½ÃÀ庸°í¼­
»óǰÄÚµå
1591998

¼¼°èÀÇ Àθ޸𸮠µ¥ÀÌÅͺ£À̽º ½ÃÀå : µ¥ÀÌÅÍ À¯Çü, ó¸® À¯Çü, ¿ëµµ, Àü°³ ¸ðµ¨, Á¶Á÷ ±Ô¸ð, ¾÷Á¾º° ¿¹Ãø(2025-2030³â)

In-Memory Database Market by Data Type (NewSQL, NOSQL, Relational), Processing Type (Online Analytical Processing (OLAP), Online Transaction Processing (OLTP)), Application, Deployment Model, Organization Size, Vertical - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 188 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Àθ޸𸮠µ¥ÀÌÅͺ£À̽º ½ÃÀåÀÇ 2023³â ½ÃÀå ±Ô¸ð´Â 70¾ï 7,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2024³â¿¡´Â 77¾ï 8,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, CAGR 10.67%·Î ¼ºÀåÇØ 2030³â¿¡´Â 143¾ï 9,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Àθ޸𸮠µ¥ÀÌÅͺ£À̽º(IMDB)´Â µ¥ÀÌÅͺ£À̽º °ü¸® ½Ã½ºÅÛÀÇ ÀÏÁ¾À̸ç, µ¥ÀÌÅÍ º¸Á¸À» ÁÖ·Î ¸ÞÀÎ ¸Þ¸ð¸®¿¡ ÀÇÁ¸Çϰí Àֱ⠶§¹®¿¡ ±âÁ¸ µð½ºÅ© º£À̽ºÀÇ µ¥ÀÌŸº£À̽º¿¡ ºñÇØ ¼Óµµ¸é¿¡¼­ Å« ¿ìÀ§¼ºÀÌ ÀÖ½À´Ï´Ù. ¼ö¿ä°¡ ³ô¾ÆÁö°í ÀÖ´Â ¹è°æ¿¡´Â °í¼Ó µ¥ÀÌÅÍ Ã³¸®¿Í ½Ç½Ã°£ ºÐ¼®¿¡ ´ëÇÑ ¼¼°èÀÇ ¿ä±¸°¡ ÀÖÀ¸¸ç, ºü¸¥ Á¤º¸ °Ë»öÀÌ °¡Àå Áß¿äÇÑ ÀºÇà, Åë½Å, ¼Ò¸Å µîÀÇ ºÐ¾ß¿¡¼­ ÇʼöÀûÀÌ µÇ°í ÀÖ½À´Ï´Ù. ±ÝÀ¶ ¼­ºñ½ºÀÇ Æ®·£Àè¼Ç 󸮺ÎÅÍ ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼®À» ÅëÇØ °³ÀÎÈ­µÈ °í°´ °æÇè¿¡ À̸£±â±îÁö IMDB´Â ±â¼úÀû ÀÌÁ¡À» ÅëÇØ °æÀï ¿ìÀ§¸¦ È®º¸ÇÏ·Á´Â ±â¾÷¿¡°Ô ¸Å¿ì Áß¿äÇÑ ¿ëµµÀÔ´Ï´Ù. ÇコÄɾî, ¹°·ù, Á¦Á¶¾÷ µî ÃÖÁ¾ ¿ëµµ»ê¾÷µµ ½Å¼ÓÇÑ ÀÇ»ç°áÁ¤°ú ¾÷¹« È¿À²È­¸¦ À§ÇØ IMDB¸¦ Ȱ¿ëÇÏ¿© ÀÌÀÍÀ» ¾ò°í ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ(2023) 70¾ï 7,000¸¸ ´Þ·¯
¿¹Ãø³â(2024) 77¾ï 8,000¸¸ ´Þ·¯
¿¹Ãø³â(2030) 143¾ï 9,000¸¸ ´Þ·¯
CAGR(%) 10.67%

½ÃÀå ¼ºÀåÀº µ¥ÀÌÅÍ »ý¼º°ú ¼ÒºñÀÇ ±ÞÁõ, ´ë±Ô¸ð Àθ޸𸮠°è»êÀ» º¸´Ù ¿ì¼öÇÑ Çϵå¿þ¾î·Î Áö¿øÇÏ´Â ±â¼úÀÇ Áøº¸, ºÎ¹®À» ³ÑÀº µðÁöÅÐ ÀüȯÀ¸·ÎÀÇ ½ÃÇÁÆ® µîÀÇ ¿äÀο¡ Å©°Ô ¿µÇâÀ» ¹Þ½À´Ï´Ù. ÄÄÇ»ÆÃ ¹× IoT¿Í °°Àº ½Å±â¼ú°ú IMDBÀÇ ÅëÇÕ È®À强°ú À¯¿¬¼ºÀÌ Çâ»óµÇ¾î ºñÁî´Ï½º ±âȸ°¡ ³Ð¾îÁö°í ÀÖ½À´Ï´Ù. ´É·Â È®´ë¿¡ ÁÖ·ÂÇÏ´Â °ÍÀÌ ÁÁ½À´Ï´Ù.

±×·¯³ª ÀÌ ½ÃÀåÀº RAMÀÇ °íºñ¿ë, µ¥ÀÌÅÍ º¹±¸ ¹× Áö¼Ó¼º ¹®Á¦, °í¼Ó µ¥ÀÌÅÍ Ã³¸® ȯ°æ¿¡ °íÀ¯ ÇÑ º¸¾È ¹®Á¦·Î ÀÎÇÑ Á¦¾à¿¡ Á÷¸é ÇØ ÀÖ½À´Ï´Ù. ´ëÈ¿°ú ÃÖÀûÈ­, µ¥ÀÌÅÍ º¸¾È ´ëÃ¥ °­È­, µ¥ÀÌÅÍ Áö¼Ó¼º ±â´É °­È­¿¡ ÁßÁ¡À» µÐ ±â¼ú Çõ½Å°ú ¿¬±¸°¡ ÇÊ¿äÇÕ´Ï´Ù.

ÇâÈÄ Á¶»ç¿¡¼­´Â ºñÈֹ߼º ¸Þ¸ð¸® ±â¼ú°ú ¾çÀÚ ÄÄÇ»ÆÃ ¾Ë°í¸®ÁòÀ» Ȱ¿ëÇÏ¿© IMDBÀÇ ±â´ÉÀ» ´õ¿í ÃßÁøÇÏ´Â °ÍÀÌ °ËÅäµÉ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ¿ªµ¿Àû ÀÎ ¿òÁ÷ÀÓ °è¼ÓÇØ¼­ Çõ½Å°ú ½ÃÀå ¿ä±¸ÀÇ ÃÖÀü¼±¿¡ ¼­¼­ ±â¾÷¿¡ ¼ºÀåÀÇ ±æÀ» Á¦½ÃÇϰí ÀÖ½À´Ï´Ù. ¼º°ú °æÀï ¿ìÀ§¸¦ Áö¼ÓÀûÀ¸·Î È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå ¿ªÇÐ: ºü¸£°Ô ÁøÈ­ÇÏ´Â Àθ޸𸮠µ¥ÀÌÅͺ£À̽º ½ÃÀå¿¡¼­ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® ÇØ¸í

Àθ޸𸮠µ¥ÀÌÅͺ£À̽º ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ë¿¡ ÀÇÇØ º¯¸ð¸¦ ÀÌ·ç°í ÀÖ½À´Ï´Ù. »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ ¾ò´Â µ¥ µµ¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦ÀûÀÎ ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ °æ°¨ÇÒ ¼ö ÀÖÀ½°ú µ¿½Ã¿¡ ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë°ú ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ´õ¿í ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • º¸´Ù ½Å¼ÓÇÑ µ¥ÀÌÅÍ °Ë»ö°ú ó¸® ½Ã°£ÀÇ Çʿ伺
    • ¼¼°èÀÇ »ê¾÷°ú ºñÁî´Ï½º¿¡ À־ÀÇ µðÁöÅÐÈ­ÀÇ ÁøÀü
    • Ŭ¶ó¿ìµå ±â¹Ý ¼­ºñ½º µµÀÔÀÇ ±ÞÁõ
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • Àθ޸𸮠µ¥ÀÌÅͺ£À̽ºÀÇ µµÀÔ ºñ¿ëÀÇ ³ôÀÌ
  • ½ÃÀå ±âȸ
    • Àθ޸𸮠µ¥ÀÌÅͺ£À̽º¿¡ À־ÀÇ ±â¼úÀÇ Áøº¸
    • ºòµ¥ÀÌÅÍ¿Í IoTÀÇ ÇöÀúÇÑ ¼ºÀå
  • ½ÃÀåÀÇ °úÁ¦
    • µ¥ÀÌÅÍ À¯Ãâ°ú ÇÁ¶óÀ̹ö½Ã¿¡ ´ëÇÑ ¿ì·Á

Porter's Five Forces: Àθ޸𸮠µ¥ÀÌÅͺ£À̽º ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Porter's Five Forces ÇÁ·¹ÀÓ ¿öÅ©´Â ½ÃÀå »óȲ°æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ±â¹ýÀ» Á¦°øÇÕ´Ï´Ù. ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ¼öÀÖ´Â ´õ °­ÀÎÇÑ ½ÃÀå¿¡¼­ Æ÷Áö¼Å´×À» º¸Àå ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : Àθ޸𸮠µ¥ÀÌÅͺ£À̽º ½ÃÀåÀÇ ¿ÜºÎ ¿µÇâÀ» ÆÄ¾Ç

¿ÜºÎ °Å½ÃÀû ȯ°æ ¿äÀÎÀº ÀÎ ¸Þ¸ð¸® µ¥ÀÌÅͺ£À̽º ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ»ÇÕ´Ï´Ù. ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸ Á¦°ø PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ¾ÕÀ» ³»´Ùº» Àû±ØÀûÀÎ ÀÇ»ç°áÁ¤À» ÇÒ Áغñ°¡ µÇ¾î ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® : Àθ޸𸮠µ¥ÀÌÅͺ£À̽º ½ÃÀå¿¡¼­ °æÀï ±¸µµ ÆÄ¾Ç

Àθ޸𸮠µ¥ÀÌÅͺ£À̽º ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. À» ºÐ¸íÈ÷ ÇÒ ¼ö ÀÖ½À´Ï´Ù.ÀÌ ºÐ¼®Àº ½ÃÀå ÁýÁß, ´ÜÆíÈ­ ¹× ÅëÇÕ µ¿ÇâÀ» ¹àÇô³»°í °ø±Þ¾÷ü´Â °æÀïÀÌ Ä¡¿­ ÇØÁü¿¡ µû¶ó ÀÚ»çÀÇ ÁöÀ§¸¦ ³ôÀÌ´Â Àü·«Àû ÀÇ»ç °áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÕ´Ï´Ù. Áö½ÄÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º : Àθ޸𸮠µ¥ÀÌÅͺ£À̽º ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â Àθ޸𸮠µ¥ÀÌÅͺ£À̽º ½ÃÀå¿¡¼­ °ø±Þ¾÷ü¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ¿¡ µû¶ó °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ³× °¡Áö »çºÐ¸éÀ» ÅëÇØ º¥´õ¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ºÐÇÒÇϰí Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê ¹× ¼Ö·ç¼ÇÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× Ãßõ : Àθ޸𸮠µ¥ÀÌÅͺ£À̽º ½ÃÀå¿¡¼­ ¼º°øÀ» À§ÇÑ ±æÀ» ±×¸®±â

Àθ޸𸮠µ¥ÀÌÅͺ£À̽º ½ÃÀåÀÇ Àü·« ºÐ¼®Àº ¼¼°è ½ÃÀå¿¡¼­ÀÇ ÇÁ·¹Á𽺠°­È­¸¦ ¸ñÇ¥·Î ÇÏ´Â ±â¾÷¿¡ ÇʼöÀûÀÎ ¿ä¼ÒÀÔ´Ï´Ù. ÀÌ Á¢±Ù¹ýÀ» ÅëÇØ °æÀï ±¸µµ¿¡¼­ °úÁ¦¸¦ ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö Àִ üÁ¦¸¦ ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀåÀÇ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ: ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·Â Æò°¡.

2. ½ÃÀå °³Ã´µµ: ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡ÇÏ¸ç ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­: ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, R&D Ȱµ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¾ò°í ÀÇ»ç°áÁ¤À» ÇÒ ¼ö ÀÖµµ·Ï Áß¿äÇÑ Áú¹®¿¡ ´ë´äÇϰí ÀÖ½À´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹® ¹× Áö¿ªÀº ¾îµðÀԴϱî?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ¡¤Ã¶¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • º¸´Ù °í¼ÓÀÇ µ¥ÀÌÅÍ Ãëµæ°ú ó¸® ½Ã°£ÀÇ Çʿ伺
      • ¼¼°èÀÇ ¾÷°è³ª ±â¾÷¿¡¼­ µðÁöÅÐÈ­°¡ ÁøÇà
      • Ŭ¶ó¿ìµå ±â¹Ý ¼­ºñ½º µµÀÔ ±ÞÁõ
    • ¾ïÁ¦¿äÀÎ
      • Àθ޸𸮠µ¥ÀÌÅͺ£À̽ºÀÇ ±¸Çö ºñ¿ëÀÌ ³ô´Ù
    • ±âȸ
      • Àθ޸𸮠µ¥ÀÌÅͺ£À̽ºÀÇ ±â¼úÀû Áøº¸
      • ºòµ¥ÀÌÅÍ¿Í IoTÀÇ ´ëÆøÀûÀÎ ¼ºÀå
    • °úÁ¦
      • µ¥ÀÌÅÍ À¯Ãâ°ú ÇÁ¶óÀ̹ö½Ã¿¡ ´ëÇÑ ¿ì·Á
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡Àû
    • °æÁ¦
    • »ç±³
    • ±â¼úÀû
    • ¹ý·ü»ó
    • ȯ°æ

Á¦6Àå Àθ޸𸮠µ¥ÀÌÅͺ£À̽º ½ÃÀå : µ¥ÀÌÅÍ À¯Çüº°

  • NewSQL
  • NoSQL
  • °ü°èÇü

Á¦7Àå Àθ޸𸮠µ¥ÀÌÅͺ£À̽º ½ÃÀå : ó¸® À¯Çüº°

  • ¿Â¶óÀÎ ºÐ¼® ó¸®(OLAP)
  • ¿Â¶óÀÎ Æ®·£Àè¼Ç ó¸®(OLTP)

Á¦8Àå Àθ޸𸮠µ¥ÀÌÅͺ£À̽º ½ÃÀå : ¿ëµµº°

  • ºÐ¼®
  • º¸°í
  • °Å·¡

Á¦9Àå Àθ޸𸮠µ¥ÀÌÅͺ£À̽º ½ÃÀå : µµÀÔ ¸ðµ¨º°

  • ¿Âµð¸Çµå
  • ¿ÂÇÁ·¹¹Ì½º

Á¦10Àå Àθ޸𸮠µ¥ÀÌÅͺ£À̽º ½ÃÀå : Á¶Á÷ ±Ô¸ðº°

  • ´ë±â¾÷
  • Áß¼Ò±â¾÷

Á¦11Àå Àθ޸𸮠µ¥ÀÌÅͺ£À̽º ½ÃÀå : ¾÷°èº°

  • Çмú¿¬±¸
  • BFSI
  • ¿¡³ÊÁö ¹× À¯Æ¿¸®Æ¼
  • Á¤ºÎ ¹× ¹æÀ§
  • ÇコÄÉ¾î ¹× »ý¸í°úÇÐ
  • IT ¹× Åë½Å
  • Á¦Á¶¾÷
  • ¹Ìµð¾î ¹× ¿£ÅÍÅ×ÀÎ¸ÕÆ®
  • ¼Ò¸Å ¹× ¼ÒºñÀç
  • ±³Åë±â°ü

Á¦12Àå ¾Æ¸Þ¸®Ä«ÀÇ Àθ޸𸮠µ¥ÀÌÅͺ£À̽º ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦13Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Àθ޸𸮠µ¥ÀÌÅͺ£À̽º ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦14Àå À¯·´¡¤Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ Àθ޸𸮠µ¥ÀÌÅͺ£À̽º ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦15Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼® 2023
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2023
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
  • Àü·« ºÐ¼®°ú Á¦¾È

±â¾÷ ¸ñ·Ï

  • Aerospike, Inc.
  • Altibase Corporation
  • Amazon Web Services, Inc.
  • Cloud Software Group, Inc.
  • Enea AB
  • Exasol Group
  • GridGain Systems, Inc.
  • Hazelcast
  • International Business Machine Corporation
  • McObject GmbH
  • Microsoft Corporation
  • MongoDB, Inc.
  • Oracle Corporation
  • Raima, Inc.
  • Redis Ltd.
  • Salesforce, Inc.
  • SAP SE
  • SingleStore, Inc.
  • Teradata Corporation
  • VMware, Inc.
  • Volt Active Data, Inc.
JHS 24.11.26

The In-Memory Database Market was valued at USD 7.07 billion in 2023, expected to reach USD 7.78 billion in 2024, and is projected to grow at a CAGR of 10.67%, to USD 14.39 billion by 2030.

In-memory databases (IMDB) are a type of database management system that primarily rely on main memory for data storage, offering significant speed advantages over traditional disk-based databases. The increasing necessity for IMDBs stems from the global need for high-speed data processing and real-time analytics, critical for sectors like banking, telecommunications, and retail where rapid information retrieval is paramount. With applications ranging from transaction processing in financial services to personalized customer experiences through real-time data analysis, IMDBs are crucial for businesses striving for competitive advantage through technological edge. End-use industries such as healthcare, logistics, and manufacturing also benefit, leveraging IMDBs for quick decision-making and operational efficiency.

KEY MARKET STATISTICS
Base Year [2023] USD 7.07 billion
Estimated Year [2024] USD 7.78 billion
Forecast Year [2030] USD 14.39 billion
CAGR (%) 10.67%

Market growth is significantly influenced by factors like the massive surge in data generation and consumption, advancements in technology enabling better hardware support for large-scale in-memory computation, and the shift toward digital transformation across sectors. Opportunities are being driven by the integration of IMDBs with emerging technologies like cloud computing and IoT, enhancing scalability and flexibility. Companies are advised to focus on expanding their real-time analytics capability by incorporating AI-driven analytics with in-memory processing to meet the burgeoning demand for precise and speedy insights.

However, the market faces limitations due to the high cost of RAM, challenges in data recovery and persistence, and security concerns inherent in rapid data processing environments. To overcome these challenges, innovation and research should focus on optimizing storage cost-effectiveness, strengthening data security measures, and enhancing data persistence functions.

Future research could investigate leveraging non-volatile memory technologies and quantum computing algorithms to further propel the capabilities of IMDBs. The market remains dynamic, powered by continuous technological advancements and strategic alliances, presenting firms with avenues for growth by staying at the forefront of technological innovation and market needs. Adapting business strategies to incorporate these evolving dimensions will ensure sustained market relevance and competitive advantage.

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving In-Memory Database Market

The In-Memory Database Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Need for faster data retrievals and processing times
    • Increasing digitalization across industries and businesses worldwide
    • Surge in adoption of cloud-based services
  • Market Restraints
    • High cost of implementation of in-memory databases
  • Market Opportunities
    • Technological advancements in in-memory database
    • Significant growth of big data and IoT
  • Market Challenges
    • Data breach and privacy concerns

Porter's Five Forces: A Strategic Tool for Navigating the In-Memory Database Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the In-Memory Database Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the In-Memory Database Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the In-Memory Database Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the In-Memory Database Market

A detailed market share analysis in the In-Memory Database Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the In-Memory Database Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the In-Memory Database Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the In-Memory Database Market

A strategic analysis of the In-Memory Database Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the In-Memory Database Market, highlighting leading vendors and their innovative profiles. These include Aerospike, Inc., Altibase Corporation, Amazon Web Services, Inc., Cloud Software Group, Inc., Enea AB, Exasol Group, GridGain Systems, Inc., Hazelcast, International Business Machine Corporation, McObject GmbH, Microsoft Corporation, MongoDB, Inc., Oracle Corporation, Raima, Inc., Redis Ltd., Salesforce, Inc., SAP SE, SingleStore, Inc., Teradata Corporation, VMware, Inc., and Volt Active Data, Inc..

Market Segmentation & Coverage

This research report categorizes the In-Memory Database Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Data Type, market is studied across NewSQL, NOSQL, and Relational.
  • Based on Processing Type, market is studied across Online Analytical Processing (OLAP) and Online Transaction Processing (OLTP).
  • Based on Application, market is studied across Analytics, Reporting, and Transaction.
  • Based on Deployment Model, market is studied across On-Demand and On-Premise.
  • Based on Organization Size, market is studied across Large Enterprises and Small & Medium Enterprises.
  • Based on Vertical, market is studied across Academia & Research, BFSI, Energy & Utilities, Government & Defense, Healthcare & Life Sciences, IT & Telecommunication, Manufacturing, Media & Entertainment, Retail & Consumer Goods, and Transportation.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Need for faster data retrievals and processing times
      • 5.1.1.2. Increasing digitalization across industries and businesses worldwide
      • 5.1.1.3. Surge in adoption of cloud-based services
    • 5.1.2. Restraints
      • 5.1.2.1. High cost of implementation of in-memory databases
    • 5.1.3. Opportunities
      • 5.1.3.1. Technological advancements in in-memory database
      • 5.1.3.2. Significant growth of big data and IoT
    • 5.1.4. Challenges
      • 5.1.4.1. Data breach and privacy concerns
  • 5.2. Market Segmentation Analysis
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. In-Memory Database Market, by Data Type

  • 6.1. Introduction
  • 6.2. NewSQL
  • 6.3. NOSQL
  • 6.4. Relational

7. In-Memory Database Market, by Processing Type

  • 7.1. Introduction
  • 7.2. Online Analytical Processing (OLAP)
  • 7.3. Online Transaction Processing (OLTP)

8. In-Memory Database Market, by Application

  • 8.1. Introduction
  • 8.2. Analytics
  • 8.3. Reporting
  • 8.4. Transaction

9. In-Memory Database Market, by Deployment Model

  • 9.1. Introduction
  • 9.2. On-Demand
  • 9.3. On-Premise

10. In-Memory Database Market, by Organization Size

  • 10.1. Introduction
  • 10.2. Large Enterprises
  • 10.3. Small & Medium Enterprises

11. In-Memory Database Market, by Vertical

  • 11.1. Introduction
  • 11.2. Academia & Research
  • 11.3. BFSI
  • 11.4. Energy & Utilities
  • 11.5. Government & Defense
  • 11.6. Healthcare & Life Sciences
  • 11.7. IT & Telecommunication
  • 11.8. Manufacturing
  • 11.9. Media & Entertainment
  • 11.10. Retail & Consumer Goods
  • 11.11. Transportation

12. Americas In-Memory Database Market

  • 12.1. Introduction
  • 12.2. Argentina
  • 12.3. Brazil
  • 12.4. Canada
  • 12.5. Mexico
  • 12.6. United States

13. Asia-Pacific In-Memory Database Market

  • 13.1. Introduction
  • 13.2. Australia
  • 13.3. China
  • 13.4. India
  • 13.5. Indonesia
  • 13.6. Japan
  • 13.7. Malaysia
  • 13.8. Philippines
  • 13.9. Singapore
  • 13.10. South Korea
  • 13.11. Taiwan
  • 13.12. Thailand
  • 13.13. Vietnam

14. Europe, Middle East & Africa In-Memory Database Market

  • 14.1. Introduction
  • 14.2. Denmark
  • 14.3. Egypt
  • 14.4. Finland
  • 14.5. France
  • 14.6. Germany
  • 14.7. Israel
  • 14.8. Italy
  • 14.9. Netherlands
  • 14.10. Nigeria
  • 14.11. Norway
  • 14.12. Poland
  • 14.13. Qatar
  • 14.14. Russia
  • 14.15. Saudi Arabia
  • 14.16. South Africa
  • 14.17. Spain
  • 14.18. Sweden
  • 14.19. Switzerland
  • 14.20. Turkey
  • 14.21. United Arab Emirates
  • 14.22. United Kingdom

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2023
  • 15.2. FPNV Positioning Matrix, 2023
  • 15.3. Competitive Scenario Analysis
  • 15.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Aerospike, Inc.
  • 2. Altibase Corporation
  • 3. Amazon Web Services, Inc.
  • 4. Cloud Software Group, Inc.
  • 5. Enea AB
  • 6. Exasol Group
  • 7. GridGain Systems, Inc.
  • 8. Hazelcast
  • 9. International Business Machine Corporation
  • 10. McObject GmbH
  • 11. Microsoft Corporation
  • 12. MongoDB, Inc.
  • 13. Oracle Corporation
  • 14. Raima, Inc.
  • 15. Redis Ltd.
  • 16. Salesforce, Inc.
  • 17. SAP SE
  • 18. SingleStore, Inc.
  • 19. Teradata Corporation
  • 20. VMware, Inc.
  • 21. Volt Active Data, Inc.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦