½ÃÀ庸°í¼­
»óǰÄÚµå
1589302

¼¼°èÀÇ µ¥ÀÌÅÍ È÷½ºÅ丮¾È ½ÃÀå : ÄÄÆ÷³ÍÆ®, Á¶Á÷ ±Ô¸ð, ¿ëµµ, µµÀÔ ÇüÅÂ, ÃÖÁ¾ »ç¿ëÀÚº° ¿¹Ãø(2025-2030³â)

Data Historian Market by Component (Services, Software/Tools), Organization Size (Large Enterprises, SMEs), Application, Deployment Mode, End-User - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 195 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

µ¥ÀÌÅÍ È÷½ºÅ丮¾È ½ÃÀåÀÇ 2023³â ½ÃÀå ±Ô¸ð´Â 16¾ï 1,000¸¸ ´Þ·¯·Î, 2024³â¿¡´Â 17¾ï 4,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 8.88%·Î ¼ºÀåÇÏ¿©, 2030³â¿¡´Â 29¾ï 2,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

µ¥ÀÌÅÍ È÷½ºÅ丮¾ÈÀº ´ë·®ÀÇ µ¥ÀÌÅͰ¡ »ý¼ºµÇ¸ç ÇÁ·Î¼¼½º °³¼± ¹× ¾÷¹« È¿À²¼ºÀ» À§ÇØ ÀúÀå, °Ë»ö, ºÐ¼®ÇØ¾ß ÇÏ´Â »ê¾÷ ȯ°æ¿¡¼­ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. DCS¿Í °°Àº ÇÁ·Î¼¼½º Á¦¾î ½Ã½ºÅÛ¿¡¼­ ½Ã°è¿­ µ¥ÀÌÅ͸¦ È¿À²ÀûÀ¸·Î ¼öÁý ¹× ÀúÀåÇϱâ À§ÇØ ¼³°èµÈ µ¥ÀÌÅͺ£À̽º·Î¼­ÀÇ ±â´ÉÀ» Æ÷ÇÔÇϰí ÀÖ½À´Ï´Ù. ÅÛÀÇ Çʿ伺Àº ºÐ¼® ¹× ÀÇ»ç °áÁ¤À» À§ÇØ È÷½ºÅ丮 µ¥ÀÌÅ͸¦ ¿Ã¹Ù¸£°Ô ¾ÆÄ«À̺êÇÏ°í ½Ç½Ã°£À¸·Î ¾×¼¼½ºÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â ´É·Â¿¡ ÀÖ½À´Ï´Ù. ºñÁî´Ï½º, Á¦¾à µîÀÇ »ê¾÷¿¡¼­ ÀÀ¿ëµË´Ï´Ù. ÃÖÁ¾ »ç¿ë ¹üÀ§´Â ¼º´É, ǰÁú ¹× À¯Áö °ü¸®¸¦ °³¼±ÇϱâÀ§ÇÑ ½Ç¿ëÀûÀÎ ÀλçÀÌÆ®À» Á¦°øÇÏ´Â °ÍÀÔ´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ(2023) 16¾ï 1,000¸¸ ´Þ·¯
¿¹Ãø³â(2024) 17¾ï 4,000¸¸ ´Þ·¯
¿¹Ãø³â(2030) 29¾ï 2,000¸¸ ´Þ·¯
º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)(%) 8.88%

½ÃÀå ÀλçÀÌÆ®¿¡ µû¸£¸é ¼ºÀå ¿äÀÎÀ¸·Î´Â ¼º´É ÃøÁ¤ ¹× ¿¹Ãø À¯Áö º¸¼ö¸¦À§ÇÑ ÅëÇÕ µ¥ÀÌÅÍ¿¡ ´ëÇÑ ¿ä±¸°¡ ³ô¾ÆÁ® ÇÁ·Î¼¼½º È¿À²¼º°ú ºñ¿ë Àý°¨À» ÃËÁøÇÕ´Ï´Ù. ÅëÇÕÀº »õ·Î¿î ±âȸ¸¦ °¡Á®¿À°í ±â¾÷Àº ÀÇ»ç °áÁ¤ ÇÁ·Î¼¼½º ÃÖÀûÈ­¸¦ ÅëÇØ °æÀï·ÂÀ» À¯ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù. ±×·¯³ª µ¥ÀÌÅÍ º¸¾È¿¡ ´ëÇÑ ¿ì·Á, °í¾×ÀÇ µµÀÔ ºñ¿ë, ¼÷·ÃµÈ ÀηÂÀÇ Çʿ伺 µî °úÁ¦°¡ Å« À庮ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ´ë±Ô¸ð µ¥ÀÌÅÍ ¼¼Æ®¸¦ °ü¸®ÇÏ¸é ¹èÆ÷°¡ º¹ÀâÇØÁú ¼ö ÀÖ½À´Ï´Ù.

Çõ½ÅÀûÀÎ ºÐ¾ß·Î´Â È®À强°ú À¯¿¬¼ºÀ» À§ÇØ Å¬¶ó¿ìµå ¼Ö·ç¼Ç°úÀÇ »óÈ£ ¿î¿ë¼ºÀ» °­È­Çϰí, ¼öÁýÇÑ µ¥ÀÌÅͷκÎÅÍ ÀÚµ¿À¸·Î ÀλçÀÌÆ®À» âÃâÇÏ´Â AI Áß½ÉÀÇ ¾Ö³Î¸®Æ½½º¸¦ °³¹ßÇÏ´Â µîÀÌ ÀÖ½À´Ï´Ù. Á¢±Ù¼ºÀ» Çâ»ó½ÃŰ´Â »ç¿ëÀÚ Ä£È­ÀûÀÎ ÀÎÅÍÆäÀ̽º¿Í ½Ç½Ã°£ µ¥ÀÌÅÍ ½Ã°¢È­ µµ±¸¿¡ ÁÖ·ÂÇÔÀ¸·Î½á »ç¿ëÀÚ¿ÍÀÇ »óÈ£ ÀÛ¿ëÀ» ´ëÆø °­È­Çϰí ä¿ëÀ» ÃËÁøÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¿¡Áö ÄÄÇ»ÆÃÀÇ ±â´ÉÀ» È®ÀåÇÏ¿© ½Å¼ÓÇÑ µ¥ÀÌÅÍ Ã³¸®¸¦ Áö¿øÇÒ ¼ö ÀÖ½À´Ï´Ù. ±âȸ¸¦ Ȱ¿ëÇϱâ À§Çؼ­´Â Áö¼ÓÀûÀÎ ÁøÈ­°¡ ÇÊ¿äÇÕ´Ï´Ù.ÀÌ ºÐ¾ß¿¡ ÁÖ·ÂÇÔÀ¸·Î½á ±â¾÷Àº Å« ¼ºÀåÀ» ´Þ¼ºÇÏ°í ¿î¿µÀ» ÃÖÀûÈ­ÇÏ¸ç µ¥ÀÌÅÍ È÷½ºÅ丮¾È¿¡¼­ ¾òÀº ÀáÀçÀûÀÎ ÀλçÀÌÆ®À» ÃæºÐÈ÷ Ȱ¿ëÇÕ´Ï´Ù. ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå ¿ªÇÐ : ºü¸£°Ô ÁøÈ­ÇÏ´Â µ¥ÀÌÅÍ ¿ª»ç ½ÃÀå¿¡¼­ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® ÇØ¸í

µ¥ÀÌÅÍ È÷½ºÅ丮¾È ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ë¿¡ ÀÇÇØ º¯¸ðÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐÀÇ ÁøÈ­¸¦ ÀÌÇØÇÔÀ¸·Î½á ±â¾÷Àº ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÅõÀÚ°áÁ¤, Àü·«Àû °áÁ¤ Á¤¹ÐÈ­, »õ·Î¿î ºñÁî´Ï½º ±âȸ ȹµæ¿¡ ´ëºñÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦ÀûÀÎ ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ °æ°¨ÇÒ ¼ö ÀÖÀ½°ú µ¿½Ã¿¡, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ëÀ̳ª ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ÇÁ·Î¼¼½º ¹× ¼º´É °³¼±À» À§ÇÑ ÅëÇÕ µ¥ÀÌÅÍ¿¡ ´ëÇÑ ¿ä±¸ Áõ°¡
    • µ¥ÀÌÅÍ ºÐ¼® ¿ëµµ¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡
    • »ý»ê ¹× °øÁ¤ µ¥ÀÌÅÍ ±â·Ï ¹× °Ë»ö¿¡ ´ëÇÑ »ê¾÷ ºÎ¹®ÀÇ ³ôÀº ¼ö¿ä
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • µ¥ÀÌÅÍ È÷½ºÅ丮¾È ¼Ö·ç¼Ç°ú °ü·ÃµÈ ³ôÀº ºñ¿ë
  • ½ÃÀå ±âȸ
    • µ¥ÀÌÅÍ È÷½ºÅ丮¾È ¼Ö·ç¼ÇÀÇ Áö¼ÓÀûÀÎ ¹ßÀü
    • »ê¾÷¿ë 360 ÇÏÀÌÆÛ ºñÀüÀÇ ¿ä±¸ÀÇ °íÁ¶¿Í µðÁöÅÐ Æ®À© ±â¼úÀÇ ÃâÇö
  • ½ÃÀåÀÇ °úÁ¦
    • µ¥ÀÌÅÍ È÷½ºÅ丮¾È ¼Ö·ç¼ÇÀÇ ¹ýÀû ¿ì·Á¿Í µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹®Á¦

Porter's Five Forces : µ¥ÀÌÅÍ È÷½ºÅ丮¾È ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Porter's Five Forces Framework´Â µ¥ÀÌÅÍ ¿ª»ç ½ÃÀå °æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Porter's Five Forces Framework´Â ±â¾÷ÀÇ °æÀïÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ ޱ¸ÇÏ´Â ¸íÈ®ÇÑ ±â¼úÀ» ¼³¸íÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» °áÁ¤ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ´õ °­ÀÎÇÑ ½ÃÀå¿¡¼­ Æ÷Áö¼Å´×À» º¸Àå ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : µ¥ÀÌÅÍ È÷½ºÅ丮¾È ½ÃÀåÀÇ ¿ÜºÎ ¿µÇâÀ» ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº µ¥ÀÌÅÍ È÷½ºÅ丮¾È ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¾ÕÀ¸·Î ¿¹»óµÇ´Â Àû±ØÀûÀÎ ÀÇ»ç °áÁ¤À» ÇÒ Áغñ°¡ °¡´ÉÇÕ´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® µ¥ÀÌÅÍ ¿ª»ç ½ÃÀå¿¡¼­ °æÀï ±¸µµ ÆÄ¾Ç

µ¥ÀÌÅÍ È÷½ºÅ丮¾È ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ Çà·ÄÀ» ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº °ø±Þ¾÷üÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±âÁØÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ¸Â´Â ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ³× °¡Áö »çºÐ¸éÀ» ÅëÇØ °ø±Þ¾÷ü¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ¼¼ºÐÈ­ÇÏ¿© Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê ¹× ¼Ö·ç¼ÇÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º µ¥ÀÌÅÍ È÷½ºÅ丮¾È ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â µ¥ÀÌÅÍ È÷½ºÅ丮¾È ½ÃÀå¿¡¼­ °ø±Þ¾÷ü¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ Çà·ÄÀ» ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº °ø±Þ¾÷üÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±âÁØÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ¸Â´Â ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ³× °¡Áö »çºÐ¸éÀ» ÅëÇØ °ø±Þ¾÷ü¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ¼¼ºÐÈ­ÇÏ¿© Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê ¹× ¼Ö·ç¼ÇÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× Ãßõ µ¥ÀÌÅÍ È÷½ºÅ丮¾È ½ÃÀå¿¡¼­ ¼º°øÀ» À§ÇÑ ±æÀ» ±×¸®±â

µ¥ÀÌÅÍ È÷½ºÅ丮¾È ½ÃÀåÀÇ Àü·« ºÐ¼®Àº ½ÃÀå¿¡¼­ÀÇ Á¸À縦 °­È­ÇÏ·Á´Â ±â¾÷¿¡ ÇʼöÀûÀÔ´Ï´Ù. ÁÖ¿ä ÀÚ¿ø, ´É·Â ¹× ¼º°ú ÁöÇ¥¸¦ °ËÅäÇÔÀ¸·Î½á ±â¾÷Àº ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í °³¼±À» À§ÇØ ³ë·ÂÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀ» ÅëÇØ °æÀï ±¸µµ¿¡¼­ °úÁ¦¸¦ ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö Àִ üÁ¦¸¦ ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀåÀÇ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ : ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·Â Æò°¡.

2. ½ÃÀå °³Ã´µµ : ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡ÇÏ¸ç ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, R&D Ȱµ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¾ò°í ÀÇ»ç°áÁ¤À» ÇÒ ¼ö ÀÖµµ·Ï Áß¿äÇÑ Áú¹®¿¡ ´ë´äÇϰí ÀÖ½À´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹® ¹× Áö¿ªÀº ¾îµðÀԴϱî?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ, ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • ÇÁ·Î¼¼½º¿Í ¼º´É Çâ»óÀ» À§ÇÑ ÅëÇÕ µ¥ÀÌÅÍÀÇ Çʿ伺ÀÌ ³ô¾ÆÁö°í ÀÖ´Ù
      • µ¥ÀÌÅÍ ºÐ¼® ¿ëµµ¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡
      • »ý»ê ¹× °øÁ¤ µ¥ÀÌÅÍÀÇ ±â·Ï°ú °Ë»ö¿¡ ´ëÇÑ »ê¾÷ºÐ¾ß·ÎºÎÅÍ ¼ö¿ä°¡ ³ô´Ù
    • ¾ïÁ¦¿äÀÎ
      • µ¥ÀÌÅÍ È÷½ºÅ丮¾È ¼Ö·ç¼Ç°ú °ü·ÃµÈ ³ôÀº ºñ¿ë
    • ±âȸ
      • µ¥ÀÌÅÍ È÷½ºÅ丮¾È ¼Ö·ç¼ÇÀÇ Áö¼ÓÀûÀÎ ¹ßÀü
      • »ê¾÷¿ë 360µµ ÇÏÀÌÆÛ ºñÀüÀÇ ¿ä±¸ÀÇ °íÁ¶¿Í µðÁöÅÐ Æ®À© ±â¼úÀÇ ÃâÇö
    • °úÁ¦
      • µ¥ÀÌÅÍ È÷½ºÅ丮¾È ¼Ö·ç¼ÇÀÇ ¹ýÀû ¿ì·Á¿Í µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹®Á¦
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡
    • °æÁ¦
    • »çȸ
    • ±â¼ú
    • ¹ý·ü
    • ȯ°æ

Á¦6Àå µ¥ÀÌÅÍ È÷½ºÅ丮¾È ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • ¼­ºñ½º
    • ¸Å´ÏÁöµå ¼­ºñ½º
    • Àü¹® ¼­ºñ½º
      • ÄÁ¼³ÆÃ
      • Áö¿ø ¹× À¯Áö º¸¼ö
  • ¼ÒÇÁÆ®¿þ¾î/µµ±¸

Á¦7Àå µ¥ÀÌÅÍ È÷½ºÅ丮¾È ½ÃÀå : Á¶Á÷ ±Ô¸ðº°

  • ´ë±â¾÷
  • Áß¼Ò±â¾÷

Á¦8Àå µ¥ÀÌÅÍ È÷½ºÅ丮¾È ½ÃÀå : ¿ëµµº°

  • ÀÚ»ê ¼º´É °ü¸®
  • ȯ°æ°¨»ç
  • GRC ¸Å´ÏÁö¸ÕÆ®
  • ¿¹Áöº¸Àü
  • »ý»ê ÃßÀû
  • º¸¾È ¹× ǰÁú °ü¸®

Á¦9Àå µ¥ÀÌÅÍ È÷½ºÅ丮¾È ½ÃÀå : µµÀÔ Çüź°

  • Ŭ¶ó¿ìµå
  • ¿ÂÇÁ·¹¹Ì½º

Á¦10Àå µ¥ÀÌÅÍ È÷½ºÅ丮¾È ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • È­ÇÐÁ¦Ç° ¹× ¼®À¯È­ÇÐÁ¦Ç°Á¦Ç°
  • IT ¹× µ¥ÀÌÅͼ¾ÅÍ
  • ÇØ¾ç
  • ±Ý¼Ó ¹× ±¤¾÷
  • ¼®À¯ ¹× °¡½º
  • Á¾ÀÌ ¹× ÆÞÇÁ
  • ÀǾàǰ
  • Àü·Â ¹× À¯Æ¿¸®Æ¼
  • ±³Åë±â°ü

Á¦11Àå ¾Æ¸Þ¸®Ä«ÀÇ µ¥ÀÌÅÍ È÷½ºÅ丮¾È ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦12Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ µ¥ÀÌÅÍ È÷½ºÅ丮¾È ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦13Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ µ¥ÀÌÅÍ È÷½ºÅ丮¾È ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦14Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®(2023³â)
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º(2023³â)
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
  • Àü·« ºÐ¼®°ú Á¦¾È

±â¾÷ ¸ñ·Ï

  • ABB Ltd.
  • Automsoft International Limited
  • AVEVA Group PLC by Schneider Electric SE
  • Canary Labs
  • Emerson Electric Co.
  • General Electric Company
  • Honeywell International Inc.
  • Inductive Automation, LLC
  • Industrial Video & Control Co.
  • InfluxData Inc.
  • Ing. Punzenberger COPA-DATA GmbH
  • International Business Machines Corporation
  • KX Systems, Inc. by FD Technologies PLC
  • Microsoft Corporation
  • Mitsubishi Electric Corporation
  • Open Automation Software
  • Oracle Corporation
  • PTC Inc.
  • Rockwell Automation, Inc.
  • Siemens AG
  • SORBOTICS, LLC
  • SSM Infotech Solutions Pvt. Ltd
  • Wipro Limited
  • Yokogawa Electric Corporation
  • Zenith Technologies by Cognizant Technology Solutions Corporation
BJH 24.11.21

The Data Historian Market was valued at USD 1.61 billion in 2023, expected to reach USD 1.74 billion in 2024, and is projected to grow at a CAGR of 8.88%, to USD 2.92 billion by 2030.

A Data Historian is crucial in industrial environments where large volumes of data are generated and must be stored, retrieved, and analyzed for process improvement and operational efficiency. The scope and definition of Data Historians encompass their functions as databases designed to efficiently collect and store time-series data, primarily from process control systems such as SCADA and DCS. The necessity of such systems lies in their ability to correctly archive and enable real-time access to historical data for analysis and decision-making. They are applied across industries like manufacturing, energy, utilities, and pharmaceuticals, where process optimization is essential. End-use scope involves providing actionable insights for improving performance, quality, and maintenance management.

KEY MARKET STATISTICS
Base Year [2023] USD 1.61 billion
Estimated Year [2024] USD 1.74 billion
Forecast Year [2030] USD 2.92 billion
CAGR (%) 8.88%

Market insights highlight that the growth factors include the increasing need for consolidated data for performance measurement and predictive maintenance, which can drive process efficiencies and cost reductions. Additionally, the integration of IIoT and advanced analytics is providing new opportunities, enabling companies to stay competitive by optimizing their decision-making processes. However, challenges such as data security concerns, high implementation costs, and the need for skilled personnel pose significant barriers. Moreover, integration with legacy systems and managing large datasets can complicate adoption.

Innovative areas involve enhancing interoperability with cloud solutions for scalability and flexibility, and developing AI-driven analytics to automatically generate insights from the data collected. Focusing on user-friendly interfaces for better accessibility and real-time data visualization tools can significantly enhance user interaction and adoption. Furthermore, expanding capabilities for edge computing can aid in quick data processing. The market is largely dynamic due to ongoing technological advancements; however, it requires continual evolution to address limitations and leverage new opportunities. By focusing on these areas, businesses can achieve significant growth, optimize operations, and fully harness the potential insights available from data historians.

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Data Historian Market

The Data Historian Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Increasing need for consolidated data for process and performance improvement
    • Growing investments in data analytics applications
    • High demand from the industrial sector for recording and retrieving production and process data
  • Market Restraints
    • High cost associated with data historian solutions
  • Market Opportunities
    • Ongoing advancements in data historian solutions
    • Growing need for industrial 360 hypervision and emergence of digital twin technology
  • Market Challenges
    • Legal concerns and data privacy issues of data historian solutions

Porter's Five Forces: A Strategic Tool for Navigating the Data Historian Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Data Historian Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Data Historian Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Data Historian Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Data Historian Market

A detailed market share analysis in the Data Historian Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Data Historian Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Data Historian Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Data Historian Market

A strategic analysis of the Data Historian Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Data Historian Market, highlighting leading vendors and their innovative profiles. These include ABB Ltd., Automsoft International Limited, AVEVA Group PLC by Schneider Electric SE, Canary Labs, Emerson Electric Co., General Electric Company, Honeywell International Inc., Inductive Automation, LLC, Industrial Video & Control Co., InfluxData Inc., Ing. Punzenberger COPA-DATA GmbH, International Business Machines Corporation, KX Systems, Inc. by FD Technologies PLC, Microsoft Corporation, Mitsubishi Electric Corporation, Open Automation Software, Oracle Corporation, PTC Inc., Rockwell Automation, Inc., Siemens AG, SORBOTICS, LLC, SSM Infotech Solutions Pvt. Ltd, Wipro Limited, Yokogawa Electric Corporation, and Zenith Technologies by Cognizant Technology Solutions Corporation.

Market Segmentation & Coverage

This research report categorizes the Data Historian Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Component, market is studied across Services and Software/Tools. The Services is further studied across Managed Services and Professional Services. The Professional Services is further studied across Consulting and Support & Maintenance.
  • Based on Organization Size, market is studied across Large Enterprises and SMEs.
  • Based on Application, market is studied across Asset Performance Management, Environmental Auditing, GRC Management, Predictive Maintenance, Production Tracking, and Security & Quality Control Management.
  • Based on Deployment Mode, market is studied across Cloud and On-Premises.
  • Based on End-User, market is studied across Chemicals & Petrochemicals, IT & Data Centers, Marine, Metal & Mining, Oil & Gas, Paper & Pulp, Pharmaceuticals, Power & Utilities, and Transportation.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Increasing need for consolidated data for process and performance improvement
      • 5.1.1.2. Growing investments in data analytics applications
      • 5.1.1.3. High demand from the industrial sector for recording and retrieving production and process data
    • 5.1.2. Restraints
      • 5.1.2.1. High cost associated with data historian solutions
    • 5.1.3. Opportunities
      • 5.1.3.1. Ongoing advancements in data historian solutions
      • 5.1.3.2. Growing need for industrial 360 hypervision and emergence of digital twin technology
    • 5.1.4. Challenges
      • 5.1.4.1. Legal concerns and data privacy issues of data historian solutions
  • 5.2. Market Segmentation Analysis
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Data Historian Market, by Component

  • 6.1. Introduction
  • 6.2. Services
    • 6.2.1. Managed Services
    • 6.2.2. Professional Services
      • 6.2.2.1. Consulting
      • 6.2.2.2. Support & Maintenance
  • 6.3. Software/Tools

7. Data Historian Market, by Organization Size

  • 7.1. Introduction
  • 7.2. Large Enterprises
  • 7.3. SMEs

8. Data Historian Market, by Application

  • 8.1. Introduction
  • 8.2. Asset Performance Management
  • 8.3. Environmental Auditing
  • 8.4. GRC Management
  • 8.5. Predictive Maintenance
  • 8.6. Production Tracking
  • 8.7. Security & Quality Control Management

9. Data Historian Market, by Deployment Mode

  • 9.1. Introduction
  • 9.2. Cloud
  • 9.3. On-Premises

10. Data Historian Market, by End-User

  • 10.1. Introduction
  • 10.2. Chemicals & Petrochemicals
  • 10.3. IT & Data Centers
  • 10.4. Marine
  • 10.5. Metal & Mining
  • 10.6. Oil & Gas
  • 10.7. Paper & Pulp
  • 10.8. Pharmaceuticals
  • 10.9. Power & Utilities
  • 10.10. Transportation

11. Americas Data Historian Market

  • 11.1. Introduction
  • 11.2. Argentina
  • 11.3. Brazil
  • 11.4. Canada
  • 11.5. Mexico
  • 11.6. United States

12. Asia-Pacific Data Historian Market

  • 12.1. Introduction
  • 12.2. Australia
  • 12.3. China
  • 12.4. India
  • 12.5. Indonesia
  • 12.6. Japan
  • 12.7. Malaysia
  • 12.8. Philippines
  • 12.9. Singapore
  • 12.10. South Korea
  • 12.11. Taiwan
  • 12.12. Thailand
  • 12.13. Vietnam

13. Europe, Middle East & Africa Data Historian Market

  • 13.1. Introduction
  • 13.2. Denmark
  • 13.3. Egypt
  • 13.4. Finland
  • 13.5. France
  • 13.6. Germany
  • 13.7. Israel
  • 13.8. Italy
  • 13.9. Netherlands
  • 13.10. Nigeria
  • 13.11. Norway
  • 13.12. Poland
  • 13.13. Qatar
  • 13.14. Russia
  • 13.15. Saudi Arabia
  • 13.16. South Africa
  • 13.17. Spain
  • 13.18. Sweden
  • 13.19. Switzerland
  • 13.20. Turkey
  • 13.21. United Arab Emirates
  • 13.22. United Kingdom

14. Competitive Landscape

  • 14.1. Market Share Analysis, 2023
  • 14.2. FPNV Positioning Matrix, 2023
  • 14.3. Competitive Scenario Analysis
  • 14.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. ABB Ltd.
  • 2. Automsoft International Limited
  • 3. AVEVA Group PLC by Schneider Electric SE
  • 4. Canary Labs
  • 5. Emerson Electric Co.
  • 6. General Electric Company
  • 7. Honeywell International Inc.
  • 8. Inductive Automation, LLC
  • 9. Industrial Video & Control Co.
  • 10. InfluxData Inc.
  • 11. Ing. Punzenberger COPA-DATA GmbH
  • 12. International Business Machines Corporation
  • 13. KX Systems, Inc. by FD Technologies PLC
  • 14. Microsoft Corporation
  • 15. Mitsubishi Electric Corporation
  • 16. Open Automation Software
  • 17. Oracle Corporation
  • 18. PTC Inc.
  • 19. Rockwell Automation, Inc.
  • 20. Siemens AG
  • 21. SORBOTICS, LLC
  • 22. SSM Infotech Solutions Pvt. Ltd
  • 23. Wipro Limited
  • 24. Yokogawa Electric Corporation
  • 25. Zenith Technologies by Cognizant Technology Solutions Corporation
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦