½ÃÀ庸°í¼­
»óǰÄÚµå
1585648

¹ÙÀÌ¿À¸ÞµðÄà MEMS ½ÃÀå : À¯Çüº°, ¿ëµµº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Biomedical Microelectromechanical Systems Market by Type (In Vivo Devices, Microcantilever Sensors), Application (Analysis, Cell Culture, Detection) - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 181 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

¹ÙÀÌ¿À¸ÞµðÄà MEMS ½ÃÀåÀº 2023³â¿¡ 56¾ï 7,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2024³â¿¡´Â 63¾ï 9,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, CAGR 12.76%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 131¾ï 5,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¹ÙÀÌ¿À¸ÞµðÄà ¸¶ÀÌÅ©·Î Àü±â ±â°è ½Ã½ºÅÛ(BioMEMS)Àº ¸¶ÀÌÅ©·Î Å×Å©³î·ÎÁö¿Í ¹ÙÀÌ¿À¸ÞµðÄà °úÇÐÀÇ À¶ÇÕÀ¸·Î ¼ÒÇüÈ­ ¹× ÀÚµ¿È­µÈ ¹ÙÀÌ¿À¸ÞµðÄà µð¹ÙÀ̽º¸¦ °¡´ÉÇÏ°Ô ÇÏ´Â °ÍÀ¸·Î, ±× ¹üÀ§´Â Áø´Ü, Ä¡·á ¹× Á¤¹Ðµµ¿Í ¼ÒÇüÈ­°¡ Áß¿äÇÑ Á¶Á÷ °øÇÐ ºÐ¾ßÀÇ ¿ëµµ¸¦ Æ÷ÇÔÇÕ´Ï´Ù. BioMEMSÀÇ Çʿ伺Àº Á¤È®ÇÏ°í ºñ¿ë È¿À²ÀûÀÌ¸ç ´ú ħ½ÀÀûÀÎ ÀÇ·á ¼Ö·ç¼ÇÀÇ Çʿ伺¿¡¼­ ºñ·ÔµÇ¾ú½À´Ï´Ù. ÁÖ¿ä ÀÀ¿ë ºÐ¾ß·Î´Â À̽ÄÇü ÀåÄ¡, ·¦¿ÂĨ ½Ã½ºÅÛ, ¾à¹° Àü´Þ¿ë ¸¶ÀÌÅ©·Î´Ïµé µîÀÌ ÀÖÀ¸¸ç, º´¿ø, ÀÓ»ó ½ÇÇè½Ç, ¿¬±¸±â°ü µî ´Ù¾çÇÑ ÃÖÁ¾ »ç¿ëÀÚ¿¡°Ô ¼­ºñ½º¸¦ Á¦°øÇÕ´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ(2023³â) 56¾ï 7,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ(2024³â) 63¾ï 9,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ(2030³â) 131¾ï 5,000¸¸ ´Þ·¯
CAGR(%) 12.76%

½ÃÀå ÀλçÀÌÆ®¿¡ µû¸£¸é, ³ª³ë±â¼úÀÇ ±â¼ú ¹ßÀü, ÇコÄɾî ÀÚ±Ý Áõ°¡, ÇöÀå Áø´Ü ¾àǰ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡°¡ ½ÃÀåÀÇ °­·ÂÇÑ ¼ºÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. Àα¸ °í·ÉÈ­¿Í ¸¸¼º ÁúȯÀÇ È®»êÀº °³ÀÎ ¸ÂÃãÇü ÀÇ·áÀÇ ÇѰ踦 ³ÐÇô ½ÃÀå È®´ë¸¦ ´õ¿í ÃËÁøÇÒ °ÍÀÔ´Ï´Ù. ÀÇ·á ÀÎÇÁ¶ó°¡ ±¸ÃàµÇ°í ÀÖ´Â ½ÅÈï±¹°ú Á¤¹ÐÀÇ·á·ÎÀÇ ÀüȯÀ¸·Î °³ÀθÂÃãÇü Ä¡·áÁ¦¿¡ ´ëÇÑ »õ·Î¿î ºñÁî´Ï½º ±âȸ°¡ Á¸ÀçÇÕ´Ï´Ù. ±â¾÷Àº ÀÇ·á ¼­ºñ½º Á¦°ø¾÷ü¿ÍÀÇ ÆÄÆ®³Ê½ÊÀ» Áß½ÃÇÏ°í Æ¯Á¤ ¹ÌÃæÁ· ÀÇ·á ¼ö¿ä¸¦ ÃæÁ·½ÃŰ´Â ¹ÙÀÌ¿ÀMEMS ¿ëµµ¸¦ Çõ½ÅÇϱâ À§ÇÑ ¿¬±¸°³¹ß¿¡ ÅõÀÚÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ±âȸ¸¦ Ȱ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

±×·¯³ª ÀÌ ½ÃÀåÀº ³ôÀº Á¦Á¶ ºñ¿ë°ú º¹ÀâÇÑ ±ÔÁ¦ °æ·Î µîÀÇ ÇѰ迡 Á÷¸éÇØ ÀÖÀ¸¸ç, ÀÌ´Â ºü¸¥ äÅðú ½ÃÀå ħÅõ¸¦ °¡·Î¸·´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ »ýü ÀûÇÕ¼º, ³»±¸¼º, È®À强 µîÀÇ ±â¼úÀû ¹®Á¦µµ Å« °É¸²µ¹·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. À̸¦ ±Øº¹Çϱâ À§ÇØ ½ÃÀå °ü°èÀÚµéÀº ÇÐ°è ¹× ´ÙÇÐÁ¦Àû ÆÀ°úÀÇ °øµ¿ ¿¬±¸¸¦ Àå·ÁÇϰí Àç·á °úÇÐ ¹× ÅëÇÕ ±â¼úÀ» ¹ßÀü½ÃÄÑ¾ß ÇÕ´Ï´Ù.

¼ºÀåÀ» À§ÇÑ Çõ½Å ºÐ¾ß·Î´Â ȯÀÚÀÇ ¼øÀÀµµ¿Í µ¥ÀÌÅÍ Á¤È®µµ¸¦ Çâ»ó½Ãų ¼ö ÀÖ´Â »ýºÐÇØ¼º ¹× ¹«¼± BioMEMSÀÇ °³¹ßÀÌ ÀÖ½À´Ï´Ù. ½Ç½Ã°£ °Ç°­ ¸ð´ÏÅ͸µ¿¡ BioMEMS¸¦ Ȱ¿ëÇϰí AI¸¦ ÅëÇÕÇÏ¿© º¸´Ù ½º¸¶Æ®ÇÑ Áø´Ü µµ±¸¸¦ °³¹ßÇÏ´Â ¿¬±¸µµ »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ âÃâÇÒ ¼ö ÀÖ½À´Ï´Ù. ½ÃÀåÀº ºü¸¥ ±â¼ú Çõ½Å°ú °æÀï ¿ªÇÐÀ» Ư¡À¸·Î Çϸç, Áö¼ÓÀûÀÎ Çõ½Å°ú º¯È­ÇÏ´Â ÀÇ·á ¼ö¿ä¿¡ ´ëÇÑ ÀûÀÀÀÌ ÇÊ¿äÇÕ´Ï´Ù. ±â¾÷Àº ¹Îø¼º°ú ¼±°ßÁö¸íÀ» À¯ÁöÇÔÀ¸·Î½á ¼ºÀå ±âȸ¸¦ È¿°úÀûÀ¸·Î Æ÷ÂøÇϰí ÁøÈ­ÇÏ´Â ¹ÙÀÌ¿ÀMEMS ȯ°æ¿¡¼­ °æÀï·ÂÀ» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå ¿ªÇÐ: ºü¸£°Ô ÁøÈ­ÇÏ´Â ¹ÙÀÌ¿À¸ÞµðÄà MEMS ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

¹ÙÀÌ¿À¸ÞµðÄà MEMS ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ë¿¡ ÀÇÇØ º¯È­Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐÀÇ ÁøÈ­¸¦ ÀÌÇØÇÔÀ¸·Î½á ±â¾÷Àº Á¤º¸¿¡ ÀÔ°¢ÇÑ ÅõÀÚ °áÁ¤, Àü·«Àû ÀÇ»ç°áÁ¤, »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Æ÷ÂøÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Æ®·»µå¸¦ Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ ¿ÏÈ­Çϰí, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë ¹× ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ¿þ¾î·¯ºí ±â¼ú äÅà Áõ°¡
    • »ç¹°ÀÎÅͳݿ¡ ´ëÀÀÇÏ´Â ±â±â¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
    • ½ÅüÀû Áø´ÜÀÇ Çʿ伺 °¨¼Ò
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ¹ÙÀÌ¿À¸ÞµðÄà MEMS °³¹ß¿¡ µû¸¥ °íºñ¿ë
  • ½ÃÀå ±âȸ
    • ¸ð¹ÙÀÏ ÇコÄÉ¾î ±â±â µµÀÔ ±ÞÁõ
    • ¹ÙÀÌ¿À ¸ÞµðÄà ¸¶ÀÌÅ©·Î Àü±â ±â°è ½Ã½ºÅÛÀÇ Áö¼ÓÀûÀÎ ¿¬±¸ ¹× °³¹ß
  • ½ÃÀå °úÁ¦
    • ½Ã°£ÀÌ ¿À·¡ °É¸®´Â Á¦Ç° ½ÂÀÎ ÀýÂ÷

Portre's Five Forces: ¹ÙÀÌ¿À¸ÞµðÄà MEMS ½ÃÀå Ž»öÀ» À§ÇÑ Àü·«Àû µµ±¸

Portre's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ¹ÙÀÌ¿À¸ÞµðÄà MEMS ½ÃÀå °æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Portre's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÇ °æÀï·ÂÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ Ž»öÇÒ ¼ö ÀÖ´Â ¸íÈ®ÇÑ ¹æ¹ýÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÅëÂû·ÂÀ» ÅëÇØ ±â¾÷Àº °­Á¡À» Ȱ¿ëÇϰí, ¾àÁ¡À» ÇØ°áÇϰí, ÀáÀçÀûÀÎ µµÀüÀ» ÇÇÇϰí, º¸´Ù °­·ÂÇÑ ½ÃÀå Æ÷Áö¼Å´×À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : ¹ÙÀÌ¿À¸ÞµðÄà MEMS ½ÃÀåÀÇ ¿ÜºÎ ¿µÇâ ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº ¹ÙÀÌ¿À¸ÞµðÄà MEMS ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀο¡ ´ëÇÑ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇϸç, PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀû À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£µµ, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¼±Á¦ÀûÀÌ°í ´Éµ¿ÀûÀÎ ÀÇ»ç°áÁ¤À» ³»¸± Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® ¹ÙÀÌ¿À¸ÞµðÄà MEMS ½ÃÀå¿¡¼­°æÀï ±¸µµ ÆÄ¾Ç

¹ÙÀÌ¿À¸ÞµðÄà MEMS ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ º¥´õÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¼öÀÍ, °í°´ ±â¹Ý, ¼ºÀå·ü°ú °°Àº ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀïÀû À§Ä¡¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®Àº ½ÃÀåÀÇ ÁýÁßÈ­, ´ÜÆíÈ­, ÅëÇÕÀÇ Ãß¼¼¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖÀ¸¸ç, °ø±Þ¾÷ü´Â Ä¡¿­ÇÑ °æÀï ¼Ó¿¡¼­ ÀÚ½ÅÀÇ ÀÔÁö¸¦ °­È­ÇÒ ¼ö ÀÖ´Â Àü·«Àû ÀÇ»ç°áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ ÅëÂû·ÂÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º ¹ÙÀÌ¿À¸ÞµðÄà MEMS ½ÃÀå¿¡¼­ÀÇ º¥´õ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â ¹ÙÀÌ¿À¸ÞµðÄà MEMS ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡ÇÒ ¼ö ÀÖ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ ¸ÅÆ®¸¯½º¸¦ ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº º¥´õÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±â¹ÝÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ºÎÇÕÇÏ´Â Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖÀ¸¸ç, 4°³ÀÇ »çºÐ¸éÀ¸·Î º¥´õ¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ¼¼ºÐÈ­ÇÏ¿© Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê¿Í ¼Ö·ç¼ÇÀ» ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù. Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê¿Í ¼Ö·ç¼ÇÀ» ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù.

¹ÙÀÌ¿À¸ÞµðÄà MEMS ½ÃÀå¿¡¼­ ¼º°øÇϱâ À§ÇÑ Àü·« ºÐ¼® ¹× ±ÇÀå »çÇ×

¹ÙÀÌ¿À¸ÞµðÄà MEMS ½ÃÀå Àü·« ºÐ¼®Àº ¼¼°è ½ÃÀå¿¡¼­ ÀÔÁö¸¦ °­È­ÇϰíÀÚ ÇÏ´Â ±â¾÷¿¡°Ô ÇʼöÀûÀÔ´Ï´Ù. ÁÖ¿ä ÀÚ¿ø, ¿ª·® ¹× ¼º°ú ÁöÇ¥¸¦ °ËÅäÇÔÀ¸·Î½á ±â¾÷Àº ¼ºÀå ±âȸ¸¦ ½Äº°ÇÏ°í °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀ» ÅëÇØ ±â¾÷Àº °æÀï ȯ°æÀÇ µµÀüÀ» ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö Àִ ü°è¸¦ ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀå¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõµµ : ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·Â Æò°¡.

2. ½ÃÀå °³Ã´µµ: ½ÅÈï ½ÃÀå¿¡¼­ÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇϰí, ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡Çϸç, ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù°¢È­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä ¹ßÀü, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú ¹ßÀü µîÀ» °ËÅäÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÷´Ü ±â¼ú, ¿¬±¸ °³¹ß Ȱµ¿ ¹× Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

ÀÌÇØ°ü°èÀÚµéÀÌ ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï ´ÙÀ½°ú °°Àº Áß¿äÇÑ Áú¹®¿¡ ´ëÇÑ ´äº¯µµ Á¦°øÇÕ´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå Àü¸ÁÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹®, Áö¿ªÀº?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5.º¥´õ ½ÃÀå ÁøÀÔ ¹× ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
    • ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ±âȸ
    • °úÁ¦
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • PorterÀÇ Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡
    • °æÁ¦
    • »çȸ
    • ±â¼ú
    • ¹ý·ü
    • ȯ°æ

Á¦6Àå ¹ÙÀÌ¿À¸ÞµðÄà MEMS ½ÃÀå : À¯Çüº°

  • »ýü³» µð¹ÙÀ̽º
  • ¸¶ÀÌÅ©·Î ĵƿ·¹¹ö ¼¾¼­

Á¦7Àå ¹ÙÀÌ¿À¸ÞµðÄà MEMS ½ÃÀå : ¿ëµµº°

  • ºÐ¼®
  • ¼¼Æ÷¹è¾ç
  • ŽÁö
  • Áø´Ü
  • ¾à¹°Àü´Þ
  • ¿Ü°ú ¼ö¼ú
  • Ä¡·á

Á¦8Àå ¾Æ¸Þ¸®Ä«ÀÇ ¹ÙÀÌ¿À¸ÞµðÄà MEMS ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦9Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¹ÙÀÌ¿À¸ÞµðÄà MEMS ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦10Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ¹ÙÀÌ¿À¸ÞµðÄà MEMS ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦11Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2023³â
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2023³â
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
  • Àü·« ºÐ¼®°ú Á¦¾È

±â¾÷ ¸®½ºÆ®

  • Abbott Laboratories
  • Analog Devices, Inc.
  • Asahi Kasei Corporation
  • Baxter International, Inc.
  • BOSCH SENSORTEC GMBH
  • Boston Micromachines Corporation
  • Koninklijke Philips N.V.
  • Lepu Medical Technology(Beijing) Co.,Ltd.
  • Medtronic Plc
  • NXP Semiconductors N.V.
  • Panasonic Corporation
  • PerkinElmer Inc.
  • SPTS Technologies Ltd. by KLA Corporation
  • TDK Corporation
  • Teledyne Digital Imaging Inc. by Teledyne Technologies company
  • Texas Instruments Incorporated
LSH 24.11.13

The Biomedical Microelectromechanical Systems Market was valued at USD 5.67 billion in 2023, expected to reach USD 6.39 billion in 2024, and is projected to grow at a CAGR of 12.76%, to USD 13.15 billion by 2030.

Biomedical Microelectromechanical Systems (BioMEMS) represent a convergence of microtechnology and biomedical sciences, enabling miniaturized and automated biomedical devices. The scope of BioMEMS encompasses applications in diagnostics, therapeutics, and tissue engineering, where precision and compactness are crucial. The necessity for BioMEMS arises from the need for accurate, cost-efficient, and minimally invasive medical solutions. Key applications include implantable devices, lab-on-a-chip systems, and microneedles for drug delivery, serving various end-users such as hospitals, clinical laboratories, and research institutes.

KEY MARKET STATISTICS
Base Year [2023] USD 5.67 billion
Estimated Year [2024] USD 6.39 billion
Forecast Year [2030] USD 13.15 billion
CAGR (%) 12.76%

Market insights reveal robust growth driven by technological advancements in nanotechnology, increased healthcare funding, and rising demand for point-of-care diagnostics. The aging population and prevalence of chronic diseases further fuel market expansion as they push the boundaries of personalized medicine. Emerging opportunities are evident in developing countries with improving healthcare infrastructure and in personalized therapeutics due to the shift towards precision medicine. Companies can leverage these opportunities by focusing on partnerships with healthcare providers and investing in R&D to innovate BioMEMS applications that address specific unmet medical needs.

However, the market faces limitations, such as high manufacturing costs and complex regulatory pathways, potentially hindering rapid adoption and market penetration. Technical challenges related to biocompatibility, durability, and scalability also pose significant hurdles. To overcome these, market players should encourage collaborative research with academic institutions and interdisciplinary teams to advance material science and integration techniques.

Innovative areas for growth include developing biodegradable and wireless BioMEMS, which promise enhanced patient compliance and data accuracy. Research into utilizing BioMEMS for real-time health monitoring and integrating AI for smarter diagnostic tools can also unlock new business opportunities. The market is characterized by rapid technological change and competitive dynamics, necessitating continuous innovation and adaptation to changing healthcare demands. By maintaining agility and foresight, businesses can effectively capture growth opportunities and establish a competitive edge in the evolving BioMEMS landscape.

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Biomedical Microelectromechanical Systems Market

The Biomedical Microelectromechanical Systems Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Rising adoption of wearable technologies
    • Growing demand for internet of things enabled devices
    • Reduction in the need for physical diagnostics
  • Market Restraints
    • High cost associated with the development of biomedical microelectromechanical systems
  • Market Opportunities
    • Surge in the adoption of mobile healthcare devices
    • Ongoing research and development in biomedical microelectromechanical systems
  • Market Challenges
    • Time consuming product approval procedures

Porter's Five Forces: A Strategic Tool for Navigating the Biomedical Microelectromechanical Systems Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Biomedical Microelectromechanical Systems Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Biomedical Microelectromechanical Systems Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Biomedical Microelectromechanical Systems Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Biomedical Microelectromechanical Systems Market

A detailed market share analysis in the Biomedical Microelectromechanical Systems Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Biomedical Microelectromechanical Systems Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Biomedical Microelectromechanical Systems Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Biomedical Microelectromechanical Systems Market

A strategic analysis of the Biomedical Microelectromechanical Systems Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Biomedical Microelectromechanical Systems Market, highlighting leading vendors and their innovative profiles. These include Abbott Laboratories, Analog Devices, Inc., Asahi Kasei Corporation, Baxter International, Inc., BOSCH SENSORTEC GMBH, Boston Micromachines Corporation, Koninklijke Philips N.V., Lepu Medical Technology(Beijing) Co.,Ltd., Medtronic Plc, NXP Semiconductors N.V., Panasonic Corporation, PerkinElmer Inc., SPTS Technologies Ltd. by KLA Corporation, TDK Corporation, Teledyne Digital Imaging Inc. by Teledyne Technologies company, and Texas Instruments Incorporated.

Market Segmentation & Coverage

This research report categorizes the Biomedical Microelectromechanical Systems Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Type, market is studied across In Vivo Devices and Microcantilever Sensors.
  • Based on Application, market is studied across Analysis, Cell Culture, Detection, Diagnostic, Drug Delivery, Surgical, and Therapeutic.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Rising adoption of wearable technologies
      • 5.1.1.2. Growing demand for internet of things enabled devices
      • 5.1.1.3. Reduction in the need for physical diagnostics
    • 5.1.2. Restraints
      • 5.1.2.1. High cost associated with the development of biomedical microelectromechanical systems
    • 5.1.3. Opportunities
      • 5.1.3.1. Surge in the adoption of mobile healthcare devices
      • 5.1.3.2. Ongoing research and development in biomedical microelectromechanical systems
    • 5.1.4. Challenges
      • 5.1.4.1. Time consuming product approval procedures
  • 5.2. Market Segmentation Analysis
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Biomedical Microelectromechanical Systems Market, by Type

  • 6.1. Introduction
  • 6.2. In Vivo Devices
  • 6.3. Microcantilever Sensors

7. Biomedical Microelectromechanical Systems Market, by Application

  • 7.1. Introduction
  • 7.2. Analysis
  • 7.3. Cell Culture
  • 7.4. Detection
  • 7.5. Diagnostic
  • 7.6. Drug Delivery
  • 7.7. Surgical
  • 7.8. Therapeutic

8. Americas Biomedical Microelectromechanical Systems Market

  • 8.1. Introduction
  • 8.2. Argentina
  • 8.3. Brazil
  • 8.4. Canada
  • 8.5. Mexico
  • 8.6. United States

9. Asia-Pacific Biomedical Microelectromechanical Systems Market

  • 9.1. Introduction
  • 9.2. Australia
  • 9.3. China
  • 9.4. India
  • 9.5. Indonesia
  • 9.6. Japan
  • 9.7. Malaysia
  • 9.8. Philippines
  • 9.9. Singapore
  • 9.10. South Korea
  • 9.11. Taiwan
  • 9.12. Thailand
  • 9.13. Vietnam

10. Europe, Middle East & Africa Biomedical Microelectromechanical Systems Market

  • 10.1. Introduction
  • 10.2. Denmark
  • 10.3. Egypt
  • 10.4. Finland
  • 10.5. France
  • 10.6. Germany
  • 10.7. Israel
  • 10.8. Italy
  • 10.9. Netherlands
  • 10.10. Nigeria
  • 10.11. Norway
  • 10.12. Poland
  • 10.13. Qatar
  • 10.14. Russia
  • 10.15. Saudi Arabia
  • 10.16. South Africa
  • 10.17. Spain
  • 10.18. Sweden
  • 10.19. Switzerland
  • 10.20. Turkey
  • 10.21. United Arab Emirates
  • 10.22. United Kingdom

11. Competitive Landscape

  • 11.1. Market Share Analysis, 2023
  • 11.2. FPNV Positioning Matrix, 2023
  • 11.3. Competitive Scenario Analysis
  • 11.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Abbott Laboratories
  • 2. Analog Devices, Inc.
  • 3. Asahi Kasei Corporation
  • 4. Baxter International, Inc.
  • 5. BOSCH SENSORTEC GMBH
  • 6. Boston Micromachines Corporation
  • 7. Koninklijke Philips N.V.
  • 8. Lepu Medical Technology(Beijing) Co.,Ltd.
  • 9. Medtronic Plc
  • 10. NXP Semiconductors N.V.
  • 11. Panasonic Corporation
  • 12. PerkinElmer Inc.
  • 13. SPTS Technologies Ltd. by KLA Corporation
  • 14. TDK Corporation
  • 15. Teledyne Digital Imaging Inc. by Teledyne Technologies company
  • 16. Texas Instruments Incorporated
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦