½ÃÀ庸°í¼­
»óǰÄÚµå
1585603

»ýü ÀûÇÕ¼º 3D ÇÁ¸°ÆÃ Àç·á ½ÃÀå : À¯Çü, ÇüÅÂ, ¿ëµµº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Biocompatible 3D Printing Material Market by Type (Metal, Polymer), Form (Liquid, Powder), Application - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 184 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

»ýü ÀûÇÕ¼º 3D ÇÁ¸°ÆÃ Àç·á ½ÃÀåÀº 2023³â¿¡ 6¾ï 526¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2024³â¿¡´Â 7¾ï 3,266¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, CAGR 21.14%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 23¾ï 1,751¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

»ýüÀûÇÕ¼º 3D ÇÁ¸°ÆÃ Àç·á´Â ÀÓÇöõÆ®, º¸Ã¶¹° ¹× ±âŸ ÀÎü ÀûÇÕ¼º ÀÇ·á±â±â¸¦ ¸¸µå´Â µ¥ ÇʼöÀûÀ̸ç, °³Àκ° ¸ÂÃãÈ­µÈ º¹ÀâÇÑ ±¸Á¶¹° Á¦ÀÛ¿¡ ÀûÀÀÇÒ ¼ö Àֱ⠶§¹®¿¡ ÇコÄÉ¾î ºÐ¾ß Àü¹Ý¿¡ °ÉÃÄ È°¿ëµÇ°í ÀÖ½À´Ï´Ù. 3D ÇÁ¸°ÆÃ ±â¼úÀÇ ¹ßÀü°ú °³ÀÎ ¸ÂÃãÇü ÀÇ·á ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ÈûÀÔ¾î ¼ö¼ú »çÀü °èȹ ¸ðµ¨, Ä¡°ú¿ë ¿ëµµ, Á¤Çü¿Ü°ú¿ë ÀÓÇöõÆ®, ¾à¹° Àü´Þ ½Ã½ºÅÛ µî ´Ù¾çÇÑ ºÐ¾ß¿¡ °ÉÃÄ ½ÃÀå ¹üÀ§°¡ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ¼ºÀå ÃËÁø¿äÀÎÀ¸·Î´Â ¸¸¼º ÁúȯÀÇ À¯º´·ü Áõ°¡, Àα¸ °í·ÉÈ­, °­µµ, À¯¿¬¼º, »ýü ÀûÇÕ¼º µî Àç·á Ư¼ºÀ» Çâ»ó½ÃŰ´Â ±â¼ú Çõ½Å µîÀÌ ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Á¦Á¶¾÷üÀÇ R&D ÅõÀÚ Áõ°¡¿Í ÇコÄɾî ÁöÃâ È®´ëµµ ½ÃÀå È®´ë¿¡ Å©°Ô ±â¿©Çϰí ÀÖ½À´Ï´Ù. ±×·¯³ª ÀÌ ½ÃÀåÀº ³ôÀº Á¦Á¶ ºñ¿ë, ¾ö°ÝÇÑ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©, 3D ÇÁ¸°ÆÃ ±â¼ú¿¡ Á¤ÅëÇϰí ÀÚ°ÝÀ» °®Ãá Àü¹®°¡°¡ Á¦ÇÑÀûÀ̶ó´Â ¹®Á¦¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °úÁ¦¸¦ ±Øº¹Çϱâ À§Çؼ­´Â ±ÔÁ¦ Á¶È­¿Í ÇÔ²² ºñ¿ë È¿À²ÀûÀ̰í È¿À²ÀûÀÎ Á¦Á¶ °øÁ¤ °³¹ßÀÇ Çõ½ÅÀÌ ÇʼöÀûÀÔ´Ï´Ù. ÀáÀçÀûÀÎ ±âȸ·Î´Â °­È­µÈ ´Ù±â´É »ýüÀûÇÕ¼º Àç·á¸¦ ¸¸µé±â À§ÇÑ Àç·á°úÇÐÀÇ ¹ßÀü°ú ¹ÙÀÌ¿ÀÇÁ¸°ÆÃ ¹× Àç»ýÀÇ·á ºÐ¾ß·ÎÀÇ ÀÀ¿ë ºÐ¾ß È®´ë µîÀÌ ÀÖ½À´Ï´Ù. Áö¼ÓÀûÀÎ ½ÃÀå Á¶»ç¸¦ ÅëÇØ ¼ÒºñÀÚ Æ®·»µå¿Í ´ÏÁî º¯È­¸¦ ÆÄ¾ÇÇϰí, Àü·«Àû ÆÄÆ®³Ê½Ê°ú Çù·Â °ü°è¸¦ ±¸ÃàÇÏ´Â °ÍÀº ±â¾÷ÀÌ ÀÌ·¯ÇÑ ¼ºÀå ±âȸ¸¦ Ȱ¿ëÇÏ´Â µ¥ µµ¿òÀÌ µÉ °ÍÀÔ´Ï´Ù. ¶ÇÇÑ, ÈÄó¸® ±â¼ú °³¼±°ú Áö¼Ó °¡´ÉÇÑ ¹ÙÀÌ¿À ¼ÒÀ縦 Æ÷ÇÔÇÑ ¼ÒÀç ±â¹Ý È®´ë¿¡ ´ëÇÑ ÅõÀÚµµ ±â¼ú Çõ½ÅÀÇ ±æÀ» Á¦½ÃÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¾ß¿¡ ÁýÁßÇÔÀ¸·Î½á ±â¾÷µéÀº º¸´Ù ģȯ°æÀûÀ̰í ȯÀÚ ¸ÂÃãÇü ¼Ö·ç¼ÇÀ¸·Î º¯È­ÇÏ´Â ½ÃÀåÀÇ º¯È­¿¡ ¸ÂÃ߾ ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼­ ´ÙÇÐÁ¦Àû ¿¬±¸¸¦ ÃËÁøÇϰí, ºÐ¾ß¸¦ ³Ñ³ªµå´Â Çù·ÂÀ» À§ÇÑ È¯°æÀ» Á¶¼ºÇÏ´Â °ÍÀÌ ÀÌ ºÐ¾ß¿¡¼­ Å« ½ÃÀå Á¡À¯À²À» È®º¸Çϰí Áö¼ÓÀûÀÎ ºñÁî´Ï½º ¼ºÀåÀ» º¸ÀåÇÏ´Â ¿­¼è°¡ µÉ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ(2023) 6¾ï 526¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ(2024³â) 7¾ï 3,266¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ(2030³â) 23¾ï 1,751¸¸ ´Þ·¯
CAGR(%) 21.14%

½ÃÀå ¿ªÇÐ: ºü¸£°Ô ÁøÈ­ÇÏ´Â »ýü ÀûÇÕ¼º 3D ÇÁ¸°ÆÃ Àç·á ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

»ýü ÀûÇÕ¼º 3D ÇÁ¸°ÆÃ Àç·á ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ëÀ» ÅëÇØ º¯È­Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐÀÇ ÁøÈ­¸¦ ÀÌÇØÇÔÀ¸·Î½á ±â¾÷Àº Á¤º¸¿¡ ÀÔ°¢ÇÑ ÅõÀÚ °áÁ¤, Àü·«Àû ÀÇ»ç°áÁ¤, »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Æ÷ÂøÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Æ®·»µå¸¦ Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ ÁÙÀÏ ¼ö ÀÖÀ¸¸ç, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë ¹× ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • Á¦Á¶¾÷ÀÇ Çö´ëÈ­ ¹× ½Å¼ÒÀç µµÀÔ
    • ¹ÙÀÌ¿À ¼ÒÀçÀÇ º¸±Þ È®´ë
    • »ýü ÀûÇÕ¼º 3D ÇÁ¸°ÆÃ Àç·áÀÇ »ý¹°ÀÇÇÐ Àû¿ë
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • Àç·á¿Í °ü·ÃµÈ ³ôÀº ºñ¿ë
  • ½ÃÀå ±âȸ
    • ¹ÙÀÌ¿ÀÇÁ¸°ÆÃ Àå±â¿¡ 3D ÇÁ¸°ÆÃ ±â¼ú µµÀÔ Áõ°¡
    • 3D ÇÁ¸°ÆÃ Àç·á¿¡ ´ëÇÑ Á¤ºÎÀÇ ÅõÀÚ Áõ°¡
  • ½ÃÀå °úÁ¦
    • »ý»ê ¹× ǰÁú¿¡ ´ëÇÑ ¿ì·Á

Portre's Five Forces: »ýü ÀûÇÕ¼º 3D ÇÁ¸°ÆÃ Àç·á ½ÃÀå Ž»öÀ» À§ÇÑ Àü·«Àû µµ±¸

Portre's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ½ÃÀå »óȲ°æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Portre's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÇ °æÀï·ÂÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ Ž»öÇÒ ¼ö ÀÖ´Â ¸íÈ®ÇÑ ¹æ¹ýÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÅëÂû·ÂÀ» ÅëÇØ ±â¾÷Àº °­Á¡À» Ȱ¿ëÇϰí, ¾àÁ¡À» ÇØ°áÇϰí, ÀáÀçÀûÀÎ µµÀüÀ» ÇÇÇϰí, º¸´Ù °­·ÂÇÑ ½ÃÀå Æ÷Áö¼Å´×À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : »ýü ÀûÇÕ¼º 3D ÇÁ¸°ÆÃ Àç·á ½ÃÀåÀÇ ¿ÜºÎ ¿µÇâ ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº »ýü ÀûÇÕ¼º 3D ÇÁ¸°ÆÃ Àç·á ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀο¡ ´ëÇÑ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇϸç, PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀû À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£µµ, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¼±Á¦ÀûÀÌ°í ´Éµ¿ÀûÀÎ ÀÇ»ç°áÁ¤À» ³»¸± Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® »ýü ÀûÇÕ¼º 3D ÇÁ¸°ÆÃ Àç·á ½ÃÀå °æÀï ±¸µµ ÆÄ¾Ç

»ýü ÀûÇÕ¼º 3D ÇÁ¸°ÆÃ Àç·á ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ º¥´õÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¼öÀÍ, °í°´ ±â¹Ý, ¼ºÀå·ü µî ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀïÀû Æ÷Áö¼Å´×À» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®Àº ½ÃÀåÀÇ ÁýÁßÈ­, ´ÜÆíÈ­, ÅëÇÕÀÇ Ãß¼¼¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖÀ¸¸ç, °ø±Þ¾÷ü´Â Ä¡¿­ÇÑ °æÀï ¼Ó¿¡¼­ ÀÚ½ÅÀÇ ÀÔÁö¸¦ °­È­ÇÒ ¼ö ÀÖ´Â Àü·«Àû ÀÇ»ç°áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ ÅëÂû·ÂÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º »ýü ÀûÇÕ¼º 3D ÇÁ¸°ÆÃ Àç·á ½ÃÀå¿¡¼­ÀÇ º¥´õ ¼º°ú Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â »ýü ÀûÇÕ¼º 3D ÇÁ¸°ÆÃ Àç·á ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ ¸ÅÆ®¸¯½º¸¦ ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº º¥´õÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±â¹ÝÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ºÎÇÕÇÏ´Â Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖÀ¸¸ç, 4°³ÀÇ »çºÐ¸éÀ¸·Î º¥´õ¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ¼¼ºÐÈ­ÇÏ¿© Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê¿Í ¼Ö·ç¼ÇÀ» ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù. Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê¿Í ¼Ö·ç¼ÇÀ» ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù.

»ýü ÀûÇÕ¼º 3D ÇÁ¸°ÆÃ Àç·á ½ÃÀå¿¡¼­ ¼º°øÇϱâ À§ÇÑ Àü·« ºÐ¼® ¹× ±ÇÀå »çÇ×

»ýü ÀûÇÕ¼º 3D ÇÁ¸°ÆÃ Àç·á ½ÃÀåÀÇ Àü·«Àû ºÐ¼®Àº ¼¼°è ½ÃÀå¿¡¼­ ÀÔÁö¸¦ °­È­ÇϰíÀÚ ÇÏ´Â ±â¾÷¿¡°Ô ÇʼöÀûÀÔ´Ï´Ù. ÁÖ¿ä ÀÚ¿ø, ¿ª·® ¹× ¼º°ú ÁöÇ¥¸¦ °ËÅäÇÔÀ¸·Î½á ±â¾÷Àº ¼ºÀå ±âȸ¸¦ ½Äº°ÇÏ°í °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀ» ÅëÇØ °æÀï ȯ°æÀÇ µµÀüÀ» ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö ÀÖµµ·Ï ÁغñÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀå¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõµµ : ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·Â Æò°¡.

2. ½ÃÀå °³Ã´µµ: ½ÅÈï ½ÃÀå¿¡¼­ÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇϰí, ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡Çϸç, ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù°¢È­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä ¹ßÀü, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú ¹ßÀü µîÀ» °ËÅäÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÷´Ü ±â¼ú, ¿¬±¸ °³¹ß Ȱµ¿ ¹× Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

ÀÌÇØ°ü°èÀÚµéÀÌ ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï ´ÙÀ½°ú °°Àº Áß¿äÇÑ Áú¹®¿¡ ´ëÇÑ ´äº¯µµ Á¦°øÇÕ´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå Àü¸ÁÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹®, Áö¿ªÀº?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5.º¥´õ ½ÃÀå ÁøÀÔ ¹× ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
    • ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ±âȸ
    • °úÁ¦
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • PorterÀÇ Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡
    • °æÁ¦
    • »çȸ
    • ±â¼ú
    • ¹ý·ü
    • ȯ°æ

Á¦6Àå »ýü ÀûÇÕ¼º 3D ÇÁ¸°ÆÃ Àç·á ½ÃÀå : À¯Çüº°

  • ±Ý¼Ó
  • Æú¸®¸Ó

Á¦7Àå »ýü ÀûÇÕ¼º 3D ÇÁ¸°ÆÃ Àç·á ½ÃÀå : Çüź°

  • ¾×ü
  • ºÐ¸»

Á¦8Àå »ýü ÀûÇÕ¼º 3D ÇÁ¸°ÆÃ Àç·á ½ÃÀå : ¿ëµµº°

  • º¸Ã»±â
  • ÀÓÇöõÆ® ¹× º¸Ã¶
  • ÇÁ·ÎÅäŸÀÌÇÎ ¹× ¼ö¼ú °¡À̵å
  • Á¶Á÷°øÇÐ

Á¦9Àå ¾Æ¸Þ¸®Ä«ÀÇ »ýü ÀûÇÕ¼º 3D ÇÁ¸°ÆÃ Àç·á ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦10Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ »ýü ÀûÇÕ¼º 3D ÇÁ¸°ÆÃ Àç·á ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦11Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ »ýü ÀûÇÕ¼º 3D ÇÁ¸°ÆÃ Àç·á ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦12Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2023³â
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2023³â
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
  • Àü·« ºÐ¼®°ú Á¦¾È

±â¾÷ ¸®½ºÆ®

  • 3 HTi, LLC
  • 3D Systems, Inc.
  • 3Dresyns by Resyner Technologies S.L.
  • Apium Additive Technologies GmbH
  • Aspect Biosystems Ltd.
  • Cellink Bioprinting AB
  • DETAX GmbH
  • Elix Polymers SLU
  • EOS GmbH
  • Evonik Industries AG
  • Formlabs Inc.
  • General Electric
  • Hoganas AB
  • Keystone Industries
  • Renishaw PLC
  • Sandvik AB
  • Siraya Tech
  • Stratasys Ltd.
  • Xometry Europe GmbH
LSH 24.11.13

The Biocompatible 3D Printing Material Market was valued at USD 605.26 million in 2023, expected to reach USD 732.66 million in 2024, and is projected to grow at a CAGR of 21.14%, to USD 2,317.51 million by 2030.

Biocompatible 3D printing materials are crucial for creating implants, prosthetics, and other medical devices compatible with the human body, utilized across healthcare sectors due to their adaptability in fabricating complex structures tailored for individual needs. The market scope spans from surgical pre-planning models, dental applications, and orthopedic implants to drug delivery systems, fuelled by advancements in 3D printing technologies and an increasing demand for personalized medical solutions. Key growth drivers include the rising prevalence of chronic diseases, an aging population, and technological innovations that enhance material properties such as strength, flexibility, and biocompatibility. Additionally, the increasing research and development investments by manufacturers and growing healthcare expenditure significantly contribute to market expansion. However, the market faces challenges such as high production costs, stringent regulatory frameworks, and the limited availability of qualified professionals proficient in 3D printing technologies. To navigate these challenges, innovation in developing cost-effective and efficient production processes alongside regulatory harmonization is essential. Potential opportunities include advancing materials science to create enhanced, multi-functional biocompatible materials and expanding application areas into bio-printing and regenerative medicine. Conducting continuous market research to identify shifting consumer trends and needs, coupled with strategic partnerships and collaborations, can help businesses leverage these growth opportunities. Investments in improving post-processing techniques and expanding the material base to include more sustainable and bio-derived sources also present avenues for innovation. By focusing on these areas, businesses can align themselves with the evolving nature of the market, which is leaning towards more eco-friendly and patient-specific solutions. Therefore, promoting interdisciplinary research and fostering an environment for cross-sector collaboration will be key to capturing significant market share and ensuring sustained business growth in the biocompatible 3D printing material sector.

KEY MARKET STATISTICS
Base Year [2023] USD 605.26 million
Estimated Year [2024] USD 732.66 million
Forecast Year [2030] USD 2,317.51 million
CAGR (%) 21.14%

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Biocompatible 3D Printing Material Market

The Biocompatible 3D Printing Material Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Modernized manufacturing and new material introduction
    • Growing penetration of bio-based materials
    • Biomedical applications of biocompatible 3D printing material
  • Market Restraints
    • High cost associated with materials
  • Market Opportunities
    • Rising adoption of 3D printing technology in bioprinting organs
    • Growing government investments in 3D printing material
  • Market Challenges
    • Production and quality concerns

Porter's Five Forces: A Strategic Tool for Navigating the Biocompatible 3D Printing Material Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Biocompatible 3D Printing Material Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Biocompatible 3D Printing Material Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Biocompatible 3D Printing Material Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Biocompatible 3D Printing Material Market

A detailed market share analysis in the Biocompatible 3D Printing Material Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Biocompatible 3D Printing Material Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Biocompatible 3D Printing Material Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Biocompatible 3D Printing Material Market

A strategic analysis of the Biocompatible 3D Printing Material Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Biocompatible 3D Printing Material Market, highlighting leading vendors and their innovative profiles. These include 3 HTi, LLC, 3D Systems, Inc., 3Dresyns by Resyner Technologies S.L., Apium Additive Technologies GmbH, Aspect Biosystems Ltd., Cellink Bioprinting AB, DETAX GmbH, Elix Polymers SLU, EOS GmbH, Evonik Industries AG, Formlabs Inc., General Electric, Hoganas AB, Keystone Industries, Renishaw PLC, Sandvik AB, Siraya Tech, Stratasys Ltd., and Xometry Europe GmbH.

Market Segmentation & Coverage

This research report categorizes the Biocompatible 3D Printing Material Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Type, market is studied across Metal and Polymer.
  • Based on Form, market is studied across Liquid and Powder.
  • Based on Application, market is studied across Hearing Aid, Implant & Prosthesis, Prototyping & Surgical Guide, and Tissue Engineering.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Modernized manufacturing and new material introduction
      • 5.1.1.2. Growing penetration of bio-based materials
      • 5.1.1.3. Biomedical applications of biocompatible 3D printing material
    • 5.1.2. Restraints
      • 5.1.2.1. High cost associated with materials
    • 5.1.3. Opportunities
      • 5.1.3.1. Rising adoption of 3D printing technology in bioprinting organs
      • 5.1.3.2. Growing government investments in 3D printing material
    • 5.1.4. Challenges
      • 5.1.4.1. Production and quality concerns
  • 5.2. Market Segmentation Analysis
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Biocompatible 3D Printing Material Market, by Type

  • 6.1. Introduction
  • 6.2. Metal
  • 6.3. Polymer

7. Biocompatible 3D Printing Material Market, by Form

  • 7.1. Introduction
  • 7.2. Liquid
  • 7.3. Powder

8. Biocompatible 3D Printing Material Market, by Application

  • 8.1. Introduction
  • 8.2. Hearing Aid
  • 8.3. Implant & Prosthesis
  • 8.4. Prototyping & Surgical Guide
  • 8.5. Tissue Engineering

9. Americas Biocompatible 3D Printing Material Market

  • 9.1. Introduction
  • 9.2. Argentina
  • 9.3. Brazil
  • 9.4. Canada
  • 9.5. Mexico
  • 9.6. United States

10. Asia-Pacific Biocompatible 3D Printing Material Market

  • 10.1. Introduction
  • 10.2. Australia
  • 10.3. China
  • 10.4. India
  • 10.5. Indonesia
  • 10.6. Japan
  • 10.7. Malaysia
  • 10.8. Philippines
  • 10.9. Singapore
  • 10.10. South Korea
  • 10.11. Taiwan
  • 10.12. Thailand
  • 10.13. Vietnam

11. Europe, Middle East & Africa Biocompatible 3D Printing Material Market

  • 11.1. Introduction
  • 11.2. Denmark
  • 11.3. Egypt
  • 11.4. Finland
  • 11.5. France
  • 11.6. Germany
  • 11.7. Israel
  • 11.8. Italy
  • 11.9. Netherlands
  • 11.10. Nigeria
  • 11.11. Norway
  • 11.12. Poland
  • 11.13. Qatar
  • 11.14. Russia
  • 11.15. Saudi Arabia
  • 11.16. South Africa
  • 11.17. Spain
  • 11.18. Sweden
  • 11.19. Switzerland
  • 11.20. Turkey
  • 11.21. United Arab Emirates
  • 11.22. United Kingdom

12. Competitive Landscape

  • 12.1. Market Share Analysis, 2023
  • 12.2. FPNV Positioning Matrix, 2023
  • 12.3. Competitive Scenario Analysis
  • 12.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. 3 HTi, LLC
  • 2. 3D Systems, Inc.
  • 3. 3Dresyns by Resyner Technologies S.L.
  • 4. Apium Additive Technologies GmbH
  • 5. Aspect Biosystems Ltd.
  • 6. Cellink Bioprinting AB
  • 7. DETAX GmbH
  • 8. Elix Polymers SLU
  • 9. EOS GmbH
  • 10. Evonik Industries AG
  • 11. Formlabs Inc.
  • 12. General Electric
  • 13. Hoganas AB
  • 14. Keystone Industries
  • 15. Renishaw PLC
  • 16. Sandvik AB
  • 17. Siraya Tech
  • 18. Stratasys Ltd.
  • 19. Xometry Europe GmbH
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦