëÇ×°ø
      • ÇùÆøµ¿Ã¼ Ç×°ø±â
      • Áö¿ª ¼ö¼Û±â
      • ¿ÍÀÌµå ¹Ùµð ±â°è
    • ±º»çÇ×°ø
      • ÀüÅõ±â
      • Ư¼ö ÀÓ¹« Ç×°ø±â
      • ¼ö¼Û±â
  • ȸÀüÀÍ Ç×°ø±â
    • ¹Î°£ Ç︮ÄßÅÍ
    • ±º¿ë Ç︮ÄßÅÍ
  • ¹«ÀÎ Ç×°ø±â

Á¦7Àå Ç×°ø±â¿ë ¼¾¼­ ½ÃÀå : ¼¾¼­ À¯Çüº°

  • °¡¼Óµµ°è
  • °íµµ°è ¼¾¼­
  • ¿µ°¢ ¼¾¼­
  • ÇÃ·Î¿ì ¼¾¼­
  • Èû ¼¾¼­
  • GPS ¼¾¼­
  • ÀÚÀ̷νºÄÚÇÁ
  • ·¹º§ ¼¾¼­
  • ÇÇÅä ÇÁ·Îºê
  • À§Ä¡, º¯À§ ¼¾¼­
  • ¾Ð·Â ¼¾¼­
  • ±ÙÁ¢ ¼¾¼­
  • ·¹ÀÌ´õ ¼¾¼­
  • ¿¬±â °¨Áö ¼¾¼­
  • ¼Óµµ ¼¾¼­
  • ¿Âµµ ¼¾¼­
  • ÅäÅ© ¼¾¼­

Á¦8Àå Ç×°ø±â¿ë ¼¾¼­ ½ÃÀå : Á¢¼Ó¼ºº°

  • À¯¼± ¼¾¼­
  • ¹«¼± ¼¾¼­

Á¦9Àå Ç×°ø±â¿ë ¼¾¼­ ½ÃÀå : ¿ëµµº°

  • °´½Ç ¹× È­¹°½ÇÀÇ È¯°æ Á¦¾î
  • ¿£Áø
  • ºñÇà µ¥Å©¿Í ºñÇà Á¦¾î
  • Âø·ú ÀåÄ¡, ¹ÙÄû, ºê·¹ÀÌÅ©

Á¦10Àå Ç×°ø±â¿ë ¼¾¼­ ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • ¾ÖÇÁÅ͸¶ÄÏ
  • ¿À¸®Áö³Î ±â±â Á¦Á¶¾÷ü

Á¦11Àå ¾Æ¸Þ¸®Ä« Ç×°ø±â¿ë ¼¾¼­ ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦12Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Ç×°ø±â¿ë ¼¾¼­ ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦13Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« Ç×°ø±â¿ë ¼¾¼­ ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦14Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®(2023³â)
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º(2023³â)
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
  • Àü·« ºÐ¼®°ú Á¦¾È

±â¾÷ ¸ñ·Ï

  • Aircraft Cabin Modification GmbH
  • AMETEK.Inc
  • Amphenol Advanced Sensors
  • Astronics Corporation
  • Avidyne Corporation
  • Crane Aerospace & Electronics
  • Curtiss-Wright Corporation
  • General Atomics Aeronautical Systems, Inc.
  • General Electric Company
  • Honeywell International Inc
  • IST AG
  • Jewell Instruments, LLC
  • Keller America, Inc.
  • Loar Group
  • Lockheed Martin Corporation
  • Meggitt PLC
  • Parker Hannifin Corporation
  • PCB Piezotronics Inc.
  • Raytheon Technologies Corp.
  • Safran SA
  • TE Connectivity Ltd
  • Thales Group
  • TT Electronics
  • WIKA Instrument, LP
  • Woodward Inc.
BJH 24.11.14

The Aircraft Sensors Market was valued at USD 4.17 billion in 2023, expected to reach USD 4.51 billion in 2024, and is projected to grow at a CAGR of 8.33%, to USD 7.31 billion by 2030.

The aircraft sensors market is defined by its focus on providing critical data for flight operations, safety, and performance analysis, encompassing sensors that measure parameters like temperature, pressure, proximity, speed, and acceleration. The necessity of these sensors lies in their ability to ensure accurate data acquisition for stable flight controls, optimized aircraft performance, and enhanced safety measures. Applications span across commercial, defense, and general aviation sectors, with end-users including airlines, aircraft manufacturers, and MRO service providers. Key growth influencers include advancements in sensor technologies, such as miniaturization and increased sensitivity, meeting the demand for smarter and more efficient flight operations, alongside the rising trend towards more fuel-efficient and digitally integrated aircraft. Emerging opportunities lie in leveraging the Internet of Things (IoT) for real-time data monitoring and predictive maintenance, reducing downtime and operational costs. However, market growth is constrained by challenges such as high costs of advanced sensors, technical complexities, and stringent regulatory requirements governing sensor integration into aircraft systems. Potential innovations include the development of sensors with enhanced data processing capabilities and energy efficiency, addressing current limitations and opening new avenues for smart aircraft technology. Furthermore, the incorporation of artificial intelligence and machine learning algorithms can elevate sensor performance by enabling complex data analysis and predictive functionalities, creating opportunities for businesses to lead in this technologically evolving market. The competitive nature of the market, driven by rapid technology advancements and the need for regulatory compliance, pushes industry players to strive for continuous innovation to maintain an edge. A comprehensive understanding of these dynamics can enable businesses to capitalize on growth opportunities, focusing research and development on areas with maximum impact potential, such as sensor durability, interoperability, and integration with existing aircraft systems, ensuring future resilience and market leadership.

KEY MARKET STATISTICS
Base Year [2023] USD 4.17 billion
Estimated Year [2024] USD 4.51 billion
Forecast Year [2030] USD 7.31 billion
CAGR (%) 8.33%

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Aircraft Sensors Market

The Aircraft Sensors Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Constantly rising demand for real-time and automated applications
    • Growing commercial aviation industry with importance of avionics
    • Rise in military aviation spendings across economies
  • Market Restraints
    • High costs of designing and integrating aircraft sensors
  • Market Opportunities
    • Emphasizing the development of advanced aircraft sensors
    • Growing popularity and preferences for air ambulance and air taxi technologies
  • Market Challenges
    • Stringent regulations and increasing cyber security concerns associated with aircraft sensors

Porter's Five Forces: A Strategic Tool for Navigating the Aircraft Sensors Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Aircraft Sensors Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Aircraft Sensors Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Aircraft Sensors Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Aircraft Sensors Market

A detailed market share analysis in the Aircraft Sensors Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Aircraft Sensors Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Aircraft Sensors Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Aircraft Sensors Market

A strategic analysis of the Aircraft Sensors Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Aircraft Sensors Market, highlighting leading vendors and their innovative profiles. These include Aircraft Cabin Modification GmbH, AMETEK.Inc, Amphenol Advanced Sensors, Astronics Corporation, Avidyne Corporation, Crane Aerospace & Electronics, Curtiss-Wright Corporation, General Atomics Aeronautical Systems, Inc., General Electric Company, Honeywell International Inc, IST AG, Jewell Instruments, LLC, Keller America, Inc., Loar Group, Lockheed Martin Corporation, Meggitt PLC, Parker Hannifin Corporation, PCB Piezotronics Inc., Raytheon Technologies Corp., Safran S.A., TE Connectivity Ltd, Thales Group, TT Electronics, WIKA Instrument, LP, and Woodward Inc..

Market Segmentation & Coverage

This research report categorizes the Aircraft Sensors Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Platform, market is studied across Electric Vertical Take-Off and Landing, Fixed-Wing Aircraft, Rotary-Wing Aircraft, and Unmanned Aerial Vehicle. The Electric Vertical Take-Off and Landing is further studied across Air Ambulance, Air Taxi, and Cargo Air Vehicle. The Fixed-Wing Aircraft is further studied across Business Jet & General Aviation, Commercial Aviation, and Military Aviation. The Commercial Aviation is further studied across Narrow Body Aircraft, Regional Transport Aircraft, and Wide Body Aircraft. The Military Aviation is further studied across Fighter Aircraft, Special Mission Aircraft, and Transport Aircraft. The Rotary-Wing Aircraft is further studied across Civil Helicopters and Military Helicopters.
  • Based on Sensor Type, market is studied across Accelerometers, Altimeter Sensors, Angle-Of-Attack Sensors, Flow Sensors, Force Sensors, Global Positioning System Sensors, Gyroscopes, Level Sensors, Pitot Probes, Position & Displacement Sensors, Pressure Sensors, Proximity Sensors, Radar Sensors, Smoke Detection Sensors, Speed Sensors, Temperature Sensors, and Torque Sensors.
  • Based on Connectivity, market is studied across Wired Sensors and Wireless Sensors.
  • Based on Application, market is studied across Cabin & Cargo Environmental Controls, Engines, Flight Deck & Flight Controls, and Landing Gear, Wheels, & Brakes.
  • Based on End-User, market is studied across Aftermarket and Original Equipment Manufacturer.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Constantly rising demand for real-time and automated applications
      • 5.1.1.2. Growing commercial aviation industry with importance of avionics
      • 5.1.1.3. Rise in military aviation spendings across economies
    • 5.1.2. Restraints
      • 5.1.2.1. High costs of designing and integrating aircraft sensors
    • 5.1.3. Opportunities
      • 5.1.3.1. Emphasizing the development of advanced aircraft sensors
      • 5.1.3.2. Growing popularity and preferences for air ambulance and air taxi technologies
    • 5.1.4. Challenges
      • 5.1.4.1. Stringent regulations and increasing cyber security concerns associated with aircraft sensors
  • 5.2. Market Segmentation Analysis
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Aircraft Sensors Market, by Platform

  • 6.1. Introduction
  • 6.2. Electric Vertical Take-Off and Landing
    • 6.2.1. Air Ambulance
    • 6.2.2. Air Taxi
    • 6.2.3. Cargo Air Vehicle
  • 6.3. Fixed-Wing Aircraft
    • 6.3.1. Business Jet & General Aviation
    • 6.3.2. Commercial Aviation
      • 6.3.2.1. Narrow Body Aircraft
      • 6.3.2.2. Regional Transport Aircraft
      • 6.3.2.3. Wide Body Aircraft
    • 6.3.3. Military Aviation
      • 6.3.3.1. Fighter Aircraft
      • 6.3.3.2. Special Mission Aircraft
      • 6.3.3.3. Transport Aircraft
  • 6.4. Rotary-Wing Aircraft
    • 6.4.1. Civil Helicopters
    • 6.4.2. Military Helicopters
  • 6.5. Unmanned Aerial Vehicle

7. Aircraft Sensors Market, by Sensor Type

  • 7.1. Introduction
  • 7.2. Accelerometers
  • 7.3. Altimeter Sensors
  • 7.4. Angle-Of-Attack Sensors
  • 7.5. Flow Sensors
  • 7.6. Force Sensors
  • 7.7. Global Positioning System Sensors
  • 7.8. Gyroscopes
  • 7.9. Level Sensors
  • 7.10. Pitot Probes
  • 7.11. Position & Displacement Sensors
  • 7.12. Pressure Sensors
  • 7.13. Proximity Sensors
  • 7.14. Radar Sensors
  • 7.15. Smoke Detection Sensors
  • 7.16. Speed Sensors
  • 7.17. Temperature Sensors
  • 7.18. Torque Sensors

8. Aircraft Sensors Market, by Connectivity

  • 8.1. Introduction
  • 8.2. Wired Sensors
  • 8.3. Wireless Sensors

9. Aircraft Sensors Market, by Application

  • 9.1. Introduction
  • 9.2. Cabin & Cargo Environmental Controls
  • 9.3. Engines
  • 9.4. Flight Deck & Flight Controls
  • 9.5. Landing Gear, Wheels, & Brakes

10. Aircraft Sensors Market, by End-User

  • 10.1. Introduction
  • 10.2. Aftermarket
  • 10.3. Original Equipment Manufacturer

11. Americas Aircraft Sensors Market

  • 11.1. Introduction
  • 11.2. Argentina
  • 11.3. Brazil
  • 11.4. Canada
  • 11.5. Mexico
  • 11.6. United States

12. Asia-Pacific Aircraft Sensors Market

  • 12.1. Introduction
  • 12.2. Australia
  • 12.3. China
  • 12.4. India
  • 12.5. Indonesia
  • 12.6. Japan
  • 12.7. Malaysia
  • 12.8. Philippines
  • 12.9. Singapore
  • 12.10. South Korea
  • 12.11. Taiwan
  • 12.12. Thailand
  • 12.13. Vietnam

13. Europe, Middle East & Africa Aircraft Sensors Market

  • 13.1. Introduction
  • 13.2. Denmark
  • 13.3. Egypt
  • 13.4. Finland
  • 13.5. France
  • 13.6. Germany
  • 13.7. Israel
  • 13.8. Italy
  • 13.9. Netherlands
  • 13.10. Nigeria
  • 13.11. Norway
  • 13.12. Poland
  • 13.13. Qatar
  • 13.14. Russia
  • 13.15. Saudi Arabia
  • 13.16. South Africa
  • 13.17. Spain
  • 13.18. Sweden
  • 13.19. Switzerland
  • 13.20. Turkey
  • 13.21. United Arab Emirates
  • 13.22. United Kingdom

14. Competitive Landscape

  • 14.1. Market Share Analysis, 2023
  • 14.2. FPNV Positioning Matrix, 2023
  • 14.3. Competitive Scenario Analysis
  • 14.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Aircraft Cabin Modification GmbH
  • 2. AMETEK.Inc
  • 3. Amphenol Advanced Sensors
  • 4. Astronics Corporation
  • 5. Avidyne Corporation
  • 6. Crane Aerospace & Electronics
  • 7. Curtiss-Wright Corporation
  • 8. General Atomics Aeronautical Systems, Inc.
  • 9. General Electric Company
  • 10. Honeywell International Inc
  • 11. IST AG
  • 12. Jewell Instruments, LLC
  • 13. Keller America, Inc.
  • 14. Loar Group
  • 15. Lockheed Martin Corporation
  • 16. Meggitt PLC
  • 17. Parker Hannifin Corporation
  • 18. PCB Piezotronics Inc.
  • 19. Raytheon Technologies Corp.
  • 20. Safran S.A.
  • 21. TE Connectivity Ltd
  • 22. Thales Group
  • 23. TT Electronics
  • 24. WIKA Instrument, LP
  • 25. Woodward Inc.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦