½ÃÀ庸°í¼­
»óǰÄÚµå
1590861

±×·¡ÇÁ ºÐ¼® ½ÃÀå : ±¸¼º¿ä¼Ò, ¹èÆ÷, ¿ëµµ, ºÐ¾ßº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Graph Analytics Market by Component (Services, Solution), Deployment (On-Cloud, On-Premise), Application, Vertical - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 191 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

±×·¡ÇÁ ºÐ¼® ½ÃÀåÀÇ 2023³â ½ÃÀå ±Ô¸ð´Â 16¾ï 4,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2024³â¿¡´Â 19¾ï 9,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, CAGR 20.96%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 62¾ï 4,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

±×·¡ÇÁ ºÐ¼®Àº µ¥ÀÌÅÍ ºÐ¼®ÀÇ Æ¯¼öÇÑ ÇÏÀ§ ÁýÇÕÀ¸·Î, µ¥ÀÌÅÍ ³»ÀÇ °ü°è¸¦ ¸ðµ¨¸µ, ÀÌÇØ ¹× ºÐ¼®Çϱâ À§ÇØ ±×·¡ÇÁ ±¸Á¶¸¦ Ȱ¿ëÇÏ´Â µ¥ ÃÊÁ¡À» ¸ÂÃß¾ú½À´Ï´Ù. ƯÈ÷ ¼Ò¼È ³×Æ®¿öÅ©, »ç±â ŽÁö, Ãßõ ½Ã½ºÅÛ µî ³×Æ®¿öÅ© ¹× °ü°è µ¥ÀÌÅÍ¿¡ ´ëÇÑ ÁýÁßÀûÀÎ ºÐ¼®ÀÌ ÇÊ¿äÇÑ ºÐ¾ß¿¡¼­ ÇʼöÀûÀÔ´Ï´Ù. ±×·¡ÇÁ ºÐ¼®ÀÇ Àû¿ë ¹üÀ§´Â Åë½Å, ÀÇ·á, ±ÝÀ¶, ¼Ò¸Å µî ´Ù¾çÇÑ »ê¾÷¿¡ °ÉÃÄ º¹ÀâÇÑ ³×Æ®¿öÅ© ÆÐÅÏÀÇ ÀÌÇØ¿Í ÀÇ»ç°áÁ¤ °úÁ¤ÀÇ ÃÖÀûÈ­¸¦ Å©°Ô Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ(2023³â) 16¾ï 4,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ(2024³â) 19¾ï 9,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ(2030³â) 62¾ï 4,000¸¸ ´Þ·¯
CAGR(%) 20.96%

±×·¡ÇÁ ºÐ¼®ÀÇ Çʿ伺Àº µ¥ÀÌÅÍ °ü°èÀÇ º¹À⼺°ú ±×·ÎºÎÅÍ ¾òÀ» ¼ö ÀÖ´Â ÀλçÀÌÆ®¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ±âÀÎÇÕ´Ï´Ù. ±×·¡ÇÁ ºÐ¼®ÀÇ ¿ëµµ´Â À§Çù ½Äº° ¹× ¿ÏÈ­¸¦ ÅëÇÑ »çÀ̹ö º¸¾È °­È­, Åõ¸í¼º Çâ»óÀ» ÅëÇÑ °ø±Þ¸Á ¹°·ù ÃÖÀûÈ­, °í°´ Çൿ¿¡ ´ëÇÑ ÀÌÇØ¸¦ ÅëÇÑ °³ÀÎÈ­µÈ ¸¶ÄÉÆÃ È°µ¿ °­È­ µîÀÔ´Ï´Ù. ½ÃÀåÀ» À̲ô´Â ÁÖ¿ä ¼ºÀå ¿äÀÎÀ¸·Î´Â ºòµ¥ÀÌÅÍÀÇ ±ÞÁõ, ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀÇ ¹ßÀü, ±â¾÷ Àü¹ÝÀÇ ÀΰøÁö´É µµÀÔ È®´ë µîÀ» ²ÅÀ» ¼ö ÀÖ½À´Ï´Ù.

±×·¡ÇÁ ºÐ¼®ÀÇ »õ·Î¿î ÀáÀçÀû ±âȸ´Â ±×·¡ÇÁ µ¥ÀÌÅͺ£À̽º¿Í Ŭ¶ó¿ìµå ÄÄÇ»ÆÃÀÇ ÅëÇÕ¿¡ ÀÖÀ¸¸ç, À̸¦ ÅëÇØ È®Àå °¡´ÉÇϰí È¿À²ÀûÀÎ µ¥ÀÌÅÍ Ã³¸®°¡ °¡´ÉÇØÁ³½À´Ï´Ù. ¶ÇÇÑ Áï°¢ÀûÀÎ ÅëÂû·ÂÀ» Á¦°øÇÏ´Â ½Ç½Ã°£ ºÐ¼® ¼Ö·ç¼ÇÀÇ °³¹ß ±âȸµµ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ±×·¯³ª ±×·¡ÇÁ ºÐ¼® ½Ã½ºÅÛ È®ÀåÀÇ º¹À⼺, µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹®Á¦, ´ë±Ô¸ð ÄÄÇ»ÆÃ ¸®¼Ò½ºÀÇ Çʿ伺 µîÀÇ ¹®Á¦´Â ¿©ÀüÈ÷ ³²¾Æ ÀÖ¾î ±¤¹üÀ§ÇÑ ½ÃÀå¿¡¼­ÀÇ Ã¤ÅÃÀ» Á¦ÇÑÇÒ ¼ö ÀÖ½À´Ï´Ù.

Çõ½Å°ú ¿¬±¸´Â ±×·¡ÇÁ µ¥ÀÌÅͺ£À̽ºÀÇ °ß°í¼º°ú È®À强À» °­È­Çϰí, ½Ç½Ã°£ ó¸® ´É·ÂÀ» Çâ»ó½Ã۸ç, µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¿Í º¸¾ÈÀ» º¸ÀåÇÏ´Â ºñ¿ë È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀ» °³¹ßÇÏ´Â µ¥ ÁßÁ¡À» µÎ¾î¾ß ÇÕ´Ï´Ù. »ç¿ëÀÚ Ä£È­ÀûÀÎ ÀÎÅÍÆäÀ̽º¿Í Á÷°üÀûÀÎ ½Ã°¢È­ µµ±¸¿¡ ÁßÁ¡À» µÎ¾î ºñÀü¹®°¡µµ ±×·¡ÇÁ ºÐ¼®¿¡ ½±°Ô Á¢±ÙÇÒ ¼ö ÀÖµµ·Ï ÇÔÀ¸·Î½á ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇÒ ¼ö ÀÖ½À´Ï´Ù. ±×·¡ÇÁ ºÐ¼® ½ÃÀåÀº ¿ªµ¿ÀûÀ¸·Î ÁøÈ­Çϰí ÀÖÀ¸¸ç, º¸´Ù ÅëÇÕÀûÀ̰í Á¾ÇÕÀûÀÎ ºÐ¼® ¼Ö·ç¼ÇÀÌ Æ®·»µåÀÎ ¸¸Å­ ¼Óµµ, È®À强, »ç¿ë¼º¿¡ ÁßÁ¡À» µÎ°í Çõ½ÅÇÏ´Â ±â¾÷¿¡°Ô´Â Å« ÀáÀç·ÂÀ» °¡Áö°í ÀÖ½À´Ï´Ù.

½ÃÀå ¿ªÇÐ: ºü¸£°Ô ÁøÈ­ÇÏ´Â ±×·¡ÇÁ ºÐ¼® ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ®¸¦ °ø°³ÇÕ´Ï´Ù.

±×·¡ÇÁ ºÐ¼® ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ë¿¡ ÀÇÇØ º¯È­Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐÀÇ ÁøÈ­¸¦ ÀÌÇØÇÔÀ¸·Î½á ±â¾÷Àº Á¤º¸¿¡ ÀÔ°¢ÇÑ ÅõÀÚ °áÁ¤, Àü·«Àû ÀÇ»ç°áÁ¤, »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Æ÷ÂøÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Æ®·»µå¸¦ Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ ¿ÏÈ­Çϰí, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë ¹× ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ÀÇ·á ±â°ü ¹× ´Üü ¼ö¿ä Áõ°¡
    • AI, IoT ±â¹Ý µµ±¸ ¹× ¼­ºñ½º µî ±â¼ú ÅëÇÕÀ» ÅëÇÑ ±Þ¼ÓÇÑ È®»ê
    • ¸¶ÄÉÆÃ ¼º°ú ÃÖÀûÈ­¸¦ À§ÇÑ »óÈ£ ¿¬°á µ¥ÀÌÅÍ Ä§Åõ
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ±×·¡ÇÁ ºÐ¼®ÀÇ ÀáÀçÀû ÀÌÁ¡¿¡ ´ëÇÑ ÀÌÇØ ºÎÁ·
  • ½ÃÀå ±âȸ
    • ¿òÁ÷ÀÌ´Â µ¥ÀÌÅÍ¿¡¼­ º¹ÀâÇÑ ÆÐÅÏ ½Äº°¿¡ ´ëÇÑ ´ÏÁî Áõ°¡
    • ºòµ¥ÀÌÅÍ ºÐ¼®ÀÇ ½Å¼ÓÇÑ È°¿ë
  • ½ÃÀå °úÁ¦
    • ºñÈ¿À²ÀûÀÎ ÈÆ·ÃÀ» ¹ÞÀº Àü¹®°¡

Portre's Five Forces: ±×·¡ÇÁ ºÐ¼® ½ÃÀå Ž»öÀ» À§ÇÑ Àü·« µµ±¸

Portre's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ½ÃÀå »óȲ°æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Portre's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÇ °æÀï·ÂÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ Ž»öÇÒ ¼ö ÀÖ´Â ¸íÈ®ÇÑ ¹æ¹ýÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÅëÂû·ÂÀ» ÅëÇØ ±â¾÷Àº °­Á¡À» Ȱ¿ëÇϰí, ¾àÁ¡À» ÇØ°áÇϰí, ÀáÀçÀûÀÎ µµÀüÀ» ÇÇÇϰí, º¸´Ù °­·ÂÇÑ ½ÃÀå Æ÷Áö¼Å´×À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : ±×·¡ÇÁ ºÐ¼® ½ÃÀå¿¡¼­ÀÇ ¿ÜºÎ ¿µÇâ ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº ±×·¡ÇÁ ºÐ¼® ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀο¡ ´ëÇÑ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇϸç, PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀû À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£µµ, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¼±Á¦ÀûÀÌ°í ´Éµ¿ÀûÀÎ ÀÇ»ç°áÁ¤À» ³»¸± Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® ±×·¡ÇÁ ºÐ¼® ½ÃÀå ³» °æÀï ±¸µµ ÆÄ¾Ç

½ÃÀå Á¡À¯À² ºÐ¼® ±×·¡ÇÁ ºÐ¼®

±×·¡ÇÁ ºÐ¼® ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ º¥´õÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¼öÀÍ, °í°´ ±â¹Ý, ¼ºÀå·ü°ú °°Àº ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀïÀû À§Ä¡¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®Àº ½ÃÀåÀÇ ÁýÁßÈ­, ´ÜÆíÈ­, ÅëÇÕÀÇ Ãß¼¼¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖÀ¸¸ç, °ø±Þ¾÷ü´Â Ä¡¿­ÇÑ °æÀï ¼Ó¿¡¼­ ÀÚ½ÅÀÇ ÀÔÁö¸¦ °­È­ÇÒ ¼ö ÀÖ´Â Àü·«Àû ÀÇ»ç°áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ ÅëÂû·ÂÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º ±×·¡ÇÁ ºÐ¼® ½ÃÀå¿¡¼­ÀÇ º¥´õ ¼º°ú Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â ±×·¡ÇÁ ºÐ¼® ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡ÇÒ ¼ö ÀÖ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ ¸ÅÆ®¸¯½º¸¦ ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº º¥´õÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±â¹ÝÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ºÎÇÕÇÏ´Â Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖÀ¸¸ç, 4°³ÀÇ »çºÐ¸éÀ¸·Î º¥´õ¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ¼¼ºÐÈ­ÇÏ¿© Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê¿Í ¼Ö·ç¼ÇÀ» ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù. Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê¿Í ¼Ö·ç¼ÇÀ» ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× Ãßõ ±×·¡ÇÁ ºÐ¼® ½ÃÀå¿¡¼­ ¼º°øÀÇ ±æÀ» ±×¸®´Ù.

±×·¡ÇÁ ºÐ¼® ½ÃÀå Àü·« ºÐ¼®Àº ¼¼°è ½ÃÀå¿¡¼­ÀÇ ÀÔÁö¸¦ °­È­ÇϰíÀÚ ÇÏ´Â ±â¾÷¿¡°Ô ÇʼöÀûÀÔ´Ï´Ù. ÁÖ¿ä ÀÚ¿ø, ¿ª·® ¹× ¼º°ú ÁöÇ¥¸¦ °ËÅäÇÔÀ¸·Î½á ±â¾÷Àº ¼ºÀå ±âȸ¸¦ ½Äº°ÇÏ°í °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀ» ÅëÇØ °æÀï ȯ°æÀÇ µµÀüÀ» ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö ÀÖµµ·Ï ÁغñÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀå¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõµµ : ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·Â Æò°¡.

2. ½ÃÀå °³Ã´µµ: ½ÅÈï ½ÃÀå¿¡¼­ÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇϰí, ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡Çϸç, ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù°¢È­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä ¹ßÀü, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú ¹ßÀü µîÀ» °ËÅäÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÷´Ü ±â¼ú, ¿¬±¸ °³¹ß Ȱµ¿ ¹× Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

ÀÌÇØ°ü°èÀÚµéÀÌ Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï ´ÙÀ½°ú °°Àº Áß¿äÇÑ Áú¹®¿¡ ´ëÇÑ ´äº¯µµ Á¦°øÇÕ´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå Àü¸ÁÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹®, Áö¿ªÀº?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5.º¥´õ ½ÃÀå ÁøÀÔ ¹× ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
    • ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ±âȸ
    • °úÁ¦
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • PorterÀÇ Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡
    • °æÁ¦
    • »çȸ
    • ±â¼ú
    • ¹ý·ü
    • ȯ°æ

Á¦6Àå ±×·¡ÇÁ ºÐ¼® ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • ¼­ºñ½º
    • ÄÁ¼³ÆÃ
    • Áö¿ø ¹× À¯Áö°ü¸®
    • ½Ã½ºÅÛ ÅëÇÕ
  • ¼Ö·ç¼Ç
    • Ç÷§Æû
    • ¼ÒÇÁÆ®¿þ¾î Åø

Á¦7Àå ±×·¡ÇÁ ºÐ¼® ½ÃÀå : Àü°³ Çüź°

  • On-Cloud
  • On-Premise

Á¦8Àå ±×·¡ÇÁ ºÐ¼® ½ÃÀå : ¿ëµµº°

  • °í°´ ºÐ¼®
  • ºÎÁ¤ÇàÀ§ ŽÁö
  • Ãßõ ¿£Áø
  • ¸®½ºÅ© ¹× ÄÄÇöóÀ̾𽺠°ü¸®
  • ·çÆ® ÃÖÀûÈ­

Á¦9Àå ±×·¡ÇÁ ºÐ¼® ½ÃÀå : ¾÷°èº°

  • ÀºÇà/±ÝÀ¶¼­ºñ½º/º¸Çè(B
  • Á¤ºÎ ¹× °ø°ø ºÎ¹®
  • ÇコÄÉ¾î ¹× »ý¸í°úÇÐ
  • Á¦Á¶¾÷
  • ¼Ò¸Å¾÷ ¹× ÀüÀÚ»ó°Å·¡
  • Åë½Å
  • ¿î¼Û ¹× ¹°·ù

Á¦10Àå ¾Æ¸Þ¸®Ä«ÀÇ ±×·¡ÇÁ ºÐ¼® ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦11Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ±×·¡ÇÁ ºÐ¼® ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦12Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ±×·¡ÇÁ ºÐ¼® ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦13Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2023³â
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2023³â
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
  • Àü·« ºÐ¼®°ú Á¦¾È

±â¾÷ ¸®½ºÆ®

  • Amazon Web Services, Inc.
  • Cray Inc. by Hewlett Packard Enterprise Development LP
  • Dataiku
  • DataStax, Inc.
  • Graphistry, Inc.
  • Intel Corporation
  • International Business Machines Corporation
  • Linkurious SAS
  • Lynx Analytics Pte. Ltd.
  • Microsoft Corporation
  • Neo4j, Inc.
  • Objectivity Inc.
  • Oracle Corporation
  • SAP SA
  • TigerGraph, Inc.
LSH

The Graph Analytics Market was valued at USD 1.64 billion in 2023, expected to reach USD 1.99 billion in 2024, and is projected to grow at a CAGR of 20.96%, to USD 6.24 billion by 2030.

Graph analytics, a specialized subset of data analytics, focuses on utilizing graph structures to model, understand, and analyze relationships within data. It is particularly essential in fields that require intensive analysis of network and relationship data, such as social networks, fraud detection, and recommendation systems. The scope of graph analytics spans various industries, including telecommunications, healthcare, finance, and retail, offering substantial improvements in understanding complex network patterns and optimizing decision-making processes.

KEY MARKET STATISTICS
Base Year [2023] USD 1.64 billion
Estimated Year [2024] USD 1.99 billion
Forecast Year [2030] USD 6.24 billion
CAGR (%) 20.96%

The necessity of graph analytics stems from the increasing complexity of data relationships and the growing demand for insights derived from these connections. Its applications include enhancing cybersecurity by identifying and mitigating threats, optimizing supply chain logistics through improved transparency, and boosting personalized marketing efforts by understanding customer behavior. Key growth factors driving the market include the proliferation of big data, advancements in machine learning algorithms, and increased adoption of artificial intelligence across enterprises.

Emerging potential opportunities in graph analytics lie in the integration of graph databases with cloud computing, which would enable scalable and more efficient data processing. Additionally, there is a burgeoning opportunity in developing real-time analytics solutions to deliver immediate insights. However, challenges persist, such as the complexity of scaling graph analytical systems, data privacy concerns, and the necessity of significant computational resources, which can limit broader market adoption.

Innovation and research should focus on enhancing the robustness and scalability of graph databases, improving real-time processing capabilities, and developing cost-effective solutions that ensure data privacy and security. Emphasizing user-friendly interfaces and intuitive visualization tools can further propel market growth by making graph analytics more accessible to non-technical users. The graph analytics market is dynamically evolving, with a trend towards more integrated and comprehensive analytics solutions, offering significant potential for those who innovate with an emphasis on speed, scalability, and usability.

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Graph Analytics Market

The Graph Analytics Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Increasing demand from healthcare organizations and institutions
    • Rapid adoption due to integration of the technologies such as AI, IoT-based graph analytics tools and services
    • Penetration of interconnected data to optimize marketing performance
  • Market Restraints
    • Lack of understanding about the potential benefits of graph analytics
  • Market Opportunities
    • Rising need to identify complex patterns from the data in motion
    • Rapid utilization of big data analytics
  • Market Challenges
    • Inefficient trained professional

Porter's Five Forces: A Strategic Tool for Navigating the Graph Analytics Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Graph Analytics Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Graph Analytics Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Graph Analytics Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Graph Analytics Market

A detailed market share analysis in the Graph Analytics Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Graph Analytics Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Graph Analytics Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Graph Analytics Market

A strategic analysis of the Graph Analytics Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Graph Analytics Market, highlighting leading vendors and their innovative profiles. These include Amazon Web Services, Inc., Cray Inc. by Hewlett Packard Enterprise Development LP, Dataiku, DataStax, Inc., Graphistry, Inc., Intel Corporation, International Business Machines Corporation, Linkurious SAS, Lynx Analytics Pte. Ltd., Microsoft Corporation, Neo4j, Inc., Objectivity Inc., Oracle Corporation, SAP SA, and TigerGraph, Inc..

Market Segmentation & Coverage

This research report categorizes the Graph Analytics Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Component, market is studied across Services and Solution. The Services is further studied across Consulting, Support & Maintenance, and System Integration. The Solution is further studied across Platforms and Software Tools.
  • Based on Deployment, market is studied across On-Cloud and On-Premise.
  • Based on Application, market is studied across Customer Analytics, Fraud Detection, Recommendation Engines, Risk & Compliance Management, and Route Optimization.
  • Based on Vertical, market is studied across Banking, Financial Services, & Insurance, Government & Public Sector, Healthcare & Life Sciences, Manufacturing, Retail & Ecommerce, Telecom, and Transportation & Logistics.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Increasing demand from healthcare organizations and institutions
      • 5.1.1.2. Rapid adoption due to integration of the technologies such as AI, IoT-based graph analytics tools and services
      • 5.1.1.3. Penetration of interconnected data to optimize marketing performance
    • 5.1.2. Restraints
      • 5.1.2.1. Lack of understanding about the potential benefits of graph analytics
    • 5.1.3. Opportunities
      • 5.1.3.1. Rising need to identify complex patterns from the data in motion
      • 5.1.3.2. Rapid utilization of big data analytics
    • 5.1.4. Challenges
      • 5.1.4.1. Inefficient trained professional
  • 5.2. Market Segmentation Analysis
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Graph Analytics Market, by Component

  • 6.1. Introduction
  • 6.2. Services
    • 6.2.1. Consulting
    • 6.2.2. Support & Maintenance
    • 6.2.3. System Integration
  • 6.3. Solution
    • 6.3.1. Platforms
    • 6.3.2. Software Tools

7. Graph Analytics Market, by Deployment

  • 7.1. Introduction
  • 7.2. On-Cloud
  • 7.3. On-Premise

8. Graph Analytics Market, by Application

  • 8.1. Introduction
  • 8.2. Customer Analytics
  • 8.3. Fraud Detection
  • 8.4. Recommendation Engines
  • 8.5. Risk & Compliance Management
  • 8.6. Route Optimization

9. Graph Analytics Market, by Vertical

  • 9.1. Introduction
  • 9.2. Banking, Financial Services, & Insurance
  • 9.3. Government & Public Sector
  • 9.4. Healthcare & Life Sciences
  • 9.5. Manufacturing
  • 9.6. Retail & Ecommerce
  • 9.7. Telecom
  • 9.8. Transportation & Logistics

10. Americas Graph Analytics Market

  • 10.1. Introduction
  • 10.2. Argentina
  • 10.3. Brazil
  • 10.4. Canada
  • 10.5. Mexico
  • 10.6. United States

11. Asia-Pacific Graph Analytics Market

  • 11.1. Introduction
  • 11.2. Australia
  • 11.3. China
  • 11.4. India
  • 11.5. Indonesia
  • 11.6. Japan
  • 11.7. Malaysia
  • 11.8. Philippines
  • 11.9. Singapore
  • 11.10. South Korea
  • 11.11. Taiwan
  • 11.12. Thailand
  • 11.13. Vietnam

12. Europe, Middle East & Africa Graph Analytics Market

  • 12.1. Introduction
  • 12.2. Denmark
  • 12.3. Egypt
  • 12.4. Finland
  • 12.5. France
  • 12.6. Germany
  • 12.7. Israel
  • 12.8. Italy
  • 12.9. Netherlands
  • 12.10. Nigeria
  • 12.11. Norway
  • 12.12. Poland
  • 12.13. Qatar
  • 12.14. Russia
  • 12.15. Saudi Arabia
  • 12.16. South Africa
  • 12.17. Spain
  • 12.18. Sweden
  • 12.19. Switzerland
  • 12.20. Turkey
  • 12.21. United Arab Emirates
  • 12.22. United Kingdom

13. Competitive Landscape

  • 13.1. Market Share Analysis, 2023
  • 13.2. FPNV Positioning Matrix, 2023
  • 13.3. Competitive Scenario Analysis
  • 13.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Amazon Web Services, Inc.
  • 2. Cray Inc. by Hewlett Packard Enterprise Development LP
  • 3. Dataiku
  • 4. DataStax, Inc.
  • 5. Graphistry, Inc.
  • 6. Intel Corporation
  • 7. International Business Machines Corporation
  • 8. Linkurious SAS
  • 9. Lynx Analytics Pte. Ltd.
  • 10. Microsoft Corporation
  • 11. Neo4j, Inc.
  • 12. Objectivity Inc.
  • 13. Oracle Corporation
  • 14. SAP SA
  • 15. TigerGraph, Inc.
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦