½ÃÀ庸°í¼­
»óǰÄÚµå
1600219

¼¼°èÀÇ ½ÅÆ¿·¹ÀÌÅÍ ½ÃÀå : À¯Çü, ±â¼ú, ¿ëµµº° ¿¹Ãø(2025-2030³â)

Scintillators Market by Type (Inorganic Scintillators, Organic Scintillators), Technology (Gaseous Scintillators, Liquid Scintillators, Solid Scintillators), Application - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 186 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

½ÅÆ¿·¹ÀÌÅÍ ½ÃÀåÀº 2023³â¿¡ 4¾ï 9,943¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2024³â¿¡´Â 5¾ï 3,564¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, CAGR 7.32%·Î ¼ºÀåÇØ 2030³â¿¡´Â 8¾ï 1,914¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

½ÅÆ¿·¹ÀÌÅÍ´Â Àü¸® ¹æ»ç¼±¿¡ ³ëÃâµÇ¸é ¹ß±¤ÇÏ´Â Àç·áÀÌ¸ç ´Ù¾çÇÑ ¿ëµµÀÇ ¹æ»ç¼± °ËÃâ¿¡ Áß¿äÇÑ ¿ªÇÒÀ»ÇÕ´Ï´Ù. ½ÅÆ¿ ·¹ÀÌÅÍÀÇ ¹üÀ§´Â ¹æ»ç¼± ÃøÁ¤ÀÇ Áß¿äÇÑ ±¸¼º ¿ä¼Ò·Î¼­ÀÇ Á¤ÀÇ¿¡¼­ ÀÇ·á À̹ÌÁö, ¿øÀÚ·Â ¾ÈÀü, °í¿¡³ÊÁö ¹°¸®ÇÐ µîÀÇ ºÎ¹®¿¡¼­ÀÇ ÀÀ¿ë±îÁö È®»êµÇ°í ÀÖ½À´Ï´Ù. ÀÇ·á, ±¹Åä ¾Èº¸, °ø¾÷¿ë ºñÆÄ±« °Ë»ç, ȯ°æ ¸ð´ÏÅ͸µ µî, ±× ÃÖÁ¾ ¿ëµµ´Â ´Ù¹æ¸é¿¡ °ÉÃÄ ÀÖ½À´Ï´Ù. º¸¾È ¿ëµµ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í °°Àº ¿äÀÎÀÔ´Ï´Ù. ¶ÇÇÑ, ½Å±Ô Àç·áÀÇ °³Ã´À̳ª °ËÃâ ´É·ÂÀÇ °­È­ µîÀÇ ±â¼ú Çõ½ÅÀº ½ÃÀå È®´ëÀÇ ÀáÀçÀûÀÎ ±âȸ¸¦ ¿±´Ï´Ù. ±â¾÷Àº ÇØ»óµµ¿Í ºñ¿ë È¿À²ÀÌ ¿ì¼öÇÑ ½ÅÆ¿·¹ÀÌÅ͸¦ °³¹ß Çϱâ À§ÇÑ ¿¬±¸°³¹ß¿¡ ÅõÀÚÇØ À̸¦ Ȱ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿ø·áÀÇ °íºñ¿ëÀ̳ª ´ëü ±â¼ú°úÀÇ °æÀï µî ¼ºÀåÀ» ¹æÇØÇÒ ¼ö ÀÖ´Â ÇѰ質 °úÁ¦µµ ÀÖ½À´Ï´Ù. ±â¼ú Çõ½Å ºÎ¹®¿¡´Â ģȯ°æ ½ÅÆ¿·¹ÀÌÅÍ °³¹ß ¹× ºñ¿ë Àý°¨À» À§ÇÑ »ý»ê °øÁ¤ °³¼±ÀÌ Æ÷ÇԵ˴ϴÙ. ¶ÇÇÑ ½ÅÆ¿·¹ÀÌÅÍ ½ÃÀåÀÇ ¼ºÁúÀº °æÀïÀ̸ç, º¸´Ù ÁÁÀº °¨µµ, ¿¡³ÊÁö ºÐÇØ´É, »ç¿ë ¿ëÀ̼ºÀÇ Çʿ伺¿¡ ÀÇÇØ ±â¼ú Çõ½Å°ú °³·®ÀÌ ²÷ÀÓ¾øÀÌ ÃßÁøµÇ°í ÀÖ½À´Ï´Ù. °³¹ß »çÀÌŬ °¡¼ÓÈ­¸¦ À§ÇÑ ÆÄÆ®³Ê½Ê°ú Çù¾÷, ±¤°ËÃâ±â¿Í °°Àº º¸¿Ï ±â¼úÀÇ Áøº¸¿¡ µÚóÁöÁö ¾Ê°í ´Ù¾çÇÑ »ê¾÷ ¿ä±¸»çÇ×À» È¿°úÀûÀ¸·Î ÃæÁ·½Ã۱â À§ÇÑ °í°´ °íÀ¯ÀÇ ¼Ö·ç¼Ç¿¡ ÁßÁ¡À» µÎ´Â µî ÇÕ´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ (2023³â) 4¾ï 9,943¸¸ ´Þ·¯
¿¹»ó³â(2024³â) 5¾ï 3,564¸¸ ´Þ·¯
¿¹Ãø³â(2030³â) 8¾ï 1,914¸¸ ´Þ·¯
CAGR(%) 7.32%

½ÃÀå ¿ªÇÐ: ½Å¼ÓÇÏ°Ô ÁøÈ­ÇÏ´Â ½ÅÆ¿·¹ÀÌÅÍ ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

½ÅÆ¿·¹ÀÌÅÍ ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ë¿¡ ÀÇÇØ º¯¸ð¸¦ ÀÌ·ç°í ÀÖ½À´Ï´Ù. ±×¸®°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ ¾ò±â À§ÇØ Áغñ µÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦ÀûÀÎ ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ °æ°¨ÇÒ ¼ö ÀÖÀ½°ú µ¿½Ã¿¡ ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë°ú ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ»º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • »ê¾÷È­ÀÇ ÁøÀü°ú Á¦Á¶¾÷¼ö Áõ°¡
    • °³¹ßµµ»ó±¹ÀÇ ¿øÀڷ¹ßÀü¼Ò Áõ°¡
    • ¹æ»ç¼± ÀÇ·á ¿ëµµ¿¡ À־ÀÇ ½ÅÆ¿·¹ÀÌÅÍÀÇ ¿ëµµ È®´ë
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ½ÅÆ¿·¹ÀÌÅÍ ÀåÄ¡¿¡ ´ëÇÑ Ãʱâ ÅõÀÚ ³ôÀÌ
  • ½ÃÀå ±âȸ
    • ±¹Åä ¾Èº¸¿¡¼­ ¹æ»ç¼± ¸ð´ÏÅ͸µ¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ÅõÀÚ
    • ±â¼úÀûÀ¸·Î ¼±ÁøÀû ½ÅÆ¿·¹ÀÌÅÍ µð¹ÙÀ̽ºÀÇ °³¹ß
  • ½ÃÀåÀÇ °úÁ¦
    • Àú¿¡³ÊÁöÀÇ ¹æ»ç¼± °ËÃâ ±â±â¿¡ ÇÑÁ¤

Porter's Five Force : ½ÅÆ¿·¹ÀÌÅÍ ½ÃÀåÀ» Ž»öÇÏ´Â Àü·«Àû µµ±¸

Porter's Five Force Framework´Â ½ÃÀå »óȲ¿¡ ´ëÇÑ °æÀï ±¸µµ¸¦ ÆÄ¾ÇÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ´ç½ÅÀº ´õ °­ÀÎÇÑ ½ÃÀå¿¡¼­ Æ÷Áö¼Å´×À» º¸ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : ½ÅÆ¿·¹ÀÌÅÍ ½ÃÀåÀÇ ¿ÜºÎ ¿µÇâÀ» ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº ½ÅÆ¿·¹ÀÌÅÍ ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ»ÇÕ´Ï´Ù. Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹ÃøÇÒ ¼ö ÀÖ´Â Àû±ØÀûÀÎ ÀÇ»ç °áÁ¤À» ÇÒ Áغñ°¡ µÇ¾ú½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® : ½ÅÆ¿·¹ÀÌÅÍ ½ÃÀå °æÀï ±¸µµ ÆÄ¾Ç

½ÅÆ¿·¹ÀÌÅÍ ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®Àº ½ÃÀåÀÇ ÁýÁß, ºÎ¹®È­ ¹× ÅëÇÕ µ¿ÇâÀ» ¹àÇô³»°í, º¥´õ´Â °æÀïÀÌ °ÝÈ­µÇ´Â °¡¿îµ¥ ÀÚ»çÀÇ ÁöÀ§¸¦ ³ôÀÌ´Â Àü·«Àû ÀÇ»ç °áÁ¤À» ³»¸®´Âµ¥ ÇÊ¿äÇÑ Áö°ßÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º: ½ÅÆ¿·¹ÀÌÅÍ ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â ½ÅÆ¿·¹ÀÌÅÍ ½ÃÀå¿¡¼­ °ø±Þ¾÷ü¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ Çà·ÄÀ» ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº °ø±Þ¾÷üÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±âÁØÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ¸Â´Â ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ³× °¡Áö »çºÐ¸éÀ» ÅëÇØ °ø±Þ¾÷ü¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ¼¼ºÐÈ­ÇÏ¿© Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê ¹× ¼Ö·ç¼ÇÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× Ãßõ: ½ÅÆ¿·¹ÀÌÅÍ ½ÃÀå¿¡¼­ ¼º°øÀ» À§ÇÑ ±æÀ» ±×¸®±â

½ÅÆ¿·¹ÀÌÅÍ ½ÃÀåÀÇ Àü·« ºÐ¼®Àº ¼¼°è ½ÃÀå¿¡¼­ÀÇ Á¸À縦 °­È­ÇÏ·Á´Â ±â¾÷¿¡ ÇʼöÀûÀÔ´Ï´Ù. ÁÖ¿ä ÀÚ¿ø, ¿ª·® ¹× ¼º°ú ÁöÇ¥¸¦ °ËÅäÇÔÀ¸·Î½á ±â¾÷Àº ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í °³¼±À» À§ÇØ ³ë·ÂÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ Á¢±Ù¹ýÀ» ÅëÇØ °æÀï ±¸µµ¿¡¼­ °úÁ¦¸¦ ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö Àִ üÁ¦¸¦ ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ ´Ù·ç´Â ½ÃÀå¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ: ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·ÂÀ» Æò°¡ÇÕ´Ï´Ù.

2. ½ÃÀå °³Ã´µµ: ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇϰí, ±âÁ¸ ºÎ¹®¿¡¼­ÀÇ È®Àå °¡´É¼ºÀ» Æò°¡Çϸç, ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» ¼³¸íÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­: ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, »ê¾÷ÀÇ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, R&D Ȱµ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¾òÀº ÈÄ ÀÇ»ç°áÁ¤ÇÒ ¼ö ÀÖµµ·Ï Áß¿äÇÑ Áú¹®¿¡µµ ´ë´äÇϰí ÀÖ½À´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, Áö¿ªÀº ¾îµðÀԴϱî?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ¡¤Ã¶¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • »ê¾÷È­ÀÇ ÁøÀü°ú Á¦Á¶¾÷ Áõ°¡
      • ½ÅÈï ±¹°¡ÀÇ ¿øÀÚ·Â ¹ßÀü¼Ò Áõ°¡
      • ¹æ»ç¼± ÀÇ·á ¿ëµµ¿¡ À־ ½ÅÆ¿·¹ÀÌÅÍÀÇ Àû¿ë È®´ë
    • ¾ïÁ¦¿äÀÎ
      • ½ÅÆ¿·¹ÀÌÅÍ µð¹ÙÀ̽º¿Í °ü·ÃµÈ Ãʱâ ÅõÀÚ¾×ÀÌ ³ô´Ù
    • ±âȸ
      • ±¹Åä ¾Èº¸¿¡¼­ ¹æ»ç¼± ¸ð´ÏÅ͸µ¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ÅõÀÚ
      • ±â¼úÀûÀ¸·Î ¼±ÁøÀû ½ÅÆ¿·¹ÀÌÅÍ µð¹ÙÀ̽ºÀÇ °³¹ß
    • °úÁ¦
      • Àú¿¡³ÊÁö ¹æ»ç¼± °ËÃâ ÀåÄ¡¿¡ ÇÑÁ¤
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
    • ±â¼ú: °íÈ¿À² ¾×ü ½ÅÆ¿·¹ÀÌÅÍ ¼ö¿ä Áõ°¡
    • ¿ëµµ : ÀÇ·á ºÎ¹®À¸·Î Áø´Ü È­»óÀ̳ª ¹æ»ç¼± Ä¡·áÀÇ ¿ëµµ¸¦ È®´ë
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡
    • °æÁ¦
    • »çȸ
    • ±â¼ú
    • ¹ý·ü
    • ȯ°æ

Á¦6Àå ½ÅÆ¿·¹ÀÌÅÍ ½ÃÀå : À¯Çüº°

  • ¼Ò°³
  • ¹«±â ½ÅÆ¿·¹ÀÌÅÍ
  • À¯±â ½ÅÆ¿·¹ÀÌÅÍ

Á¦7Àå ½ÅÆ¿·¹ÀÌÅÍ ½ÃÀå : ±â¼úº°

  • ¼Ò°³
  • ±âü ½ÅÆ¿·¹ÀÌÅÍ
  • ¾×ü ½ÅÆ¿·¹ÀÌÅÍ
  • °íü ½ÅÆ¿·¹ÀÌÅÍ
    • °áÁ¤
    • ÇÃ¶ó½ºÆ½

Á¦8Àå ½ÅÆ¿·¹ÀÌÅÍ ½ÃÀå : ¿ëµµº°

  • ¼Ò°³
  • ȯ°æ ¸ð´ÏÅ͸µ
  • ±¹Åä ¾Èº¸ºÎ
  • »ê¾÷
  • ÀÇ·á
  • ÇÙ¹°¸®Çаú Á¶»ç

Á¦9Àå ¾Æ¸Þ¸®Ä« ½ÅÆ¿·¹ÀÌÅÍ ½ÃÀå

  • ¼Ò°³
  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦10Àå ¾Æ½Ã¾ÆÅÂÆò¾ç ½ÅÆ¿·¹ÀÌÅÍ ½ÃÀå

  • ¼Ò°³
  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦11Àå À¯·´¡¤Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« ½ÅÆ¿·¹ÀÌÅÍ ½ÃÀå

  • ¼Ò°³
  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦12Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2023³â
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2023³â
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
    • Toray Industries, X¼± °Ë»çÀÇ È¿À²À» ³ô¿© ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇØ ÁÖ¿ä »ê¾÷À» ÁöŰ´Â ¼±ÁøÀûÀÎ ½ÅÆ¿·¹ÀÌÅÍ ÆÐ³ÎÀ» ¹ßÇ¥
    • Luxium Solutions, PLX Àμö¿¡ ÀÇÇØ Æ÷Æ®Æú¸®¿À¸¦ °­È­, Æ÷Åä´Ð½º ±â´É°ú ½ÃÀå ¸®Ä¡¸¦ °­È­
    • NASAÀÇ ComPair ¹Ì¼ÇÀº õü ¹°¸®ÇÐÀÇ Çõ½ÅÀ» À§ÇÑ ¼±ÁøÀû ½ÅÆ¿·¹ÀÌÅÍ ±â¼ú·Î °¨¸¶¼± °ËÃâÀ» Áøº¸
  • Àü·« ºÐ¼®°ú Á¦¾È

±â¾÷ ¸ñ·Ï

  • acquired by dynasil
  • Albemarle Corporation
  • Amcrys
  • AMETEK Inc.
  • Berkeley Nucleonics Corporation
  • Compagnie de Saint-Gobain SA
  • CRYTUR Spol.sro
  • Dynasil Corp.
  • Eljen Technology
  • Envinet GmbH by Scienta Scientific AB
  • GeeBee International
  • Hamamatsu Photonics KK
  • Hangzhou Shalom Electro-optics Technology Co., Ltd.
  • Hitachi Metals Ltd.
  • Ludlum Measurements Inc.
  • Luxium Solutions
  • Mirion Technologies Inc.
  • Mitsubishi Chemical Group Corporation
  • Nihon Kessho Kogaku Co., Ltd.
  • Nucleonix Systems
  • Rexon Components, Inc.
  • Scintacor Limited
  • Scionix Holland BV
  • Standard Imaging, Inc.
  • Toshiba Materials Co., Ltd.
  • Zecotek Imaging China Ltd.
JHS 24.12.09

The Scintillators Market was valued at USD 499.43 million in 2023, expected to reach USD 535.64 million in 2024, and is projected to grow at a CAGR of 7.32%, to USD 819.14 million by 2030.

Scintillators are materials that emit light when exposed to ionizing radiation, playing a crucial role in radiation detection across various applications. The scope of scintillators extends from their definition as vital components in radiation measurement to their applications in fields such as medical imaging, nuclear safety, and high-energy physics. The necessity for scintillators lies in their ability to convert high-energy radiation into visible light, which is essential for enhancing the accuracy and safety of radiation measurements. Their end-use scope is expansive, including sectors like healthcare, homeland security, industrial non-destructive testing, and environmental monitoring. Market growth is driven by factors such as advancements in medical imaging techniques, increased investment in nuclear energy, and rising demand for security applications. Additionally, technological innovations like the development of novel materials and enhanced detection capabilities open up potential opportunities for market expansion. Companies can capitalize on these by investing in research and development to create scintillators with better resolution and cost-efficiency. There are limitations and challenges, such as high costs of raw materials and competition from alternative technologies, which may hinder growth. Furthermore, regulatory challenges in different regions can pose significant obstacles. Areas of innovation include the development of eco-friendly scintillators and improved production processes to reduce costs. There's also potential in exploring applications in emerging fields like quantum computing and precision agriculture. The nature of the scintillator market is competitive, with a continuous push for innovation and improvements driven by the need for better sensitivity, energy resolution, and usability. Insightful strategies to gain an edge involve partnerships and collaborations to accelerate developmental cycles, keeping abreast of advancements in complementary technologies like photodetectors, and focusing on customer-specific solutions to meet diverse industry requirements effectively.

KEY MARKET STATISTICS
Base Year [2023] USD 499.43 million
Estimated Year [2024] USD 535.64 million
Forecast Year [2030] USD 819.14 million
CAGR (%) 7.32%

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Scintillators Market

The Scintillators Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Rising industrialization and growth in the number of manufacturing industries
    • Growing number of nuclear power plants in developing countries
    • Increasing application of scintillators in radiological medical applications
  • Market Restraints
    • High initial investment related to scintillator devices
  • Market Opportunities
    • Ongoing investments for radiation monitoring in homeland security
    • Development of technologically advanced scintillator devices
  • Market Challenges
    • Limited to low-energy radiation detection devices

Porter's Five Forces: A Strategic Tool for Navigating the Scintillators Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Scintillators Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Scintillators Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Scintillators Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Scintillators Market

A detailed market share analysis in the Scintillators Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Scintillators Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Scintillators Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Scintillators Market

A strategic analysis of the Scintillators Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Scintillators Market, highlighting leading vendors and their innovative profiles. These include acquired by dynasil, Albemarle Corporation, Amcrys, AMETEK Inc., Berkeley Nucleonics Corporation, Compagnie de Saint-Gobain S.A., CRYTUR Spol.s.r.o., Dynasil Corp., Eljen Technology, Envinet GmbH by Scienta Scientific AB, GeeBee International, Hamamatsu Photonics K.K., Hangzhou Shalom Electro-optics Technology Co., Ltd., Hitachi Metals Ltd., Ludlum Measurements Inc., Luxium Solutions, Mirion Technologies Inc., Mitsubishi Chemical Group Corporation, Nihon Kessho Kogaku Co., Ltd., Nucleonix Systems, Rexon Components, Inc., Scintacor Limited, Scionix Holland B.V., Standard Imaging, Inc., Toshiba Materials Co., Ltd., and Zecotek Imaging China Ltd..

Market Segmentation & Coverage

This research report categorizes the Scintillators Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Type, market is studied across Inorganic Scintillators and Organic Scintillators.
  • Based on Technology, market is studied across Gaseous Scintillators, Liquid Scintillators, and Solid Scintillators. The Solid Scintillators is further studied across Crystals and Plastics.
  • Based on Application, market is studied across Environmental Monitoring, Homeland Security, Industrial, Medical & Healthcare, and Nuclear Physics & Research.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Rising industrialization and growth in the number of manufacturing industries
      • 5.1.1.2. Growing number of nuclear power plants in developing countries
      • 5.1.1.3. Increasing application of scintillators in radiological medical applications
    • 5.1.2. Restraints
      • 5.1.2.1. High initial investment related to scintillator devices
    • 5.1.3. Opportunities
      • 5.1.3.1. Ongoing investments for radiation monitoring in homeland security
      • 5.1.3.2. Development of technologically advanced scintillator devices
    • 5.1.4. Challenges
      • 5.1.4.1. Limited to low-energy radiation detection devices
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Technology: Increasing demand for liquid scintillators with high-efficiency
    • 5.2.2. Application: Expanding application in medical & healthcare sector for diagnostic imaging and radiation therapy
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Scintillators Market, by Type

  • 6.1. Introduction
  • 6.2. Inorganic Scintillators
  • 6.3. Organic Scintillators

7. Scintillators Market, by Technology

  • 7.1. Introduction
  • 7.2. Gaseous Scintillators
  • 7.3. Liquid Scintillators
  • 7.4. Solid Scintillators
    • 7.4.1. Crystals
    • 7.4.2. Plastics

8. Scintillators Market, by Application

  • 8.1. Introduction
  • 8.2. Environmental Monitoring
  • 8.3. Homeland Security
  • 8.4. Industrial
  • 8.5. Medical & Healthcare
  • 8.6. Nuclear Physics & Research

9. Americas Scintillators Market

  • 9.1. Introduction
  • 9.2. Argentina
  • 9.3. Brazil
  • 9.4. Canada
  • 9.5. Mexico
  • 9.6. United States

10. Asia-Pacific Scintillators Market

  • 10.1. Introduction
  • 10.2. Australia
  • 10.3. China
  • 10.4. India
  • 10.5. Indonesia
  • 10.6. Japan
  • 10.7. Malaysia
  • 10.8. Philippines
  • 10.9. Singapore
  • 10.10. South Korea
  • 10.11. Taiwan
  • 10.12. Thailand
  • 10.13. Vietnam

11. Europe, Middle East & Africa Scintillators Market

  • 11.1. Introduction
  • 11.2. Denmark
  • 11.3. Egypt
  • 11.4. Finland
  • 11.5. France
  • 11.6. Germany
  • 11.7. Israel
  • 11.8. Italy
  • 11.9. Netherlands
  • 11.10. Nigeria
  • 11.11. Norway
  • 11.12. Poland
  • 11.13. Qatar
  • 11.14. Russia
  • 11.15. Saudi Arabia
  • 11.16. South Africa
  • 11.17. Spain
  • 11.18. Sweden
  • 11.19. Switzerland
  • 11.20. Turkey
  • 11.21. United Arab Emirates
  • 11.22. United Kingdom

12. Competitive Landscape

  • 12.1. Market Share Analysis, 2023
  • 12.2. FPNV Positioning Matrix, 2023
  • 12.3. Competitive Scenario Analysis
    • 12.3.1. Toray Industries unveils advanced scintillator panel to boost X-ray inspection efficiency, drive market growth, and safeguard key industries
    • 12.3.2. Luxium Solutions bolsters portfolio with the acquisition of PLX, enhances photonics capabilities, and market reach
    • 12.3.3. NASA's ComPair Mission advances gamma-ray detection with advanced scintillator technology for astrophysical innovations
  • 12.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. acquired by dynasil
  • 2. Albemarle Corporation
  • 3. Amcrys
  • 4. AMETEK Inc.
  • 5. Berkeley Nucleonics Corporation
  • 6. Compagnie de Saint-Gobain S.A.
  • 7. CRYTUR Spol.s.r.o.
  • 8. Dynasil Corp.
  • 9. Eljen Technology
  • 10. Envinet GmbH by Scienta Scientific AB
  • 11. GeeBee International
  • 12. Hamamatsu Photonics K.K.
  • 13. Hangzhou Shalom Electro-optics Technology Co., Ltd.
  • 14. Hitachi Metals Ltd.
  • 15. Ludlum Measurements Inc.
  • 16. Luxium Solutions
  • 17. Mirion Technologies Inc.
  • 18. Mitsubishi Chemical Group Corporation
  • 19. Nihon Kessho Kogaku Co., Ltd.
  • 20. Nucleonix Systems
  • 21. Rexon Components, Inc.
  • 22. Scintacor Limited
  • 23. Scionix Holland B.V.
  • 24. Standard Imaging, Inc.
  • 25. Toshiba Materials Co., Ltd.
  • 26. Zecotek Imaging China Ltd.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦