½ÃÀ庸°í¼­
»óǰÄÚµå
1591992

¼¼°èÀÇ ISH(In Situ Hybridization) ½ÃÀå : Á¦Ç°, ±â¼ú, ¿ëµµ, ÃÖÁ¾ »ç¿ëÀÚº° ¿¹Ãø(2025-2030³â)

In Situ Hybridization Market by Product (Consumables, Instruments, Software), Technology (Chromogenic In Situ Hybridization, Fluorescence In Situ Hybridization), Application, End User - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 186 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

ISH(In Situ Hybridization) ½ÃÀåÀº 2023³â¿¡ 18¾ï 1,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2024³â¿¡´Â 19¾ï 4,000¸¸ ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, CAGR 7.92%·Î ¼ºÀåÇØ 2030³â¿¡´Â 31¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ISH´Â Ç¥ÁöµÈ »óº¸ÀûÀÎ DNA, RNA ¶Ç´Â º¯ÇüµÈ ÇÙ»ê »ç½½(ÇÁ·Îºê)À» »ç¿ëÇÏ¿© Á¶Á÷ÀÇ ÀϺΠ¶Ç´Â ´Ü¸é¿¡ ƯÁ¤ DNA ¶Ç´Â RNA ¼­¿­À» ±¹¼ÒÈ­ÇÏ´Â ½ÇÇè ±â¼úÀÔ´Ï´Ù. ±âÃÊ ¿¬±¸, Áø´Ü, ÀÓ ¹Ù´Ú ÀÀ¿ë, ƯÈ÷ ƯÁ¤ À¯ÇüÀÇ ¾Ï¼¼Æ÷¿Í À¯ÀüÀÚ ÀÌ»óÀÇ µ¿Á¤¿¡ ±ØÈ÷ Áß¿äÇÑ, °ø°£Àû¡¤½Ã°£Àû À¯ÀüÀÚ ¹ßÇöÀÇ ÅëÂûÀ» Á¦°øÇÏ´Â ´É·Â¿¡ À¯·¡ÇÕ´Ï´Ù. ¹°¸®ÇÐ, ½Å°æ °úÇÐ ¹× ÃÖÁ¾ ¿ëµµ´Â Áúº´ º´¿ø, ¿¬±¸ ±â°ü, Áø´Ü ½ÇÇè½Ç¿¡ À̸£°í ÀÖ½À´Ï´Ù. ½ÃÀå ÀλçÀÌÆ®¿¡ µû¸£¸é ºÐÀÚÁø´ÜÀÇ ±â¼úÀû Áøº¸, ¾Ï À¯º´·ü Áõ°¡, ¸ÂÃãÇü ÀÇ·á ¼ö¿ä°¡ ÁÖ¿ä ¼ºÀå ¿äÀÎÀ¸·Î Å©°Ô ¿µÇâÀ» ¹ÌĨ´Ï´Ù. FISH ¶Ç´Â CISH¿¡¼­ »ç¿ëµË´Ï´Ù. »õ·Î¿î ÇÁ·ÎºêÀÇ º¸±ÞÀº ISHÀÇ Á¤È®¼º°ú ½Å·Ú¼ºÀ» ³ô¿© ÀÌÇØ°ü°èÀÚ¿¡°Ô ±âȸ¸¦ °¡Á®¿À°í ÀÖ½À´Ï´Ù. À̰ÍÀº ½ÃÀå ¼ºÀåÀ» ¹æÇØÇÕ´Ï´Ù. µÉ ¼ö ÀÖ½À´Ï´Ù. Çõ½ÅÀÇ ÁÖ¿ä ¹ßÀü ºÐ¾ß·Î´Â ÀÚµ¿ ISH Ç÷§Æû°ú ºñ¿ë È¿À²ÀûÀÎ ÇÁ·Îºê ½ÃÀå °³Ã´ÀÌ ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ¿©·¯ ´ë»óÀ» µ¿½Ã¿¡ °ËÃâÇÏ´Â ¸ÖƼÇ÷º½Ì ±â´ÉÀÇ °­È­´Â ¸ÂÃãÇü ÀÇ·á¿¡ À־ÀÇ ISHÀÇ À¯¿ë¼ºÀ» ³ôÀÏ ¼ö ÀÖ´Â ±âȸ°¡ µÇ°í ÀÖ½À´Ï´Ù. Á¦Ç° Æ÷Æ®Æú¸®¿ÀÀÇ È®´ë³ª Àü·«Àû Á¦ÈÞ¿¡ ÁÖ·ÂÇÏ´Â ±âÁ¸ ±â¾÷°ú ½ÅÈï ±â¾÷ÀÌ È¥ÀçÇϰí ÀÖ´Â °ÍÀÌ Æ¯Â¡ÀÔ´Ï´Ù. Á¦Ç° ¿ëµµÀÇ ´Ù¾çÈ­, ½ÅÈï ½ÃÀåÀ» Ȱ¿ëÇϱâ À§ÇÑ Àü·«Àû Á¦ÈÞ µîÀÌ ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ(2023) 18¾ï 1,000¸¸ ´Þ·¯
¿¹Ãø³â(2024) 19¾ï 4,000¸¸ ´Þ·¯
¿¹Ãø³â(2030) 31¾ï ´Þ·¯
CAGR(%) 7.92%

½ÃÀå ¿ªÇÐ: ºü¸£°Ô ÁøÈ­ÇÏ´Â ISH(In Situ Hybridization) ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

ISH(In Situ Hybridization) ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ë¿¡ ÀÇÇØ º¯¸ð¸¦ ÀÌ·ç°í ÀÖ½À´Ï´Ù. »õ·Î¿î ºñÁî´Ï½º ±âȸ ȹµæ ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦ÀûÀÎ ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ °æ°¨ÇÒ ¼ö ÀÖÀ½°ú µ¿½Ã¿¡ ¼ÒºñÀÚ Çൿ°ú ÀÌ´Â Á¦Á¶ ºñ¿ë°ú ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ´õ¿í ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ½Å¼Ó Áø´Ü ±â¼úÀ» ÇÊ¿ä·Î ÇÏ´Â °¨¿°ÁõÀÇ À¯Çà
    • ºÐÀÚÁø´Ü Åø¿¡ÀÇ ÁöÇâ Áõ°¡
    • IVD¿¡ °üÇÑ R&D ÅõÀÚ Áõ°¡
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ³·Àº DNA ¹× RNA ¼­¿­ÀÇ Æ¯Á¤¿¡ À־ÀÇ ÇѰè
  • ½ÃÀå ±âȸ
    • 3D Çü±¤ ISH(In Situ Hybridization)(FISH) ±â¼úÀÇ ±Þ¼ÓÇÑ µîÀå
    • ISH ±â¼ú °³¹ßÀ» À§ÇÑ ±â¼úÀû Áøº¸¿Í Àü·«Àû ÅõÀÚ
  • ½ÃÀåÀÇ °úÁ¦
    • ÀûÀýÇÑ Áø´ÜÀ» Á¦°øÇÏ´Â ¼÷·ÃµÈ Àü¹®°¡ ºÎÁ·¿¡ ´ëÇÑ ¿ì·Á

Portre's Five Forces: ISH(In Situ Hybridization) ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Porter's Five Forces ÇÁ·¹ÀÓ ¿öÅ©´Â ½ÃÀå »óȲ°æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ±â¹ýÀ» Á¦°øÇÕ´Ï´Ù. ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ´ç½ÅÀº ´õ °­ÀÎÇÑ ½ÃÀå¿¡¼­ Æ÷Áö¼Å´×À» º¸ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : ISH(In Situ Hybridization) ½ÃÀå¿¡¼­ ¿ÜºÎ·ÎºÎÅÍÀÇ ¿µÇâ ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº ISH(In Situ Hybridization) ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ»ÇÕ´Ï´Ù. ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸ À» Á¦°øÇÕ´Ï´Ù.PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ±×¸®°í ¾ÕÀ» ³»´Ùº¸°í Àû±ØÀûÀÎ ÀÇ»ç °áÁ¤À» ÇÒ Áغñ°¡ µË´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® : ISH(In Situ Hybridization) ½ÃÀå °æÀï ±¸µµ ÆÄ¾Ç

ISH(In Situ Hybridization) ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ ½ÃÀåÀÇ ÁýÁß, ´ÜÆíÈ­, ÅëÇÕÀÇ µ¿ÇâÀ» ¹àÇô³»°í, º¥´õ´Â °æÀïÀÌ °ÝÈ­ÇÏ´Â °¡¿îµ¥ ÀÚ½ÅÀÇ ÁöÀ§¸¦ ³ôÀÌ´Â Àü·«Àû ÀÇ»ç°áÁ¤À» Çϱâ À§Çؼ­ ÇÊ¿äÇÑ Áö½ÄÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º : ISH(In Situ Hybridization) ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â ISH(In Situ Hybridization) ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ¿¡ µû¶ó °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ³× °¡Áö »çºÐ¸éÀ» ÅëÇØ º¥´õ¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ºÐÇÒÇϰí Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê ¹× ¼Ö·ç¼ÇÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× Ãßõ : ISH(In Situ Hybridization) ½ÃÀå¿¡¼­ ¼º°øÀ» À§ÇÑ ±æÀ» ±×¸®±â

ISH(In Situ Hybridization) ½ÃÀåÀÇ Àü·« ºÐ¼®Àº ¼¼°è ½ÃÀå¿¡¼­ÀÇ ÇÁ·¹Á𽺠°­È­¸¦ ¸ñÇ¥·Î ÇÏ´Â ±â¾÷¿¡ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ Á¢±Ù¹ýÀ» ÅëÇØ °æÀï ±¸µµ¿¡¼­ °úÁ¦¸¦ ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö Àִ üÁ¦¸¦ ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀåÀÇ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ: ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·Â Æò°¡.

2. ½ÃÀå °³Ã´µµ: ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡ÇÏ¸ç ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­: ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, R&D Ȱµ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¾ò°í ÀÇ»ç°áÁ¤À» ÇÒ ¼ö ÀÖµµ·Ï Áß¿äÇÑ Áú¹®¿¡ ´ë´äÇϰí ÀÖ½À´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹® ¹× Áö¿ªÀº ¾îµðÀԴϱî?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ¡¤Ã¶¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • ½Å¼ÓÇÑ Áø´Ü ±â¼úÀ» ÇÊ¿ä·Î ÇÏ´Â °¨¿°ÁõÀÇ ¸¸¿¬
      • ºÐÀÚÁø´Ü µµ±¸¿¡ ´ëÇÑ °ü½É Áõ°¡
      • ü¿Ü Áø´Ü¿¡ °üÇÑ R&D ÅõÀÚ Áõ°¡
    • ¾ïÁ¦¿äÀÎ
      • Àú DNA ¹× RNA ¼­¿­ÀÇ Æ¯Á¤¿¡ À־ÀÇ ÇѰè
    • ±âȸ
      • 3D Çü±¤ ISH(In Situ Hybridization)(FISH) ±â¼úÀÇ ±Þ¼ÓÇÑ Áøº¸
      • ISH ±â¼ú °³¹ßÀ» À§ÇÑ ±â¼úÀû Áøº¸¿Í Àü·«Àû ÅõÀÚ
    • °úÁ¦
      • ÀûÀýÇÑ Áø´ÜÀ» ½Ç½ÃÇÏ´Â ¼÷·ÃµÈ Àü¹®°¡ÀÇ ºÎÁ·¿¡ °üÇÑ ¿ì·Á
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡Àû
    • °æÁ¦
    • »ç±³
    • ±â¼úÀû
    • ¹ý·ü»ó
    • ȯ°æ

Á¦6Àå ISH(In Situ Hybridization) ½ÃÀå : Á¦Ç°º°

  • ¼Ò¸ðǰ
    • ¾×¼¼¼­¸®
    • ŰƮ ¹× ½Ã¾à
    • ÇÁ·Îºê
  • ±â±â
  • ¼ÒÇÁÆ®¿þ¾î

Á¦7Àå ISH(In Situ Hybridization) ½ÃÀå : ±â¼úº°

  • Å©·Î¸ðÁ¦´Ð ÀλçÀÌÃò È¥¼ºÈ­
  • Çü±¤ ISH(In Situ Hybridization)
    • DNA Çü±¤ ISH(In Situ Hybridization)
    • PNA Çü±¤ ISH(In Situ Hybridization)
    • RNA Çü±¤ ISH(In Situ Hybridization)

Á¦8Àå ISH(In Situ Hybridization) ½ÃÀå : ¿ëµµº°

  • ¾Ï Áø´Ü
  • ¼¼Æ÷ÇÐ
  • ¸é¿ªÇÐ
  • °¨¿°Áõ Áø´Ü
  • ½Å°æ°úÇÐ

Á¦9Àå ISH(In Situ Hybridization) ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • Çмú¿¬±¸±â°ü
  • °è¾à¿¬±¸±â°ü
  • º´¿ø ¹× Áø´Ü ½ÇÇè½Ç
  • Á¦¾à ¹× ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ±â¾÷

Á¦10Àå ¾Æ¸Þ¸®Ä«ÀÇ ISH(In Situ Hybridization) ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦11Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ISH(In Situ Hybridization) ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦12Àå À¯·´¡¤Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ISH(In Situ Hybridization) ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦13Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼® 2023
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2023
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
    • Biocare MedicalÀÌ ¿¥ÆÄÀ̾î Empire Genomics | Precision Oncology News
    • Resolve Biosciences, ½Ã¸®Áî B ÀÚ±Ý Á¶´Þ·Î 7,100¸¸ ´Þ·¯¸¦ Á¶´Þ
    • Danaher°¡ AldevronÀ» Àμö
    • PNI, Danaher CorporationÀÇ »ý¸í°úÇÐ Ç÷§Æû¿¡ Àμö
    • Bio-TechneÀº »õ·Î¿î DNA scope ISH(In Situ Hybridization) ¾î¼¼ÀÌÀÇ »ó¾÷Àû Ãâ½Ã¸¦ ¹ßÇ¥Çß½À´Ï´Ù
    • Avacta, ABCAM plc¿Í ÆÇ¸Å °è¾à ¹ßÇ¥ | Business Wire
    • FDA, RocheÀÇ Ventana ALK(D5F3) CDx ¾î¼¼À̸¦ Æó¾Ï Ä¡·áÁ¦À¸·Î¼­ ½ÂÀÎ
  • Àü·« ºÐ¼®°ú Á¦¾È

±â¾÷ ¸ñ·Ï

  • Abbott Laboratories
  • Abcam Plc
  • Abnova Corporation
  • Advanced Cell Diagnostics, Inc.
  • Agilent Technologies, Inc.
  • Bio SB
  • Bio-Rad Laboratories, Inc.
  • Biocare Medical, LLC
  • BioCat GmbH
  • Bioevopeak Co., Ltd.|
  • BioGenex Laboratories
  • Biomers.net GmbH
  • BioView Ltd.
  • Cell Line Genetics, Inc.
  • CellCarta Biosciences Inc.
  • Charles River Laboratories International, Inc.
  • CiteAb Ltd.
  • Cole-Parmer Instrument Company, LLC.
  • Creative Bioarray
  • Creative Biolabs
  • Daicel Arbor Biosciences
  • DSS Imagetech Pvt. Ltd.
  • Emsurg Healthcare(India) Pvt. Limited
  • Enzo Life Sciences, Inc.
  • Excilone
  • F. Hoffmann-La Roche Ltd
  • Flogentec
  • GeneDetect.com Limited
  • Intertek Group PLC
  • KromaTiD Inc.
  • Leica Biosystems Nussloch GmbH
  • Merck KGaA
  • Molecular Instruments, Inc.
  • NeoGenomics Laboratories, Inc.
  • Okabe Bureau
  • Opgen
  • Oxford Gene Technology IP Limited
  • PerkinElmer Inc.
  • Qiagen NV
  • QIMA Life Sciences
  • Reveal Biosciences, Inc.
  • Ribocon GmbH
  • Spatial Genomics, Inc.
  • Stratech Scientific Ltd
  • Suraksha Diagnostic Private Limited
  • Thermo Fisher Scientific Inc.
  • Vector Laboratories, Inc.
  • Zytomed Systems GmbH
  • ZytoVision GmbH
JHS 24.11.26

The In Situ Hybridization Market was valued at USD 1.81 billion in 2023, expected to reach USD 1.94 billion in 2024, and is projected to grow at a CAGR of 7.92%, to USD 3.10 billion by 2030.

In situ hybridization (ISH) is a laboratory technique that uses a labeled complementary DNA, RNA, or modified nucleic acid strand (probe) to localize a specific DNA or RNA sequence in a portion or section of tissue. The necessity of ISH stems from its ability to provide spatial and temporal gene expression insight, which is crucial for basic research, diagnostics, and clinical applications, particularly in identifying specific types of cancer cells and genetic abnormalities. The application of ISH extends across oncology, virology, pathology, and neuroscience, with end-use spanning hospitals, research institutions, and diagnostic laboratories. Market insights reveal the significant influence of technological advancements in molecular diagnostics, increasing prevalence of cancer, and demand for personalized medicine as prime growth factors. The widespread adoption of novel probes, like those used in FISH and CISH, enhances the accuracy and reliability of ISH, presenting opportunities for stakeholders. However, challenges persist, including the high cost of instruments, need for skilled labor, and lengthy procedural times, which may hamper the market growth. Key areas for innovation include the development of automated ISH platforms and cost-effective probes, which lower the barrier for adoption in low-resource settings, thereby expanding the market. Additionally, enhancing multiplexing capabilities to simultaneously detect multiple targets presents a unique opportunity to bolster the utility of ISH in personalized medicine. The nature of the ISH market remains highly competitive and fragmented, characterized by a mix of established and emerging players focusing on expanding product portfolios and strategic collaborations. Recommendations for businesses include investing in R&D to improve assay sensitivity, diversifying product applications beyond traditional fields, and forming strategic alliances to capitalize on emerging markets. Overcoming limitations through product innovation and strategic partnerships will be central to capturing growth opportunities within this expanding field.

KEY MARKET STATISTICS
Base Year [2023] USD 1.81 billion
Estimated Year [2024] USD 1.94 billion
Forecast Year [2030] USD 3.10 billion
CAGR (%) 7.92%

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving In Situ Hybridization Market

The In Situ Hybridization Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Prevalence of infectious diseases demanding rapid diagnostic techniques
    • Rising inclination towards molecular diagnostic tools
    • Increasing investments in R&D pertaining to IVD
  • Market Restraints
    • Limitation in identifying the low DNA and RNA sequencing
  • Market Opportunities
    • Rapid advent of 3D fluorescence in situ hybridization (FISH) technologies
    • Technological advancements and strategic investments to develop ISH technologies
  • Market Challenges
    • Concerns regarding lack of skilled professionals to provide proper diagnosis

Porter's Five Forces: A Strategic Tool for Navigating the In Situ Hybridization Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the In Situ Hybridization Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the In Situ Hybridization Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the In Situ Hybridization Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the In Situ Hybridization Market

A detailed market share analysis in the In Situ Hybridization Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the In Situ Hybridization Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the In Situ Hybridization Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the In Situ Hybridization Market

A strategic analysis of the In Situ Hybridization Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the In Situ Hybridization Market, highlighting leading vendors and their innovative profiles. These include Abbott Laboratories, Abcam Plc, Abnova Corporation, Advanced Cell Diagnostics, Inc., Agilent Technologies, Inc., Bio SB, Bio-Rad Laboratories, Inc., Biocare Medical, LLC, BioCat GmbH, Bioevopeak Co., Ltd. |, BioGenex Laboratories, Biomers.net GmbH, BioView Ltd., Cell Line Genetics, Inc., CellCarta Biosciences Inc., Charles River Laboratories International, Inc., CiteAb Ltd., Cole-Parmer Instrument Company, LLC., Creative Bioarray, Creative Biolabs, Daicel Arbor Biosciences, DSS Imagetech Pvt. Ltd., Emsurg Healthcare (India) Pvt. Limited, Enzo Life Sciences, Inc., Excilone, F. Hoffmann-La Roche Ltd, Flogentec, GeneDetect.com Limited, Intertek Group PLC, KromaTiD Inc., Leica Biosystems Nussloch GmbH, Merck KGaA, Molecular Instruments, Inc., NeoGenomics Laboratories, Inc., Okabe Bureau, Opgen, Oxford Gene Technology IP Limited, PerkinElmer Inc., Qiagen N.V., QIMA Life Sciences, Reveal Biosciences, Inc., Ribocon GmbH, Spatial Genomics, Inc., Stratech Scientific Ltd, Suraksha Diagnostic Private Limited, Thermo Fisher Scientific Inc., Vector Laboratories, Inc., Zytomed Systems GmbH, and ZytoVision GmbH.

Market Segmentation & Coverage

This research report categorizes the In Situ Hybridization Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Product, market is studied across Consumables, Instruments, and Software. The Consumables is further studied across Accessories, Kits & Reagents, and Probes.
  • Based on Technology, market is studied across Chromogenic In Situ Hybridization and Fluorescence In Situ Hybridization. The Fluorescence In Situ Hybridization is further studied across DNA Fluorescence In Situ Hybridization, PNA Fluorescence In Situ Hybridization, and RNA Fluorescence In Situ Hybridization.
  • Based on Application, market is studied across Cancer Diagnostics, Cytology, Immunology, Infectious Disease Diagnostics, and Neuroscience.
  • Based on End User, market is studied across Academic & Research Institutes, Contract Research Organizations, Hospital & Diagnostic Laboratories, and Pharmaceutical & Biotechnology Companies.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Prevalence of infectious diseases demanding rapid diagnostic techniques
      • 5.1.1.2. Rising inclination towards molecular diagnostic tools
      • 5.1.1.3. Increasing investments in R&D pertaining to IVD
    • 5.1.2. Restraints
      • 5.1.2.1. Limitation in identifying the low DNA and RNA sequencing
    • 5.1.3. Opportunities
      • 5.1.3.1. Rapid advent of 3D fluorescence in situ hybridization (FISH) technologies
      • 5.1.3.2. Technological advancements and strategic investments to develop ISH technologies
    • 5.1.4. Challenges
      • 5.1.4.1. Concerns regarding lack of skilled professionals to provide proper diagnosis
  • 5.2. Market Segmentation Analysis
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. In Situ Hybridization Market, by Product

  • 6.1. Introduction
  • 6.2. Consumables
    • 6.2.1. Accessories
    • 6.2.2. Kits & Reagents
    • 6.2.3. Probes
  • 6.3. Instruments
  • 6.4. Software

7. In Situ Hybridization Market, by Technology

  • 7.1. Introduction
  • 7.2. Chromogenic In Situ Hybridization
  • 7.3. Fluorescence In Situ Hybridization
    • 7.3.1. DNA Fluorescence In Situ Hybridization
    • 7.3.2. PNA Fluorescence In Situ Hybridization
    • 7.3.3. RNA Fluorescence In Situ Hybridization

8. In Situ Hybridization Market, by Application

  • 8.1. Introduction
  • 8.2. Cancer Diagnostics
  • 8.3. Cytology
  • 8.4. Immunology
  • 8.5. Infectious Disease Diagnostics
  • 8.6. Neuroscience

9. In Situ Hybridization Market, by End User

  • 9.1. Introduction
  • 9.2. Academic & Research Institutes
  • 9.3. Contract Research Organizations
  • 9.4. Hospital & Diagnostic Laboratories
  • 9.5. Pharmaceutical & Biotechnology Companies

10. Americas In Situ Hybridization Market

  • 10.1. Introduction
  • 10.2. Argentina
  • 10.3. Brazil
  • 10.4. Canada
  • 10.5. Mexico
  • 10.6. United States

11. Asia-Pacific In Situ Hybridization Market

  • 11.1. Introduction
  • 11.2. Australia
  • 11.3. China
  • 11.4. India
  • 11.5. Indonesia
  • 11.6. Japan
  • 11.7. Malaysia
  • 11.8. Philippines
  • 11.9. Singapore
  • 11.10. South Korea
  • 11.11. Taiwan
  • 11.12. Thailand
  • 11.13. Vietnam

12. Europe, Middle East & Africa In Situ Hybridization Market

  • 12.1. Introduction
  • 12.2. Denmark
  • 12.3. Egypt
  • 12.4. Finland
  • 12.5. France
  • 12.6. Germany
  • 12.7. Israel
  • 12.8. Italy
  • 12.9. Netherlands
  • 12.10. Nigeria
  • 12.11. Norway
  • 12.12. Poland
  • 12.13. Qatar
  • 12.14. Russia
  • 12.15. Saudi Arabia
  • 12.16. South Africa
  • 12.17. Spain
  • 12.18. Sweden
  • 12.19. Switzerland
  • 12.20. Turkey
  • 12.21. United Arab Emirates
  • 12.22. United Kingdom

13. Competitive Landscape

  • 13.1. Market Share Analysis, 2023
  • 13.2. FPNV Positioning Matrix, 2023
  • 13.3. Competitive Scenario Analysis
    • 13.3.1. Biocare Medical Acquires Empire Genomics | Precision Oncology News
    • 13.3.2. Resolve Biosciences Raises $71M in Series B Financing
    • 13.3.3. Danaher To Acquire Aldevron
    • 13.3.4. PNI to be Acquired by Danaher Corporation's Life Sciences Platform
    • 13.3.5. Bio-Techne has announced the commercial release of novel DNAscope in situ hybridization assays
    • 13.3.6. Avacta Announces Distribution Agreement With ABCAM plc | Business Wire
    • 13.3.7. FDA approves Roche's Ventana ALK (D5F3) CDx Assay for lung cancer
  • 13.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Abbott Laboratories
  • 2. Abcam Plc
  • 3. Abnova Corporation
  • 4. Advanced Cell Diagnostics, Inc.
  • 5. Agilent Technologies, Inc.
  • 6. Bio SB
  • 7. Bio-Rad Laboratories, Inc.
  • 8. Biocare Medical, LLC
  • 9. BioCat GmbH
  • 10. Bioevopeak Co., Ltd. |
  • 11. BioGenex Laboratories
  • 12. Biomers.net GmbH
  • 13. BioView Ltd.
  • 14. Cell Line Genetics, Inc.
  • 15. CellCarta Biosciences Inc.
  • 16. Charles River Laboratories International, Inc.
  • 17. CiteAb Ltd.
  • 18. Cole-Parmer Instrument Company, LLC.
  • 19. Creative Bioarray
  • 20. Creative Biolabs
  • 21. Daicel Arbor Biosciences
  • 22. DSS Imagetech Pvt. Ltd.
  • 23. Emsurg Healthcare (India) Pvt. Limited
  • 24. Enzo Life Sciences, Inc.
  • 25. Excilone
  • 26. F. Hoffmann-La Roche Ltd
  • 27. Flogentec
  • 28. GeneDetect.com Limited
  • 29. Intertek Group PLC
  • 30. KromaTiD Inc.
  • 31. Leica Biosystems Nussloch GmbH
  • 32. Merck KGaA
  • 33. Molecular Instruments, Inc.
  • 34. NeoGenomics Laboratories, Inc.
  • 35. Okabe Bureau
  • 36. Opgen
  • 37. Oxford Gene Technology IP Limited
  • 38. PerkinElmer Inc.
  • 39. Qiagen N.V.
  • 40. QIMA Life Sciences
  • 41. Reveal Biosciences, Inc.
  • 42. Ribocon GmbH
  • 43. Spatial Genomics, Inc.
  • 44. Stratech Scientific Ltd
  • 45. Suraksha Diagnostic Private Limited
  • 46. Thermo Fisher Scientific Inc.
  • 47. Vector Laboratories, Inc.
  • 48. Zytomed Systems GmbH
  • 49. ZytoVision GmbH
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦