½ÃÀ庸°í¼­
»óǰÄÚµå
1589303

¼¼°èÀÇ µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀå : ±¸¼º ¿ä¼Òº°, Á¶Á÷ ±Ô¸ðº°, ºÎ¹®º°, µµÀÔ Çüź°, ÃÖÁ¾ »ç¿ëÀÚ »ê¾÷º° ¿¹Ãø(2025-2030³â)

Data Lake Market by Component (Services, Solutions), Organization Size (Large Enterprises, Small & Medium-Sized Enterprises), Function, Deployment Mode, End-User Industry - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 188 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀåÀÇ 2023³â ½ÃÀå ±Ô¸ð´Â 100¾ï 2,000¸¸ ´Þ·¯·Î, 2024³â¿¡´Â 121¾ï 2,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 21.38%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 389¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

µ¥ÀÌÅÍ ·¹ÀÌÅ©´Â ±âº»ÀûÀ¸·Î ±¸Á¶È­, ¹Ý±¸Á¶È­, ºñ±¸Á¶È­ µ¥ÀÌÅ͸¦ ÀúÀåÇÏ´Â ¹æ´ëÇÑ ¸®Æ÷ÁöÅ丮À̸ç, ºòµ¥ÀÌÅÍÀÇ ÀÌÁ¾ ÀÚ»êÀ» ¿øÈ°ÇÏ°Ô È°¿ëÇÏ·Á´Â ±â¾÷¿¡°Ô ¸Å¿ì Áß¿äÇÑ ¹üÀ§¸¦ ±âÀçÇϰí ÀÖ´Ù µ¥ÀÌÅÍ ·¹ÀÌÅ© ¼Ö·ç¼Ç µµÀÔÀÇ ¹è°æÀº ´Ù¾çÇÑ ¼Ò½ºÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ ¼¼Æ®¸¦ ÅëÇÕÇÏ°í µ¥ÀÌÅÍ »çÀÏ·ÎÈ­¸¦ ÁÙÀ̰í Á¾ÇÕÀûÀÎ ºÐ¼®À» °¡´ÉÇϰÔÇϸç ÀλçÀÌÆ® ÀÇ»ç°áÁ¤À» ÃËÁøÇÏ´Â ±× ´É·ÂÀÌ ÀÖ½À´Ï´Ù. ±× ¿ëµµ´Â ±ÝÀ¶, ÀÇ·á, Á¦Á¶ µî ´Ù¾çÇÑ ºÎ¹® ¹× ¿¹Ãø ºÐ¼®¿¡ ÀÇÇÑ °í°´ ¼­ºñ½ºÀÇ °­È­, ¼ÒºñÀÚ ÇൿÀÇ ÀÌÇØ¿¡ ÀÇÇÑ Á¦Ç° °³¹ßÀÇ Çõ½Å, ¿ÀÆÛ·¹À̼ÇÀÇ ÃÖÀûÈ­ µî, ÃÖÁ¾ ¿ëµµÀÇ ÀåÁ¡À» °¡Á®¿É´Ï´Ù. µ¥ÀÌÅÍÀÇ ¾ç°ú À¯Çü Áõ°¡°¡ ÁÖ¿ä ¼ºÀå ÃËÁø¿äÀÎÀÌ µÇ°í ÀÖ¾î °æÀïÀ» ³ôÀ̱â À§ÇØ µ¥ÀÌÅÍ ·¹ÀÌÅ©ÀÇ µµÀÔÀÌ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ ·¹ÀÌÅ©°¡ È¿À²ÀûÀ¸·Î Á¦°øÇÒ ¼ö ÀÖ´Â °ß°íÇÑ µ¥ÀÌÅÍ ¸®Æ÷ÁöÅ丮°¡ ÇÊ¿äÇÕ´Ï´Ù.ÀÇ ±¸Ãà¿¡ ÀÖ¾î, µ¥ÀÌÅÍÀÇ ±â¹Ð¼º¿¡ °úÁ¦¸¦ ¾È°í ÀÖ´Â ÀºÇàÀ̳ª ÀÇ·á µîÀÇ ¼½ÅÍ¿¡ ´ëÇÑ º¥´õÀÇ ¸Å·ÂÀ» ³ô¿© ÀÖ½À´Ï´Ù. ½ÃÀå ¼ºÀåÀÇ °úÁ¦°¡ µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ µ¥ÀÌÅÍ º¸¾ÈÀ̳ª GDPR(EU °³ÀÎÁ¤º¸º¸È£±ÔÁ¤)°ú °°Àº ±ÔÁ¦¿¡ ´ëÇÑ ´ëÀÀ¿¡ ´ëÇÑ ¿ì·Áµµ ±Þ¼ÓÇÑ º¸±ÞÀ» ¹æÇØÇÏ´Â ¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù.±â¼ú Çõ½Å°ú ¿¬±¸¸¦ ¼±µµÇϱâ À§ÇØ ±â¾÷Àº ¼öÀÛ¾÷À» ÁÙÀÌ´Â ÀÚµ¿È­µÈ Áö´ÉÇü µ¥ÀÌÅÍ °ü¸® ½Ã½ºÅÛ °³¹ß¿¡ ÁÖ·ÂÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ µ¥ÀÌÅÍ ·¹ÀÌÅ©¿Í ±âÁ¸ ºÐ¼® µµ±¸ °£ÀÇ ¿Ïº®ÇÑ ÅëÇÕ ±â´É¿¡ ´ëÇÑ Á¶»ç¸¦ È®´ëÇÏ¸é ºÐ¼® È¿À²¼ºÀÌ Å©°Ô Çâ»óµÉ ¼ö ÀÖ½À´Ï´Ù. °æÀï ±¸µµÀÌ ¿ªµ¿ÀûÀ¸·Î º¯È­ÇÏ´Â ½ÃÀå »óȲÀº AI¸¦ Ȱ¿ëÇÑ ºÐ¼® ¹× º¸¾ÈÀ» À§ÇÑ ºí·ÏüÀΰú °°Àº ÃÖ÷´Ü ±â¼úÀÇ Áö¼ÓÀûÀΠŽ±¸¸¦ ÇÊ¿ä·Î Çϸç, °á±¹ ±â¾÷ÀÌ »ì¾Æ³²±â ¶§¹®»Ó¸¸ ¾Æ´Ï¶ó Áö¼ÓÀû ¼ºÀåÀ»À§ÇÑ ±æÀ» Á¦°øÇÏ´Â °ÍÀÌ ÁÁ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ (2023³â) 100¾ï 2,000¸¸ ´Þ·¯
¿¹Ãø³â(2024³â) 121¾ï 2,000¸¸ ´Þ·¯
¿¹Ãø³â(2030³â) 389¾ï ´Þ·¯
º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)(%) 21.38%

½ÃÀå ¿ªÇÐ : ºü¸£°Ô ÁøÈ­ÇÏ´Â µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ë¿¡ ÀÇÇØ º¯¸ðÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐÀÇ ÁøÈ­¸¦ ÀÌÇØÇÔÀ¸·Î½á ±â¾÷Àº ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÅõÀÚ°áÁ¤, Àü·«Àû ÀÇ»ç°áÁ¤, »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ ȹµæÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ À§ÇèÀ» ¿ÏÈ­ÇÒ ¼ö ÀÖÀ¸¸ç, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë°ú ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ»º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ¹«Á¦ÇÑ È®À强°ú À¯¿¬¼ºÀ¸·Î ÀÎÇÑ ¼ö¿ä Áõ°¡
    • Á¤º¸±â¼ú ÀÎÇÁ¶ó ±¸Á¶ÀÇ °³¼±°ú Çö´ëÈ­
    • µ¥ÀÌÅÍ °úÇÐÀÚ, µ¥ÀÌÅÍ °³¹ßÀÚ, ºñÁî´Ï½º ºÐ¼®°¡ ¼ö¿ä Áõ°¡
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ž½Â Áß µ¥ÀÌÅÍ ÅëÇÕ Áö¿¬°ú ³ôÀº À¯Áö º¸¼ö ºñ¿ë
  • ½ÃÀå ±âȸ
    • »ç¹°ÀÇ ÀÎÅͳݰú AIÀÇ ±â¼úÀû Áøº¸
    • °³¹ß µµ»ó Áö¿ªÀÇ µðÁöÅÐÈ­·ÎÀÇ ±Þ¼ÓÇÑ ½ÃÇÁÆ®
  • ½ÃÀåÀÇ °úÁ¦
    • µ¥ÀÌÅÍ ÀÌ¿ëÀÇ ±ÔÁ¦ Áؼö¿¡ °üÇÑ ¹®Á¦

Porter's Five Forces : µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Porter's Five Forces Framework´Â µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀå °æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Porter's Five Forces Framework´Â ±â¾÷ÀÇ °æÀïÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ ޱ¸ÇÏ´Â ¸íÈ®ÇÑ ±â¼úÀ» ¼³¸íÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» °áÁ¤ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÀλçÀÌÆ®À» ÅëÇØ ±â¾÷Àº ÀÚ»çÀÇ °­Á¡À» Ȱ¿ëÇÏ°í ¾àÁ¡À» ÇØ°áÇϰí ÀáÀçÀûÀÎ °úÁ¦¸¦ ÇÇÇÔÀ¸·Î½á º¸´Ù °­ÀÎÇÑ ½ÃÀå¿¡¼­ÀÇ Æ÷Áö¼Å´×À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀå¿¡¼­ ¿ÜºÎ ¿µÇâÀ» ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇϴµ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀÎ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ ¼³¸íÇÕ´Ï´Ù. PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¾ÕÀ¸·Î ¿¹»óµÇ´Â Àû±ØÀûÀÎ ÀÇ»ç °áÁ¤À» ÇÒ Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® : µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀå¿¡¼­ °æÀï ±¸µµ ÆÄ¾Ç

µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¼öÀÍ, °í°´ ±â¹Ý, ¼ºÀå·ü µî ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀï Æ÷Áö¼Å´×À» ¹àÈú ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ½ÃÀå ÁýÁß, ¼¼ºÐÈ­ ¹× ÅëÇÕ µ¿ÇâÀ» ¹àÇô³»°í °ø±Þ¾÷ü´Â °æÀïÀÌ Ä¡¿­ÇØÁö¸é¼­ ÀÚ½ÅÀÇ ÁöÀ§¸¦ ³ôÀÌ´Â Àü·«Àû ÀÇ»ç °áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ Áö½ÄÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º : µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀå¿¡¼­ °ø±Þ¾÷ü¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ Çà·ÄÀ» ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº °ø±Þ¾÷üÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±âÁØÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ¸Â´Â ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ³× °¡Áö »çºÐ¸éÀ» ÅëÇØ °ø±Þ¾÷ü¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ¼¼ºÐÈ­ÇÏ¿© Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê ¹× ¼Ö·ç¼ÇÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× Ãßõ: µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀå¿¡¼­ ¼º°øÀ» À§ÇÑ ±æÀ» ±×¸®±â

µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀåÀÇ Àü·« ºÐ¼®Àº ½ÃÀå¿¡¼­ÀÇ Á¸À縦 °­È­ÇÏ·Á´Â ±â¾÷¿¡°Ô ÇʼöÀûÀÔ´Ï´Ù. ÁÖ¿ä ÀÚ¿ø, ¿ª·® ¹× ¼º°ú ÁöÇ¥¸¦ °ËÅäÇÔÀ¸·Î½á ±â¾÷Àº ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í °³¼±À» À§ÇØ ³ë·ÂÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ Á¢±Ù¹ýÀ» ÅëÇØ °æÀï ±¸µµ¿¡¼­ °úÁ¦¸¦ ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö Àִ üÁ¦¸¦ ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ ´Ù·ç´Â ½ÃÀå¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ : ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·ÂÀ» Æò°¡ÇÕ´Ï´Ù.

2. ½ÃÀå °³Ã´µµ : ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇϰí, ±âÁ¸ ºÎ¹®¿¡¼­ÀÇ È®Àå °¡´É¼ºÀ» Æò°¡Çϸç, ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» ¼³¸íÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, »ê¾÷ÀÇ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, R&D Ȱµ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¾òÀº ÈÄ ÀÇ»ç°áÁ¤ÇÒ ¼ö ÀÖµµ·Ï Áß¿äÇÑ Áú¹®¿¡µµ ´ë´äÇϰí ÀÖ½À´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, Áö¿ªÀº ¾îµðÀԴϱî?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ, ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • ¹«Á¦ÇÑÀÇ È®À强°ú À¯¿¬¼º¿¡ ÀÇÇÑ ¼ö¿ä Áõ°¡
      • Á¤º¸±â¼ú ÀÎÇÁ¶ó ±¸Á¶ °³¼± ¹× Çö´ëÈ­
      • µ¥ÀÌÅÍ °úÇÐÀÚ, µ¥ÀÌÅÍ °³¹ßÀÚ, ºñÁî´Ï½º ºÐ¼®°¡ ¼ö¿ä Áõ°¡
    • ¾ïÁ¦¿äÀÎ
      • ž½Â Áß µ¥ÀÌÅÍ ÅëÇÕÀÌ ´À¸®°í À¯Áö º¸¼ö ºñ¿ëÀÌ ³ô½À´Ï´Ù
    • ±âȸ
      • »ç¹°ÀÇ ÀÎÅͳݰú AIÀÇ ±â¼úÀû Áøº¸
      • °³¹ß µµ»ó Áö¿ªÀÇ µðÁöÅÐÈ­·ÎÀÇ ±Þ¼ÓÇÑ Àüȯ
    • °úÁ¦
      • µ¥ÀÌÅÍ »ç¿ë¿¡ °üÇÑ ±ÔÁ¦ Áؼö¿¡ °üÇÑ ¹®Á¦
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡
    • °æÁ¦
    • »çȸ
    • ±â¼ú
    • ¹ý·ü
    • ȯ°æ

Á¦6Àå µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • ¼Ò°³
  • ¼­ºñ½º
  • ¼Ö·ç¼Ç

Á¦7Àå µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀå : Á¶Á÷ ±Ô¸ðº°

  • ¼Ò°³
  • ´ë±â¾÷
  • Áß¼Ò±â¾÷

Á¦8Àå µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀå : ºÎ¹®º°

  • ¼Ò°³
  • À繫
  • Àλç
  • ¸¶ÄÉÆÃ
  • ¿ÀÆÛ·¹À̼Ç
  • ÆÇ¸Å

Á¦9Àå µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀå : µµÀÔ Çüź°

  • ¼Ò°³
  • Ŭ¶ó¿ìµå
  • ¿ÂÇÁ·¹¹Ì½º

Á¦10Àå µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚ »ê¾÷º°

  • ¼Ò°³
  • ÀºÇà/±ÝÀ¶¼­ºñ½º/º¸Çè
  • ±³À°
  • ¿¡³ÊÁö, À¯Æ¿¸®Æ¼
  • Á¤ºÎ
  • ÀÇ·á ¹× »ý¸í °úÇÐ
  • Á¦Á¶¾÷
  • ¹Ìµð¾î ¹× ¿£ÅÍÅ×ÀÎ¸ÕÆ®
  • ¼Ò¸Å¾÷ ¹× ÀüÀÚ»ó°Å·¡
  • Åë½Å ¹× Á¤º¸ ±â¼ú
  • ¿î¼Û ¹× ¹°·ù
  • ¿©Çà ¹× È£½ºÇÇÅ»¸®Æ¼

Á¦11Àå ¾Æ¸Þ¸®Ä«ÀÇ µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀå

  • ¼Ò°³
  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦12Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀå

  • ¼Ò°³
  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦13Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ µ¥ÀÌÅÍ ·¹ÀÌÅ© ½ÃÀå

  • ¼Ò°³
  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦14Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®(2023³â)
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º(2023³â)
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
  • Àü·« ºÐ¼®°ú Á¦¾È

±â¾÷ ¸ñ·Ï

  • Amazon Web Services, Inc.
  • Capgemini SE
  • Google LLC by Alphabet Inc.
  • Hewlett Packard Enterprise Company
  • Hitachi Vantara LLC
  • Informatica Inc.
  • International Business Machines Corporation
  • Koverse Inc.
  • Microsoft Corporation
  • Oracle Corporation
  • SAS Institute Inc.
  • Snowflake Inc.
  • Tata Consultancy Services
  • Temenos AG
  • Zaloni, Inc.
BJH 24.11.21

The Data Lake Market was valued at USD 10.02 billion in 2023, expected to reach USD 12.12 billion in 2024, and is projected to grow at a CAGR of 21.38%, to USD 38.90 billion by 2030.

A data lake, fundamentally a vast repository storing structured, semi-structured, and unstructured data, offers a pivotal scope for businesses seeking to harness big data's disparate assets in their raw format. The necessity behind implementing a data lake solution stems from its ability to consolidate extensive datasets from various sources, thus reducing data silos, enabling comprehensive analytics, and fostering insights-driven decision-making. Its application spans multiple sectors, such as finance, healthcare, and manufacturing, providing end-use benefits like enhanced customer service through predictive analytics, innovation in product development by understanding consumer behavior, and operational optimization. Market insights reveal that the increasing volume and variety of data generated by the Internet of Things (IoT), social media, and enterprise transactions are key growth drivers, fostering the adoption of data lakes to improve competitive edges. Additionally, the burgeoning demand for advanced machine learning models necessitates robust data repositories that data lakes can efficiently provide. Emerging opportunities lie in creating tailored solutions that offer granularity and security, enhancing vendors' attractiveness to sectors like banking and healthcare, which face data sensitivity challenges. However, limitations like complex data governance, integration difficulties, and insufficient skilled workforce pose challenges to market growth. Compounding these are apprehensions concerning data security and compliance with regulations like GDPR, which may retard rapid adoption. To spearhead innovation and research, businesses could focus on developing automated and intelligent data management systems that diminish manual intervention. Additionally, expanding research into seamless integration capabilities between data lakes and existing analytic tools could drive substantial improvements in analytics efficiency. The dynamic landscape of the data lake market suggests a competitive nature, requiring continuous exploration of cutting-edge technologies such as AI-enhanced analytics and blockchain for security, ultimately offering businesses avenues not only for survival but for sustained growth.

KEY MARKET STATISTICS
Base Year [2023] USD 10.02 billion
Estimated Year [2024] USD 12.12 billion
Forecast Year [2030] USD 38.90 billion
CAGR (%) 21.38%

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Data Lake Market

The Data Lake Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Increasing demand attributed to unlimited scalability and flexibility
    • Improving and modernizing information technology infrastructure structures
    • Rising demand from data scientists, data developers, and business analysts
  • Market Restraints
    • Slow integration of data while boarding and high maintenance cost
  • Market Opportunities
    • Technological advancements of Internet of Things and AI
    • Rapid shift towards the digitalization in developing regions
  • Market Challenges
    • Issues related to regulatory compliance of data usage

Porter's Five Forces: A Strategic Tool for Navigating the Data Lake Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Data Lake Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Data Lake Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Data Lake Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Data Lake Market

A detailed market share analysis in the Data Lake Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Data Lake Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Data Lake Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Data Lake Market

A strategic analysis of the Data Lake Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Data Lake Market, highlighting leading vendors and their innovative profiles. These include Amazon Web Services, Inc., Capgemini SE, Google LLC by Alphabet Inc., Hewlett Packard Enterprise Company, Hitachi Vantara LLC, Informatica Inc., International Business Machines Corporation, Koverse Inc., Microsoft Corporation, Oracle Corporation, SAS Institute Inc., Snowflake Inc., Tata Consultancy Services, Temenos AG, and Zaloni, Inc..

Market Segmentation & Coverage

This research report categorizes the Data Lake Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Component, market is studied across Services and Solutions.
  • Based on Organization Size, market is studied across Large Enterprises and Small & Medium-Sized Enterprises.
  • Based on Function, market is studied across Finance, Human Resources, Marketing, Operations, and Sales.
  • Based on Deployment Mode, market is studied across Cloud and On-Premises.
  • Based on End-User Industry, market is studied across Banking, Financial Services & Insurance, Education, Energy & Utilities, Government, Healthcare & Life Sciences, Manufacturing, Media & Entertainment, Retail & eCommerce, Telecommunication & Information Technology, Transportation & Logistics, and Travel & Hospitality.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Increasing demand attributed to unlimited scalability and flexibility
      • 5.1.1.2. Improving and modernizing information technology infrastructure structures
      • 5.1.1.3. Rising demand from data scientists, data developers, and business analysts
    • 5.1.2. Restraints
      • 5.1.2.1. Slow integration of data while boarding and high maintenance cost
    • 5.1.3. Opportunities
      • 5.1.3.1. Technological advancements of Internet of Things and AI
      • 5.1.3.2. Rapid shift towards the digitalization in developing regions
    • 5.1.4. Challenges
      • 5.1.4.1. Issues related to regulatory compliance of data usage
  • 5.2. Market Segmentation Analysis
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Data Lake Market, by Component

  • 6.1. Introduction
  • 6.2. Services
  • 6.3. Solutions

7. Data Lake Market, by Organization Size

  • 7.1. Introduction
  • 7.2. Large Enterprises
  • 7.3. Small & Medium-Sized Enterprises

8. Data Lake Market, by Function

  • 8.1. Introduction
  • 8.2. Finance
  • 8.3. Human Resources
  • 8.4. Marketing
  • 8.5. Operations
  • 8.6. Sales

9. Data Lake Market, by Deployment Mode

  • 9.1. Introduction
  • 9.2. Cloud
  • 9.3. On-Premises

10. Data Lake Market, by End-User Industry

  • 10.1. Introduction
  • 10.2. Banking, Financial Services & Insurance
  • 10.3. Education
  • 10.4. Energy & Utilities
  • 10.5. Government
  • 10.6. Healthcare & Life Sciences
  • 10.7. Manufacturing
  • 10.8. Media & Entertainment
  • 10.9. Retail & eCommerce
  • 10.10. Telecommunication & Information Technology
  • 10.11. Transportation & Logistics
  • 10.12. Travel & Hospitality

11. Americas Data Lake Market

  • 11.1. Introduction
  • 11.2. Argentina
  • 11.3. Brazil
  • 11.4. Canada
  • 11.5. Mexico
  • 11.6. United States

12. Asia-Pacific Data Lake Market

  • 12.1. Introduction
  • 12.2. Australia
  • 12.3. China
  • 12.4. India
  • 12.5. Indonesia
  • 12.6. Japan
  • 12.7. Malaysia
  • 12.8. Philippines
  • 12.9. Singapore
  • 12.10. South Korea
  • 12.11. Taiwan
  • 12.12. Thailand
  • 12.13. Vietnam

13. Europe, Middle East & Africa Data Lake Market

  • 13.1. Introduction
  • 13.2. Denmark
  • 13.3. Egypt
  • 13.4. Finland
  • 13.5. France
  • 13.6. Germany
  • 13.7. Israel
  • 13.8. Italy
  • 13.9. Netherlands
  • 13.10. Nigeria
  • 13.11. Norway
  • 13.12. Poland
  • 13.13. Qatar
  • 13.14. Russia
  • 13.15. Saudi Arabia
  • 13.16. South Africa
  • 13.17. Spain
  • 13.18. Sweden
  • 13.19. Switzerland
  • 13.20. Turkey
  • 13.21. United Arab Emirates
  • 13.22. United Kingdom

14. Competitive Landscape

  • 14.1. Market Share Analysis, 2023
  • 14.2. FPNV Positioning Matrix, 2023
  • 14.3. Competitive Scenario Analysis
  • 14.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Amazon Web Services, Inc.
  • 2. Capgemini SE
  • 3. Google LLC by Alphabet Inc.
  • 4. Hewlett Packard Enterprise Company
  • 5. Hitachi Vantara LLC
  • 6. Informatica Inc.
  • 7. International Business Machines Corporation
  • 8. Koverse Inc.
  • 9. Microsoft Corporation
  • 10. Oracle Corporation
  • 11. SAS Institute Inc.
  • 12. Snowflake Inc.
  • 13. Tata Consultancy Services
  • 14. Temenos AG
  • 15. Zaloni, Inc.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦