½ÃÀ庸°í¼­
»óǰÄÚµå
1593049

¼¼°èÀÇ È­Çпë IoT ½ÃÀå : Å×Å©³î·ÎÁö, ¿ëµµº° ¿¹Ãø(2025-2030³â)

IoT in Chemical Market by Technology (Enabling Technology, Operational Technology), Application (Chemicals, Food & Beverages, Mining & Metals) - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 191 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

È­Çпë IoT ½ÃÀåÀÇ 2023³â ½ÃÀå ±Ô¸ð´Â 499¾ï 6,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2024³â¿¡´Â 567¾ï 1,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 13.60%·Î ¼ºÀåÇÏ¿©, 2030³â¿¡´Â 1,220¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

È­Çпë IoTÀº ÷´Ü µðÁöÅÐ ±â¼ú°ú ÀüÅëÀûÀÎ È­ÇÐ Á¦Á¶ °øÁ¤ÀÇ Áß¿äÇÑ ±³Â÷Á¡ÀÔ´Ï´Ù. ¸ð´ÏÅ͸µ¿¡¼­ ¿¹Ãø À¯Áö º¸¼ö ¹× °ø±Þ¸Á ÃÖÀûÈ­¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ºÐ¾ßÀÇ IoT ÅëÇÕÀÇ Çʿ伺 Àº ºñ¿ëÀ» ´ëÆø Àý°¨Çϸ鼭 ¿î¿µ È¿À²¼ºÀ» ³ôÀ̰í, ´Ù¿îŸÀÓÀ» ÃÖ¼ÒÈ­Çϰí, ¾ÈÀü ±âÁØÀ» °³¼±Çϰí, ±ÔÁ¦ ÄÄÇöóÀ̾𽺸¦ È®º¸ÇÏ´Â ´É·Â¿¡ ÀÖ½À´Ï´Ù. ¹°·ù, ¾ÈÀü ¸ð´ÏÅ͸µ µîÀÌ ÀÖÀ¸¸ç, °¢°¢Àº µ¥ÀÌÅÍ ¼öÁý ¹× ½Ç¿ëÀûÀÎ ÀλçÀÌÆ®¿¡ Çõ¸íÀ» °¡Á®¿À´Â IoTÀÇ ÀáÀçÀû °¡´É¼º¿¡¼­ ÇýÅÃÀ» ¹Þ°í ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ(2023) 499¾ï 6,000¸¸ ´Þ·¯
¿¹Ãø³â(2024) 567¾ï 1,000¸¸ ´Þ·¯
¿¹Ãø³â(2030) 1,220¾ï ´Þ·¯
º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)(%) 13.60%

½ÃÀåÀÇ ¼ºÀåÀº ºñÁî´Ï½º È¿À²¼º¿¡ ´ëÇÑ ¿ä±¸°¡ Ä¿Áö°í ¾ÈÀü¼º°ú ÄÄÇöóÀ̾𽺠´ëÃ¥ °­È­°¡ ÇÊ¿äÇÏ¸ç »ê¾÷ ºÎ¹®¿¡¼­ ½º¸¶Æ® ±â¼úÀ» äÅÃÇÏ´Â µîÀÇ ¿äÀο¡ ¿µÇâÀ»¹Þ½À´Ï´Ù. ¿ä±¸ »çÇ׿¡ ¸Â°Ô »ç¿ëÀÚ Á¤ÀÇ °¡´ÉÇÑ ½Ç½Ã°£ ÀÇ»ç °áÁ¤À» ÃËÁøÇÏ´Â ³ôÀº ±î´Ù·Î¿î ºÐ¼® Ç÷§Æû°ú AI ÁÖµµÀÇ IoT ¾ÖÇø®ÄÉÀÌ¼Ç °³¹ßÀ» µé ¼ö ÀÖ½À´Ï´Ù. »çÀ̹ö º¸¾È ÇÁ·¹ÀÓ¿öÅ© °³¹ß¿¡ ÅõÀÚÇØ¾ß ÇÕ´Ï´Ù.

±×·¯³ª, µµÀÔ ºñ¿ëÀÇ ³ôÀÌ, ±â¼úÀûÀÎ º¹À⼺, Á¾·¡ÀÇ ÇÁ·Î¼¼½º¿¡ À־ÀÇ µðÁöÅÐ º¯Çõ¿¡ÀÇ ¼Ò±Ø¼º µîÀÇ °úÁ¦°¡ ½ÃÀå ħÅõÀÇ ÇѰ谡 µÇ°í ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ÀÌ ¾÷°è¿¡´Â Ç¥ÁØÈ­µÈ ÇÁ·ÎÅäÄÝÀÌ ¾ø°í, IoT ±â¼úµµ ¹ßÀü µµ»ó µû¶ó¼­ º¹À⼺°ú À§ÇèÀÌ µÎ²®½À´Ï´Ù. ¼¾¼­ ±â¼ú °³¼±, »óÈ£ ¿î¿ë °¡´ÉÇÑ ½Ã½ºÅÛ °³¹ß ¹× ȯ°æ ¿µÇâÀ» ÃÖ¼ÒÈ­ÇϱâÀ§ÇÑ Áö¼Ó °¡´ÉÇÑ IoT ¿¬½ÀÀ» ÃËÁøÇÕ´Ï´Ù. µî, ±â¼ú Çõ½ÅÀÇ ±â°è´Â ÀͽÀ´Ï´Ù.

Àü¹ÝÀûÀ¸·Î IoT È­ÇÐ ½ÃÀåÀº ±â¼ú µµÀÔ°ú Çõ½Å¿¡ ´ëÇÑ Àü·«Àû ÅõÀÚ¿¡ µû¶ó ¼ºÀå °¡´É¼ºÀ» Áö´Ñ ¿ªµ¿ÀûÀΠȯ°æÀÔ´Ï´Ù. ±â¾÷Àº »õ·Î¿î ±â¼ú µ¿Çâ¿¡ ¹ÎøÇÏ°Ô ´ëÀÀÇÏ°í ºü¸£°Ô ÁøÈ­ÇÏ´Â µðÁöÅÐ »óȲ ¾È¿¡¼­ °æÀï·ÂÀ» È®º¸ÇؾßÇÕ´Ï´Ù.

½ÃÀå ¿ªÇÐ : ºü¸£°Ô ÁøÈ­ÇÏ´Â È­Çпë IoT ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

È­Çпë IoT ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ ÀÛ¿ë¿¡ ÀÇÇØ º¯¸ð¸¦ ÀÌ·ç°í ÀÖ½À´Ï´Ù. ¼¼·ÃµÇ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ ¾ò´Â µ¥ µµ¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ À§ÇèÀ» ¿ÏÈ­ÇÒ ¼ö ÀÖÀ¸¸ç, ¼ÒºñÀÚ Çൿ°ú ÀÌ´Â Á¦Á¶ ºñ¿ë°ú ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ´õ¿í ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • IoT¿¡ ÀÇÇÑ È­Çлý»ê °³¼±¿¡ ÁÖ·Â
    • »ê¾÷¿ë ·Îº¿ÀÇ µµÀÔ È®´ë
    • Çõ½ÅÀ» À§ÇÑ R&D ÇÁ·Î¼¼½ºÀÇ °í±Þ ºÐ¼® ¹× ¸Ó½Å·¯´×
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • °í¾×ÀÇ Ãʱâ ÅõÀÚ°¡ ÇÊ¿ä
  • ½ÃÀå ±âȸ
    • È­Çпë IoT »ê¾÷ °ø±Þ¸ÁÀÇ °¡´É¼ºÀÌ ³ô¾ÆÁü
    • »ê¾÷¿ë IoT¸¦ ÇâÇÑ 5G ±â¼úÀÇ µîÀå
  • ½ÃÀåÀÇ °úÁ¦
    • Ä¿³ØÆ¼µå ½Ã½ºÅÛ°ú °ü·ÃµÈ º¸¾È ¿ì·Á

Porter's Five Forces : È­Çпë IoT ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Porter's Five Forces Framework´Â ½ÃÀå »óȲ °æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Porter's Five Forces Framework´Â ±â¾÷ÀÇ °æÀïÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ ޱ¸ÇÏ´Â ¸íÈ®ÇÑ ±â¼úÀ» ¼³¸íÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» °áÁ¤ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ´õ °­ÀÎÇÑ ½ÃÀå¿¡¼­ Æ÷Áö¼Å´×À» º¸Àå ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : È­Çпë IoT ½ÃÀå¿¡¼­ ¿ÜºÎ·ÎºÎÅÍÀÇ ¿µÇâ ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº È­Çпë IoT ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇϴµ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ»ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀÎ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¾ÕÀ¸·Î ¿¹»óµÇ´Â Àû±ØÀûÀÎ ÀÇ»ç °áÁ¤À» ÇÒ Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® È­Çпë IoT ½ÃÀå¿¡¼­ °æÀï ±¸µµ ÆÄ¾Ç

È­Çпë IoT ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ ½ÃÀåÀÇ ÁýÁß, ´ÜÆíÈ­, ÅëÇÕ µ¿ÇâÀ» ¹àÇô³»°í, º¥´õ´Â °æÀïÀÌ °ÝÈ­ÇÏ´Â °¡¿îµ¥ ÀÚ½ÅÀÇ ÁöÀ§¸¦ ³ôÀÌ´Â Àü·«Àû ÀÇ»ç°áÁ¤À» Çϱâ À§ÇØ ÇÊ¿äÇÕ´Ï´Ù. Áö½ÄÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º È­Çпë IoT ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â È­Çпë IoT ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Á¤º¸¸¦ ±â¹ÝÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ÀÌ Çà·ÄÀ» ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº °ø±Þ¾÷üÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±âÁØÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ¸Â´Â ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. 4°³ÀÇ »çºÐ¸éÀ» ÅëÇØ º¥´õ¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ºÎ¹®È­Çϰí Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê ¹× ¼Ö·ç¼ÇÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× Ãßõ È­Çпë IoT ½ÃÀå¿¡¼­ ¼º°ø¿¡ ´ëÇÑ ±æÀ» ±×¸³´Ï´Ù.

È­Çпë IoT ½ÃÀåÀÇ Àü·« ºÐ¼®Àº ½ÃÀå¿¡¼­ÀÇ ÇÁ·¹Á𽺠°­È­¸¦ ¸ñÇ¥·Î ÇÏ´Â ±â¾÷¿¡ ÇʼöÀûÀÎ ¿ä¼ÒÀÔ´Ï´Ù. ÀÌ Á¢±Ù¹ýÀ» ÅëÇØ °æÀï ±¸µµ¿¡¼­ °úÁ¦¸¦ ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö ÀÖ´Â ½Ã½ºÅÛÀ» ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀåÀÇ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ : ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·Â Æò°¡.

2. ½ÃÀå °³Ã´µµ : ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡ÇÏ¸ç ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, R&D Ȱµ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¾ò°í ÀÇ»ç°áÁ¤À» ÇÒ ¼ö ÀÖµµ·Ï Áß¿äÇÑ Áú¹®¿¡ ´ë´äÇϰí ÀÖ½À´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹® ¹× Áö¿ªÀº ¾îµðÀԴϱî?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ, ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • IoT¿¡ ÀÇÇÑ È­ÇÐÁ¦Ç° »ý»ê °³¼±¿¡ ÁÖ·Â
      • »ê¾÷¿ë ·Îº¿ÀÇ µµÀÔ Áõ°¡
      • Çõ½ÅÀ» À§ÇÑ R&D ÇÁ·Î¼¼½ºÀÇ °í±Þ ºÐ¼® ¹× ¸Ó½Å·¯´×
    • ¾ïÁ¦¿äÀÎ
      • °í¾×ÀÇ Ãʱâ ÅõÀÚ°¡ ÇÊ¿ä
    • ±âȸ
      • È­Çпë IoT ¾÷°è °ø±Þ¸ÁÀÇ ÀáÀç´É·Â Áõ°¡
      • »ê¾÷¿ë IoT¿ë 5G ±â¼úÀÇ µîÀå
    • °úÁ¦
      • ¿¬°á ½Ã½ºÅÛ°ú °ü·ÃµÈ º¸¾È ¹®Á¦
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡Àû
    • °æÁ¦
    • »ç±³
    • ±â¼úÀû
    • ¹ý·ü»ó
    • ȯ°æ

Á¦6Àå È­Çпë IoT ½ÃÀå : ±â¼úº°

  • ½ÇÇö ±â¼ú
    • ºòµ¥ÀÌÅÍ
    • »ê¾÷¿ë ·Îº¿
    • ±â°è »óÅ ¸ð´ÏÅ͸µ
    • ¸Ó½Å ºñÀü
  • ¿î¿ë ±â¼ú
    • ºÐ»êÁ¦¾î½Ã½ºÅÛ
    • Á¦Á¶ ½ÇÇà ½Ã½ºÅÛ
    • ÇÁ·Î±×·¡¸Óºí ·ÎÁ÷ ÄÁÆ®·Ñ·¯

Á¦7Àå È­Çпë IoT ½ÃÀå : ¿ëµµº°

  • È­Çоàǰ
    • ºñ·á, ³ó¾à
    • ¼®À¯È­ÇÐÁ¦Ç° ¹× Æú¸®¸Ó
    • Ư¼öÈ­ÇÐÁ¦Ç°
  • ½Äǰ?À½·á
  • ±¤¾÷ ¹× ±Ý¼Ó
  • Á¾ÀÌ ¹× ÆÞÇÁ
  • ÀǾàǰ

Á¦8Àå ¾Æ¸Þ¸®Ä« È­Çпë IoT ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦9Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ È­ÇÐ ºÐ¾ß IoT ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦10Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ È­Çпë IoT ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦11Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®(2023³â)
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º(2023³â)
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
  • Àü·« ºÐ¼®°ú Á¦¾È

±â¾÷ ¸ñ·Ï

  • ABB Ltd.
  • Atos SE
  • Claroty Ltd.
  • Denso Corporation
  • Hewlett Packard Enterprise Company
  • Honeywell International Inc.
  • Microsoft Corporation
  • Mitsubishi Electric Corporation
  • Qualcomm Technologies, Inc.
  • Rockwell Automation, Inc.
  • Samsung Electronics Co. Ltd.
  • Schneider Electric SE
  • Siemens AG
  • Texas Instruments Incorporated
  • Yokogawa Electric Corporation
BJH 24.11.22

The IoT in Chemical Market was valued at USD 49.96 billion in 2023, expected to reach USD 56.71 billion in 2024, and is projected to grow at a CAGR of 13.60%, to USD 122.00 billion by 2030.

The Internet of Things (IoT) in the chemical industry represents a vital intersection of advanced digital technologies and traditional chemical manufacturing processes. This convergence propels efficiency, safety, and innovation, with IoT applications spanning from smart sensors and real-time monitoring to predictive maintenance and supply chain optimization. The necessity of IoT integration in the chemical sector lies in its capability to enhance operational efficiency, minimize downtime, improve safety standards, and ensure regulatory compliance, all while significantly reducing costs. Key end-use scopes include process manufacturing, energy management, logistics, and safety monitoring, each benefiting from IoT's potential to revolutionize data collection and actionable insights.

KEY MARKET STATISTICS
Base Year [2023] USD 49.96 billion
Estimated Year [2024] USD 56.71 billion
Forecast Year [2030] USD 122.00 billion
CAGR (%) 13.60%

Market growth is influenced by factors such as the increasing demand for operational efficiency, the need for enhanced safety and compliance measures, and the rising adoption of smart technologies across industrial sectors. Emerging opportunities include the development of advanced analytics platforms and AI-driven IoT applications that facilitate real-time decision-making, customizable to meet industry-specific requirements. To seize these opportunities, market players should focus on collaborative ecosystem partnerships and invest in developing robust cybersecurity frameworks to safeguard data integrity and privacy.

However, challenges such as high implementation costs, technical complexities, and the reluctance toward digital transformation in traditional processes pose limitations to market penetration. Moreover, the lack of standardized protocols and the nascent nature of IoT technologies in this industry add layers of complexity and risk. Nonetheless, areas ripe for innovation include improving sensor technologies, developing interoperable systems, and fostering sustainable IoT practices to minimize environmental impact.

Overall, the IoT chemical market presents a dynamic environment teeming with growth potential, contingent on strategic investments in technology adoption and innovation. Companies should remain agile and responsive to emerging technological trends, ensuring their competitive edge in a rapidly evolving digital landscape.

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving IoT in Chemical Market

The IoT in Chemical Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Focus on improving chemical production with IoT
    • Increasing adoption of industrial robots
    • Advanced analytics and machine learning in R&D process for innovation
  • Market Restraints
    • Requirement of high initial investment
  • Market Opportunities
    • Rising potential of IoT in chemical industry supply chain
    • Emergence of 5G technology for industrial IoT
  • Market Challenges
    • Security concerns associated with connected systems

Porter's Five Forces: A Strategic Tool for Navigating the IoT in Chemical Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the IoT in Chemical Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the IoT in Chemical Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the IoT in Chemical Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the IoT in Chemical Market

A detailed market share analysis in the IoT in Chemical Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the IoT in Chemical Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the IoT in Chemical Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the IoT in Chemical Market

A strategic analysis of the IoT in Chemical Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the IoT in Chemical Market, highlighting leading vendors and their innovative profiles. These include ABB Ltd., Atos SE, Claroty Ltd., Denso Corporation, Hewlett Packard Enterprise Company, Honeywell International Inc., Microsoft Corporation, Mitsubishi Electric Corporation, Qualcomm Technologies, Inc., Rockwell Automation, Inc., Samsung Electronics Co. Ltd., Schneider Electric SE, Siemens AG, Texas Instruments Incorporated, and Yokogawa Electric Corporation.

Market Segmentation & Coverage

This research report categorizes the IoT in Chemical Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Technology, market is studied across Enabling Technology and Operational Technology. The Enabling Technology is further studied across Big Data, Industrial Robotics, Machine Condition Monitoring, and Machine Vision. The Operational Technology is further studied across Distributed Control System, Manufacturing Execution System, and Programmable Logic Controller.
  • Based on Application, market is studied across Chemicals, Food & Beverages, Mining & Metals, Paper & Pulp, and Pharmaceuticals. The Chemicals is further studied across Fertilizers & Agrochemicals, Petrochemicals & Polymers, and Specialty Chemicals.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Focus on improving chemical production with IoT
      • 5.1.1.2. Increasing adoption of industrial robots
      • 5.1.1.3. Advanced analytics and machine learning in R&D process for innovation
    • 5.1.2. Restraints
      • 5.1.2.1. Requirement of high initial investment
    • 5.1.3. Opportunities
      • 5.1.3.1. Rising potential of IoT in chemical industry supply chain
      • 5.1.3.2. Emergence of 5G technology for industrial IoT
    • 5.1.4. Challenges
      • 5.1.4.1. Security concerns associated with connected systems
  • 5.2. Market Segmentation Analysis
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. IoT in Chemical Market, by Technology

  • 6.1. Introduction
  • 6.2. Enabling Technology
    • 6.2.1. Big Data
    • 6.2.2. Industrial Robotics
    • 6.2.3. Machine Condition Monitoring
    • 6.2.4. Machine Vision
  • 6.3. Operational Technology
    • 6.3.1. Distributed Control System
    • 6.3.2. Manufacturing Execution System
    • 6.3.3. Programmable Logic Controller

7. IoT in Chemical Market, by Application

  • 7.1. Introduction
  • 7.2. Chemicals
    • 7.2.1. Fertilizers & Agrochemicals
    • 7.2.2. Petrochemicals & Polymers
    • 7.2.3. Specialty Chemicals
  • 7.3. Food & Beverages
  • 7.4. Mining & Metals
  • 7.5. Paper & Pulp
  • 7.6. Pharmaceuticals

8. Americas IoT in Chemical Market

  • 8.1. Introduction
  • 8.2. Argentina
  • 8.3. Brazil
  • 8.4. Canada
  • 8.5. Mexico
  • 8.6. United States

9. Asia-Pacific IoT in Chemical Market

  • 9.1. Introduction
  • 9.2. Australia
  • 9.3. China
  • 9.4. India
  • 9.5. Indonesia
  • 9.6. Japan
  • 9.7. Malaysia
  • 9.8. Philippines
  • 9.9. Singapore
  • 9.10. South Korea
  • 9.11. Taiwan
  • 9.12. Thailand
  • 9.13. Vietnam

10. Europe, Middle East & Africa IoT in Chemical Market

  • 10.1. Introduction
  • 10.2. Denmark
  • 10.3. Egypt
  • 10.4. Finland
  • 10.5. France
  • 10.6. Germany
  • 10.7. Israel
  • 10.8. Italy
  • 10.9. Netherlands
  • 10.10. Nigeria
  • 10.11. Norway
  • 10.12. Poland
  • 10.13. Qatar
  • 10.14. Russia
  • 10.15. Saudi Arabia
  • 10.16. South Africa
  • 10.17. Spain
  • 10.18. Sweden
  • 10.19. Switzerland
  • 10.20. Turkey
  • 10.21. United Arab Emirates
  • 10.22. United Kingdom

11. Competitive Landscape

  • 11.1. Market Share Analysis, 2023
  • 11.2. FPNV Positioning Matrix, 2023
  • 11.3. Competitive Scenario Analysis
  • 11.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. ABB Ltd.
  • 2. Atos SE
  • 3. Claroty Ltd.
  • 4. Denso Corporation
  • 5. Hewlett Packard Enterprise Company
  • 6. Honeywell International Inc.
  • 7. Microsoft Corporation
  • 8. Mitsubishi Electric Corporation
  • 9. Qualcomm Technologies, Inc.
  • 10. Rockwell Automation, Inc.
  • 11. Samsung Electronics Co. Ltd.
  • 12. Schneider Electric SE
  • 13. Siemens AG
  • 14. Texas Instruments Incorporated
  • 15. Yokogawa Electric Corporation
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦