½ÃÀ庸°í¼­
»óǰÄÚµå
1593919

MLaaS(Machine-Learning-as-a-Service) ½ÃÀå : ±¸¼º¿ä¼Ò, ¿ëµµ, ÃÖÁ¾ »ç¿ëÀÚº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Machine-Learning-as-a-Service Market by Component (Services, Software), Application (Augmented & Virtual Reality, Fraud Detection & Risk Management, Marketing & Advertising), End User - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 198 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

MLaaS(Machine-Learning-as-a-Service) ½ÃÀåÀº 2023³â¿¡ 214¾ï 8,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2024³â¿¡´Â 280¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, CAGR 30.40%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 1,377¾ï 8,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

Machine-Learning-as-a-Service(MLaaS)´Â µ¥ÀÌÅÍ °úÇп¡ ´ëÇÑ ½ÉÃþÀûÀÎ Àü¹® Áö½ÄÀ̳ª ´ë±Ô¸ð ÀÎÇÁ¶ó ÅõÀÚ ¾øÀ̵µ Á¾ÇÕÀûÀÎ ¸Ó½Å·¯´× µµ±¸, ±â¼ú ¹× ¿ëµµ¸¦ ±â¾÷¿¡ Á¦°øÇϴ Ŭ¶ó¿ìµå ±â¹Ý Ç÷§ÆûÀ» ¸»ÇÕ´Ï´Ù. ÀÌ ¼­ºñ½º´Â °í±Þ ºÐ¼®¿¡ ´ëÇÑ Á¢±ÙÀ» ¹ÎÁÖÈ­ÇÏ°í ´Ù¾çÇÑ »ê¾÷¿¡¼­ ºòµ¥ÀÌÅÍ ºÐ¼®, ¿¹Ãø ºÐ¼® ¹× º¹ÀâÇÑ ÀÇ»ç°áÁ¤ °úÁ¤¿¡ °í±Þ ¾Ë°í¸®ÁòÀ» Ȱ¿ëÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ÇコÄɾî, ±ÝÀ¶, ¼Ò¸Å, Á¦Á¶ µî ´Ù¾çÇÑ ºÐ¾ß¿¡ °ÉÃÄ ºÎÁ¤ÇàÀ§ °¨Áö, °³ÀÎÈ­µÈ ¸¶ÄÉÆÃ, °í°´ ÀλçÀÌÆ®, ¾÷¹« È¿À²¼º Çâ»ó µîÀÇ ±â´ÉÀ» ÃËÁøÇÕ´Ï´Ù. ÃÖÁ¾ »ç¿ë ¹üÀ§¿¡´Â AI¸¦ ¿öÅ©Ç÷ο쿡 ¿øÈ°ÇÏ°Ô ÅëÇÕÇÏ¿© Çõ½ÅÀûÀÎ Á¦Ç° ¹× ¼­ºñ½º ½ÃÀå Ãâ½Ã ½Ã°£À» ´ÜÃàÇϰíÀÚ ÇÏ´Â ±â¾÷µµ Æ÷ÇԵ˴ϴÙ.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ(2023³â) 214¾ï 8,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ(2024³â) 280¾ï ´Þ·¯
¿¹Ãø ¿¬µµ(2030³â) 1,377¾ï 8,000¸¸ ´Þ·¯
CAGR(%) 30.40%

MLaaS ½ÃÀåÀÇ ÁÖ¿ä ¼ºÀå ¿äÀÎÀ¸·Î´Â µ¥ÀÌÅÍ È®»ê Áõ°¡, Ŭ¶ó¿ìµå µµÀÔ ÃËÁø, AI ±â¹Ý ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ µîÀÌ ÀÖ½À´Ï´Ù. ±â¾÷µéÀº µ¥ÀÌÅÍ Áß½ÉÀÇ °í¹ÎÀ» ÅëÇØ °æÀï ¿ìÀ§¸¦ È®º¸ÇϰíÀÚ ³ë·ÂÇϰí ÀÖÀ¸¸ç, ÀÌ´Â MLaaS Ç÷§Æû¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ƯÈ÷, »ê¾÷º° Ư¼º¿¡ ¸Â´Â Æ´»õ ¼Ö·ç¼Ç °³¹ß, ¸ðµ¨ ¼³¸í °¡´É¼º Çâ»ó, ÇÁ¶óÀ̹ö½Ã º¸È£ °­È­ µîÀÇ °úÁ¦°¡ ÀÖ½À´Ï´Ù. ±â¾÷µéÀº °­·ÂÇÑ »çÀ̹ö º¸¾È Á¶Ä¡¿¡ ÅõÀÚÇϰí, ½ÅÈï ½ÃÀå °ø·«À» À§ÇØ ´Ù±¹¾î Áö¿øÀ» È®´ëÇÏ´Â °ÍÀÌ µµ¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.

¼ºÀåÀ» ÀúÇØÇÏ´Â ¿äÀÎÀ¸·Î´Â µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¿¡ ´ëÇÑ ¿ì·Á, ±ÔÁ¦ ¹®Á¦, º¹ÀâÇÑ °á°ú¹°À» ÇØ¼®ÇÒ ¼ö ÀÖ´Â ¼÷·ÃµÈ Àü¹®°¡ ºÎÁ· µîÀ» µé ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, MLaaS ¼Ö·ç¼ÇÀº ±âÁ¸ ÀÎÇÁ¶ó¿ÍÀÇ ÅëÇÕ¿¡ ¾î·Á¿òÀ» °Þ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. À̸¦ ±Øº¹Çϱâ À§ÇØ ±â¾÷Àº IT ÄÁ¼³ÆÃ ȸ»ç¿ÍÀÇ Á¦ÈÞ¸¦ ÅëÇØ º¸´Ù ½¬¿î ÅëÇÕ ¸ÞÄ¿´ÏÁòÀ» °®Ãá »ç¿ëÀÚ Ä£È­ÀûÀÎ Ç÷§Æû °³¹ß¿¡ ÁýÁßÇØ¾ß ÇÕ´Ï´Ù.

Çõ½ÅÀº ÀÚµ¿ ¸Ó½Å·¯´×(AutoML), ¿§Áö ÄÄÇ»ÆÃÀÇ ÅëÇÕ, ½Å·Ú ±¸Ãà ¹× ±ÔÁ¦ Áؼö¸¦ ¿ëÀÌÇÏ°Ô ÇÏ´Â ¸ðµ¨ÀÇ Åõ¸í¼º °­È­¿¡ ´ëÇÑ ¿¬±¸¸¦ ÅëÇØ ÃËÁøµÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Çаè¿Í »ê¾÷°èÀÇ Çù¾÷À» ÃËÁøÇÔÀ¸·Î½á ƯÁ¤ ¿ëµµ¿¡ ÀûÇÕÇÑ »õ·Î¿î ¾Ë°í¸®ÁòÀ» °³¹ßÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ±Þ¼ÓÇÑ ±â¼ú ¹ßÀü°ú ¼ÒºñÀÚ ¼ö¿ä ÆÐÅÏÀÇ º¯È­ µî ½ÃÀåÀÇ Æ¯¼ºÀº ¿©ÀüÈ÷ ¿ªµ¿ÀûÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀÎÀ» Àü·«ÀûÀ¸·Î Ž»öÇϰí Áö¼ÓÀûÀÎ ÇнÀ°ú ÀûÀÀ¼ºÀ» ¿ì¼±½ÃÇÔÀ¸·Î½á ±â¾÷Àº MLaaSÀÇ ÀáÀç·ÂÀ» ÃÖ´ëÇÑ È°¿ëÇÏ°í ºü¸£°Ô ¼ºÀåÇÏ´Â ½ÃÀå¿¡¼­ ¹ßÆÇÀ» ¸¶·ÃÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå ¿ªÇÐ: ºü¸£°Ô ÁøÈ­ÇÏ´Â MLaaS(Machine-Learning-as-a-Service) ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ®¸¦ °ø°³ÇÕ´Ï´Ù.

MLaaS(Machine-Learning-as-a-Service) ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ëÀ» ÅëÇØ º¯È­Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐÀÇ º¯È­¸¦ ÀÌÇØÇÔÀ¸·Î½á ±â¾÷Àº Á¤º¸¿¡ ÀÔ°¢ÇÑ ÅõÀÚ °áÁ¤À» ³»¸®°í, Àü·«ÀûÀÎ ÀÇ»ç°áÁ¤À» Á¤±³È­Çϸç, »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Æ÷ÂøÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Æ®·»µå¸¦ Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª Àü¹Ý¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ ÁÙÀÏ ¼ö ÀÖÀ¸¸ç, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë ¹× ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • IoT ¹× ÀÚµ¿È­ µµÀÔ Áõ°¡
    • Ŭ¶ó¿ìµå ±â¹Ý ¼­ºñ½º ÀÌ¿ë È®´ë
    • ´Ù¾çÇÑ »ê¾÷ ºÐ¾ßÀÇ ¼º´É ¹× ¾÷¹« È¿À²¼º °³¼± ÇÊ¿ä
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ÈÆ·ÃÀ» ¹ÞÀº Àü¹®°¡ ºÎÁ·
  • ½ÃÀå ±âȸ
    • ÀÎÁö ÄÄÇ»ÆÃ, ½Å°æ¸Á, µö·¯´× ±â¼ú, ÀΰøÁö´É(AI)ÀÇ ÅëÇÕÀ¸·Î ÀÎÇÑ ±â¼ú ¹ßÀü
    • ÇコÄÉ¾î »ê¾÷¿¡¼­ÀÇ ÅõÀÚ ¹× Çù¾÷ È®´ë
  • ½ÃÀå °úÁ¦
    • µ¥ÀÌÅÍ º¸¾È ¹× °³ÀÎÁ¤º¸ º¸È£¿¡ ´ëÇÑ ¿ì·Á

Portre's Five Forces: MLaaS(Machine-Learning-as-a-Service) ½ÃÀå °ø·«À» À§ÇÑ Àü·«Àû µµ±¸

Portre's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ½ÃÀå »óȲ°æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Portre's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÇ °æÀï·ÂÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ Ž»öÇÒ ¼ö ÀÖ´Â ¸íÈ®ÇÑ ¹æ¹ýÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÅëÂû·ÂÀ» ÅëÇØ ±â¾÷Àº °­Á¡À» Ȱ¿ëÇϰí, ¾àÁ¡À» ÇØ°áÇϰí, ÀáÀçÀûÀÎ µµÀüÀ» ÇÇÇϰí, º¸´Ù °­·ÂÇÑ ½ÃÀå Æ÷Áö¼Å´×À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : MLaaS(Machine-Learning-as-a-Service) ½ÃÀåÀÇ ¿ÜºÎ ¿µÇâ·Â ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº MLaaS(Machine-Learning-as-a-Service) ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀο¡ ´ëÇÑ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇϸç, PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£µµ, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¼±Á¦ÀûÀÌ°í ´Éµ¿ÀûÀÎ ÀÇ»ç°áÁ¤À» ³»¸± Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼®MLaaS(Machine-Learning-as-a-Service) ½ÃÀå¿¡¼­°æÀï ±¸µµ ÆÄ¾Ç

MLaaS(Machine-Learning-as-a-Service) ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ º¥´õÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¼öÀÍ, °í°´ ±â¹Ý, ¼ºÀå·ü°ú °°Àº ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀïÀû À§Ä¡¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®Àº ½ÃÀåÀÇ ÁýÁßÈ­, ´ÜÆíÈ­ ¹× ÅëÇÕ Ãß¼¼¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖÀ¸¸ç, °ø±Þ¾÷ü´Â Ä¡¿­ÇÑ °æÀï ¼Ó¿¡¼­ ÀÚ½ÅÀÇ ÀÔÁö¸¦ °­È­ÇÒ ¼ö ÀÖ´Â Àü·«Àû ÀÇ»ç°áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ ÅëÂû·ÂÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º MLaaS(Machine-Learning-as-a-Service) ½ÃÀå¿¡¼­ÀÇ º¥´õÀÇ ¼º°ú Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â MLaaS(Machine-Learning-as-a-Service) ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡ÇÒ ¼ö ÀÖ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ ¸ÅÆ®¸¯½º¸¦ ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº º¥´õÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±â¹ÝÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ºÎÇÕÇÏ´Â Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖÀ¸¸ç, 4°³ÀÇ »çºÐ¸éÀ¸·Î º¥´õ¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ¼¼ºÐÈ­ÇÏ¿© Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê¿Í ¼Ö·ç¼ÇÀ» ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù. Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê¿Í ¼Ö·ç¼ÇÀ» ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù.

MLaaS(Machine-Learning-as-a-Service) ½ÃÀå¿¡¼­ ¼º°øÇϱâ À§ÇÑ Àü·« ºÐ¼® ¹× Ãßõ ¸Ó½Å·¯´× ½ÃÀå ¼º°øÀÇ ±æÀ» ±×¸®´Ù.

MLaaS(Machine-Learning-as-a-Service) ½ÃÀå Àü·« ºÐ¼®Àº ¼¼°è ½ÃÀå¿¡¼­ ÀÔÁö¸¦ °­È­ÇϰíÀÚ ÇÏ´Â ±â¾÷¿¡°Ô ÇʼöÀûÀÔ´Ï´Ù. ÁÖ¿ä ÀÚ¿ø, ¿ª·® ¹× ¼º°ú ÁöÇ¥¸¦ °ËÅäÇÔÀ¸·Î½á ±â¾÷Àº ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀº °æÀï ȯ°æÀÇ µµÀüÀ» ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö Àִ ü°è¸¦ ±¸ÃàÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀå¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõµµ : ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·Â Æò°¡.

2. ½ÃÀå °³Ã´µµ: ½ÅÈï ½ÃÀå¿¡¼­ÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇϰí, ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡Çϸç, ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù°¢È­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä ¹ßÀü, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú ¹ßÀü µîÀ» °ËÅäÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÷´Ü ±â¼ú, ¿¬±¸ °³¹ß Ȱµ¿ ¹× Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

ÀÌÇØ°ü°èÀÚµéÀÌ ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï ´ÙÀ½°ú °°Àº Áß¿äÇÑ Áú¹®¿¡ ´ëÇÑ ´äº¯µµ Á¦°øÇÕ´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå Àü¸ÁÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹®, Áö¿ªÀº?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5.º¥´õ ½ÃÀå ÁøÀÔ ¹× ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
    • ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ±âȸ
    • °úÁ¦
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • PorterÀÇ Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡
    • °æÁ¦
    • »çȸ
    • ±â¼ú
    • ¹ý·ü
    • ȯ°æ

Á¦6Àå MLaaS(Machine-Learning-as-a-Service) ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • ¼­ºñ½º
  • ¼ÒÇÁÆ®¿þ¾î

Á¦7Àå MLaaS(Machine-Learning-as-a-Service) ½ÃÀå : ¿ëµµº°

  • Áõ°­Çö½Ç(AR) ¹× °¡»óÇö½Ç(VR)
  • ºÎÁ¤ °¨Áö ¹× ¸®½ºÅ© °ü¸®
  • ¸¶ÄÉÆÃ ¹× ±¤°í
  • ¿¹Ãø ºÐ¼®
  • º¸¾È ¹× °¨½Ã

Á¦8Àå MLaaS(Machine-Learning-as-a-Service) ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • ÀºÇà/±ÝÀ¶¼­ºñ½º/º¸Çè(BFSI)
  • ÇコÄÉ¾î ¹× »ý¸í°úÇÐ
  • Á¦Á¶¾÷
  • ¼Ò¸Å
  • Åë½Å

Á¦9Àå ¾Æ¸Þ¸®Ä«ÀÇ MLaaS(Machine-Learning-as-a-Service) ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦10Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ MLaaS(Machine-Learning-as-a-Service) ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦11Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ MLaaS(Machine-Learning-as-a-Service) ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦12Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼® 2023
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2023
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
  • Àü·« ºÐ¼®°ú Á¦¾È

±â¾÷ ¸®½ºÆ®

  • Amazon.com Inc.
  • AT&T Inc.
  • BigML, Inc.
  • Fair Isaac Corporation
  • Google LLC
  • H2O.ai
  • Hewlett Packard Enterprise Company
  • IBM Corp.
  • Iflowsoft Solutions Inc.
  • Microsoft Corporation
  • Monkeylearn Inc.
  • SAS Institute Inc.
  • Sift Science Inc.
  • Yottamine Analytics, LLC
LSH

The Machine-Learning-as-a-Service Market was valued at USD 21.48 billion in 2023, expected to reach USD 28.00 billion in 2024, and is projected to grow at a CAGR of 30.40%, to USD 137.78 billion by 2030.

Machine-Learning-as-a-Service (MLaaS) refers to a cloud-based platform offering comprehensive machine learning tools, techniques, and applications for businesses without requiring in-depth expertise in data science or extensive infrastructure investment. This service is essential for democratizing access to advanced analytics, enabling various industries to leverage sophisticated algorithms for big data analysis, predictive analytics, and complex decision-making processes. Its application spans across sectors such as healthcare, finance, retail, and manufacturing, facilitating functions like fraud detection, personalized marketing, customer insights, and operational efficiency enhancement. The end-use scope includes companies seeking to integrate AI into their workflow seamlessly, reducing time-to-market for innovative products and services.

KEY MARKET STATISTICS
Base Year [2023] USD 21.48 billion
Estimated Year [2024] USD 28.00 billion
Forecast Year [2030] USD 137.78 billion
CAGR (%) 30.40%

Key growth factors for the MLaaS market include increasing data proliferation, a push towards cloud adoption, and rising demand for AI-driven solutions. Organizations are striving for competitive advantages through data-driven insights, which is propelling demand for MLaaS platforms. Opportunities exist particularly in developing niche solutions tailored to industry-specific challenges, improving model explainability, and enhancing privacy protections. Companies can benefit by investing in robust cybersecurity measures and expanding multi-language support to capture emerging markets.

Limitations hindering growth include concerns over data privacy, regulatory challenges, and a shortage of skilled professionals to interpret complex outputs. Additionally, MLaaS solutions often face integration challenges with existing infrastructure. To overcome these, companies should focus on developing user-friendly platforms with easier integration mechanisms, possibly through partnerships with IT consultancies.

Innovation can be spurred through research in automated machine learning (AutoML), edge computing integration, and enhanced model transparency which can build trust and ease regulatory compliance. Moreover, fostering collaborations between academia and industry could yield novel algorithms suited for specific applications. The nature of the market remains dynamic, with rapid technological advancements and shifts in consumer demand patterns. By strategically navigating these factors and prioritizing continual learning and adaptability, businesses can harness MLaaS's full potential and secure their foothold in this burgeoning market.

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Machine-Learning-as-a-Service Market

The Machine-Learning-as-a-Service Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Rising adoption of IoT and automation
    • Growing usage of cloud-based services
    • Need to improve performance and operational efficiency in the several industry
  • Market Restraints
    • Lack of trained professionals
  • Market Opportunities
    • Advancements in technologies with the integration of cognitive computing, neural networks, deep learning technologies, and artificial intelligence (AI)
    • Growing investments and collaboration in the healthcare Industry
  • Market Challenges
    • Data security and privacy concerns

Porter's Five Forces: A Strategic Tool for Navigating the Machine-Learning-as-a-Service Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Machine-Learning-as-a-Service Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Machine-Learning-as-a-Service Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Machine-Learning-as-a-Service Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Machine-Learning-as-a-Service Market

A detailed market share analysis in the Machine-Learning-as-a-Service Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Machine-Learning-as-a-Service Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Machine-Learning-as-a-Service Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Machine-Learning-as-a-Service Market

A strategic analysis of the Machine-Learning-as-a-Service Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Machine-Learning-as-a-Service Market, highlighting leading vendors and their innovative profiles. These include Amazon.com Inc., AT&T Inc., BigML, Inc., Fair Isaac Corporation, Google LLC, H2O.ai, Hewlett Packard Enterprise Company, IBM Corp., Iflowsoft Solutions Inc., Microsoft Corporation, Monkeylearn Inc., SAS Institute Inc., Sift Science Inc., and Yottamine Analytics, LLC.

Market Segmentation & Coverage

This research report categorizes the Machine-Learning-as-a-Service Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Component, market is studied across Services and Software.
  • Based on Application, market is studied across Augmented & Virtual Reality, Fraud Detection & Risk Management, Marketing & Advertising, Predictive Analytics, and Security & Surveillance.
  • Based on End User, market is studied across BFSI, Healthcare & Life Sciences, Manufacturing, Retail, and Telecom.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Rising adoption of IoT and automation
      • 5.1.1.2. Growing usage of cloud-based services
      • 5.1.1.3. Need to improve performance and operational efficiency in the several industry
    • 5.1.2. Restraints
      • 5.1.2.1. Lack of trained professionals
    • 5.1.3. Opportunities
      • 5.1.3.1. Advancements in technologies with the integration of cognitive computing, neural networks, deep learning technologies, and artificial intelligence (AI)
      • 5.1.3.2. Growing investments and collaboration in the healthcare Industry
    • 5.1.4. Challenges
      • 5.1.4.1. Data security and privacy concerns
  • 5.2. Market Segmentation Analysis
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Machine-Learning-as-a-Service Market, by Component

  • 6.1. Introduction
  • 6.2. Services
  • 6.3. Software

7. Machine-Learning-as-a-Service Market, by Application

  • 7.1. Introduction
  • 7.2. Augmented & Virtual Reality
  • 7.3. Fraud Detection & Risk Management
  • 7.4. Marketing & Advertising
  • 7.5. Predictive Analytics
  • 7.6. Security & Surveillance

8. Machine-Learning-as-a-Service Market, by End User

  • 8.1. Introduction
  • 8.2. BFSI
  • 8.3. Healthcare & Life Sciences
  • 8.4. Manufacturing
  • 8.5. Retail
  • 8.6. Telecom

9. Americas Machine-Learning-as-a-Service Market

  • 9.1. Introduction
  • 9.2. Argentina
  • 9.3. Brazil
  • 9.4. Canada
  • 9.5. Mexico
  • 9.6. United States

10. Asia-Pacific Machine-Learning-as-a-Service Market

  • 10.1. Introduction
  • 10.2. Australia
  • 10.3. China
  • 10.4. India
  • 10.5. Indonesia
  • 10.6. Japan
  • 10.7. Malaysia
  • 10.8. Philippines
  • 10.9. Singapore
  • 10.10. South Korea
  • 10.11. Taiwan
  • 10.12. Thailand
  • 10.13. Vietnam

11. Europe, Middle East & Africa Machine-Learning-as-a-Service Market

  • 11.1. Introduction
  • 11.2. Denmark
  • 11.3. Egypt
  • 11.4. Finland
  • 11.5. France
  • 11.6. Germany
  • 11.7. Israel
  • 11.8. Italy
  • 11.9. Netherlands
  • 11.10. Nigeria
  • 11.11. Norway
  • 11.12. Poland
  • 11.13. Qatar
  • 11.14. Russia
  • 11.15. Saudi Arabia
  • 11.16. South Africa
  • 11.17. Spain
  • 11.18. Sweden
  • 11.19. Switzerland
  • 11.20. Turkey
  • 11.21. United Arab Emirates
  • 11.22. United Kingdom

12. Competitive Landscape

  • 12.1. Market Share Analysis, 2023
  • 12.2. FPNV Positioning Matrix, 2023
  • 12.3. Competitive Scenario Analysis
  • 12.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Amazon.com Inc.
  • 2. AT&T Inc.
  • 3. BigML, Inc.
  • 4. Fair Isaac Corporation
  • 5. Google LLC
  • 6. H2O.ai
  • 7. Hewlett Packard Enterprise Company
  • 8. IBM Corp.
  • 9. Iflowsoft Solutions Inc.
  • 10. Microsoft Corporation
  • 11. Monkeylearn Inc.
  • 12. SAS Institute Inc.
  • 13. Sift Science Inc.
  • 14. Yottamine Analytics, LLC
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦