½ÃÀ庸°í¼­
»óǰÄÚµå
1600381

ÀÇ·á±â±â¿ë 3D ÇÁ¸°ÆÃ ½ÃÀå : Á¦Ç° À¯Çü, ±â¼ú, ÄÄÆ÷³ÍÆ®, ÃÖÁ¾»ç¿ëÀÚº° - ¼¼°è ¿¹Ãø(2025-2030³â)

3D Printing in Medical Devices Market by Product Type, Technology, Component, End User - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 189 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

ÀÇ·á±â±â¿ë 3D ÇÁ¸°ÆÃ ½ÃÀåÀº 2023³â¿¡ 70¾ï 9,000¸¸ ´Þ·¯·Î Æò°¡µÇ¸ç, 2024³â¿¡´Â 86¾ï 9,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, CAGR 22.99%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 301¾ï 9,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÀÇ·á±â±â ½ÃÀå¿¡¼­ 3D ÇÁ¸°ÆÃÀÇ ¹üÀ§¿Í Á¤ÀǴ ȯÀÚº° ÀÓÇöõÆ®, ¼ö¼ú ±â±¸, ¼ö¼ú Àü °èȹÀ» ÃÖÀûÈ­ÇÏ´Â ÇØºÎÇÐ ¸ðµ¨ Á¦ÀÛÀ» Æ÷ÇÔÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀÇ Çʿ伺Àº ¸ÂÃãÇü ÀÇ·á ¹× Á¤¹ÐÀÇ·á ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ±âÀÎÇÕ´Ï´Ù. ¿ëµµ´Â Á¤Çü¿Ü°ú¿ë ÀÓÇöõÆ® ¹× Ä¡°ú ¼öº¹¹°ºÎÅÍ ¿¬±¸ ¹× Ä¡·á ¸ñÀûÀÇ Á¶Á÷ ¹× Àå±â ¹ÙÀÌ¿ÀÇÁ¸°ÆÃ¿¡ À̸£±â±îÁö ´Ù¾çÇÕ´Ï´Ù. ÁÖ¿ä ÃÖÁ¾»ç¿ëÀڷδ º´¿ø, Ä¡°ú, ¿¬±¸±â°ü µîÀÌ ÀÖ½À´Ï´Ù. ½ÃÀå ¼ºÀåÀÇ ¿øµ¿·ÂÀº ±â¼ú ¹ßÀü, ºñ¿ë È¿À²¼º, ¸ÂÃãÇü ¼Ö·ç¼ÇÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ½Å¼ÓÇÑ ÇÁ·ÎÅäŸÀÌÇÎ ±â´ÉÀÔ´Ï´Ù. ÃÖ±Ù µ¿ÇâÀº µðÀÚÀÎ ÃÖÀûÈ­¸¦ À§ÇÑ AI¿Í ¸Ó½Å·¯´×ÀÇ ÅëÇÕ, Àμ⠱â±âÀÇ ±â´ÉÀû ¹«°á¼ºÀ» Çâ»ó½ÃŰ´Â »ýüÀûÇÕ¼º ¹× ³»±¸¼º ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í °°Àº ±âȸ¸¦ °­Á¶Çϰí ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ[2023] 70¾ï 9,000¸¸ ´Þ·¯
¿¹Ãø³â[2024] 86¾ï 9,000¸¸ ´Þ·¯
¿¹Ãø³â[2030] 301¾ï 9,000¸¸ ´Þ·¯
CAGR(%) 22.99%

ÀáÀçÀûÀÎ ºñÁî´Ï½º ±âȸ´Â 3D ÇÁ¸°ÆÃÀÇ È°¿ëÀ» È®´ëÇÏ¿© º¸´Ù º¹ÀâÇÑ Á¶Á÷ ±¸Á¶¿Í ÅëÇÕ ½Ã½ºÅÛÀ» ¸¸µé°í, ½ÅÈï ½ÃÀåÀÇ ¹Ì°³Ã´ ÀáÀç·ÂÀ» Ȱ¿ëÇϸç, ¾ÈÀü¼ºÀ» º¸ÀåÇϸ鼭 º¸´Ù ºü¸¥ ½ÃÀå ÁøÀÔÀ» ÃËÁøÇÏ´Â ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©¸¦ °³¼±ÇÏ´Â µ¥¿¡ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿ªµ¿ÀûÀÎ »óȲ¿¡¼­ Á¦Á¶¾÷ü, ¿¬±¸±â°ü, ±ÔÁ¦±â°üÀÌ Çù·ÂÇϸé Çõ½ÅÀÇ ¼Óµµ¸¦ °¡¼ÓÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±×·¯³ª ½ÃÀå ¼ºÀåÀº ³ôÀº Ãʱ⠼³Á¤ ºñ¿ë, ±ÔÁ¦ Àå¾Ö¹°, Á¦Á¶ °¡´ÉÇÑ ÀåºñÀÇ ¹üÀ§¸¦ Á¦ÇÑÇÏ´Â Àç·áÀÇ Á¦¾à µîÀÇ ÇѰ迡 Á÷¸éÇØ ÀÖ½À´Ï´Ù. ¶ÇÇÑ Àü¹® Àη ¾ç¼ºÀÌ ÇÊ¿äÇϹǷΠ¿î¿µ»óÀÇ ¾î·Á¿òµµ ÀÖ½À´Ï´Ù. »ç¾÷ ¼ºÀåÀ» °¡¼ÓÇϱâ À§ÇØ ±â¼ú Çõ½ÅÀº ´õ ³ªÀº °á°ú¸¦ ¾ò±â À§ÇØ ´ÙÁß Àç·á Àμ⠱â¼ú°ú ±âÁ¸ °øÁ¤°ú Ãß°¡ °øÁ¤À» °áÇÕÇÑ ÇÏÀ̺긮µå Á¦Á¶ ±â¼úÀÇ ¹ßÀü¿¡ ÃÊÁ¡À» ¸ÂÃß¾î¾ß ÇÕ´Ï´Ù. ¿¬±¸´Â »ýºÐÇØ¼º ¼ÒÀç °³¹ß°ú ¹ÙÀÌ¿À ÇÁ¸°ÆÃ ±â¼úÀÇ È®À强 °­È­¿¡ ÁýÁßÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

ÀÌ ½ÃÀåÀº º»ÁúÀûÀ¸·Î ¿ªµ¿ÀûÀ̸ç, ÇöÀç ±â¼ú ¹× ±ÔÁ¦ À庮À» ±Øº¹Çϱâ À§ÇÑ ¿¬±¸°³¹ß¿¡ ¸¹Àº ÅõÀÚ°¡ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. »óȲÀÌ ¹ßÀüÇÔ¿¡ µû¶ó Àç·á °úÇÐ, µðÁöÅÐ ¼³°è ¹× °øÁ¤ ÀÚµ¿È­ Àü¹® Áö½ÄÀ» ½ÀµæÇϰí Ȱ¿ëÇÏ´Â µ¥ ÅõÀÚÇÏ´Â ±â¾÷ÀÌ °æÀï·ÂÀ» È®º¸ÇÒ °¡´É¼ºÀÌ ³ô½À´Ï´Ù. ±â¼ú ¹ßÀüÀ» ÀÓ»ó ¹× ȯÀÚÀÇ ¿ä±¸¿¡ ¸ÂÃß´Â °ÍÀº 3D ÇÁ¸°ÆÃ ÀÇ·á±â±â ºÐ¾ßÀÇ Àå±âÀûÀÎ ¼ºÀå°ú ¸®´õ½ÊÀ» À§ÇÑ ÇÙ½É Àü·«À¸·Î ³²À» °ÍÀÔ´Ï´Ù.

½ÃÀå ¿ªÇÐ: ºü¸£°Ô ÁøÈ­ÇÏ´Â ÀÇ·á±â±â 3D ÇÁ¸°ÆÃ ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

ÀÇ·á±â±â 3D ÇÁ¸°ÆÃ ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ëÀ» ÅëÇØ º¯È­Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐÀÇ º¯È­¸¦ ÀÌÇØÇÔÀ¸·Î½á ±â¾÷Àº Á¤º¸¿¡ ÀÔ°¢ÇÑ ÅõÀÚ °áÁ¤, Àü·«Àû ÀÇ»ç°áÁ¤, »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Æ÷ÂøÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¿ªÀû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª Àü¹Ý¿¡ °ÉÄ£ ´Ù¾çÇÑ À§ÇèÀ» ÁÙÀÏ ¼ö ÀÖÀ¸¸ç, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë ¹× ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • °³º°È­ ¶Ç´Â ¸ÂÃãÇü ÀÇ·á±â±â¿¡ ´ëÇÑ ³ôÀº ¼ö¿ä
    • ÀÇ·á±â±â 3D ÇÁ¸°ÆÃ¿¡ ´ëÇÑ ±ÔÁ¦ ´ç±¹ÀÇ ÀνÄ
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • 3D ÇÁ¸°ÆÃ ÀÇ·á±â±âÀÇ ³ôÀº ºñ¿ë°ú ǰÁú¿¡ ´ëÇÑ ¿ì·Á
  • ½ÃÀå ±âȸ
    • Àμâ Àç·áÀÇ ¹ßÀü°ú ¹ÙÀÌ¿À ÇÁ¸°ÆÃÀÇ µîÀå
    • POC(Point-of-Care) Áø´Ü¾à Á¦Á¶ÀÇ °¡´É¼º Çâ»ó
  • ½ÃÀå °úÁ¦
    • 3D ÇÁ¸°ÆÃ ÀÇ·á±â±â¸¦ »ç¿ëÇÒ ¼ö ÀÖ´Â ¼÷·ÃµÈ Àü¹®°¡°¡ ºÎÁ·ÇÕ´Ï´Ù.

Portre's Five Forces: ÀÇ·á±â±â 3D ÇÁ¸°ÆÃ ½ÃÀå °ø·«À» À§ÇÑ Àü·«Àû Åø

Portre's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ½ÃÀå »óȲ°æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ ÅøÀÔ´Ï´Ù. Portre's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÇ °æÀï·ÂÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ Ž»öÇÒ ¼ö ÀÖ´Â ¸íÈ®ÇÑ ¹æ¹ýÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÀλçÀÌÆ®À» ÅëÇØ ±â¾÷Àº °­Á¡À» Ȱ¿ëÇϰí, ¾àÁ¡À» ÇØ°áÇϰí, ÀáÀçÀûÀÎ µµÀüÀ» ÇÇÇϰí, º¸´Ù °­·ÂÇÑ ½ÃÀå Æ÷Áö¼Å´×À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : ÀÇ·á±â±â 3D ÇÁ¸°ÆÃ ½ÃÀå¿¡¼­ÀÇ ¿ÜºÎ ¿µÇâ ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº ÀÇ·á±â±â 3D ÇÁ¸°ÆÃ ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ÀÖÀ¸¸ç, ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀο¡ ´ëÇÑ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇϸç, PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀû À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£µµ, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¼±Á¦ÀûÀÌ°í ´Éµ¿ÀûÀÎ ÀÇ»ç°áÁ¤À» ³»¸± Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® ÀÇ·á±â±âÀÇ 3D ÇÁ¸°ÆÃ ½ÃÀå °æÀï ±¸µµ ÆÄ¾Ç

ÀÇ·á±â±â 3D ÇÁ¸°ÆÃ ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¸ÅÃâ, °í°´ ±â¹Ý, ¼ºÀå·ü µî ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀïÀû Æ÷Áö¼Å´×À» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®Àº ½ÃÀåÀÇ ÁýÁßÈ­, ´ÜÆíÈ­ ¹× ÅëÇÕ Ãß¼¼¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖÀ¸¸ç, °ø±Þ¾÷ü´Â Ä¡¿­ÇÑ °æÀï ¼Ó¿¡¼­ ÀÚ½ÅÀÇ ÀÔÁö¸¦ °­È­ÇÒ ¼ö ÀÖ´Â Àü·«Àû ÀÇ»ç°áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ ÀλçÀÌÆ®À» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º ÀÇ·á±â±â 3D ÇÁ¸°ÆÃ ½ÃÀå¿¡¼­ÀÇ º¥´õÀÇ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â ÀÇ·á±â±â 3D ÇÁ¸°ÆÃ ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ ÅøÀÔ´Ï´Ù. ÀÌ ¸ÅÆ®¸¯½º¸¦ ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº º¥´õÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±â¹ÝÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ºÎÇÕÇÏ´Â Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖÀ¸¸ç, 4°³ÀÇ »çºÐ¸éÀº º¥´õ¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ±¸ºÐÇÏ¿© »ç¿ëÀÚ°¡ Àü·«Àû ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê¿Í ¼Ö·ç¼ÇÀ» ½Äº°ÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù. ½Äº°ÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â Á¾ÇÕÀûÀÎ ½ÃÀå ºÐ¼®À» Á¦°øÇÕ´Ï´Ù. :

1. ½ÃÀå ħÅõµµ : ¾÷°è ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅ͸¦ Æ÷ÇÔÇÑ ÇöÀç ½ÃÀå ȯ°æ¿¡ ´ëÇÑ »ó¼¼ÇÑ °ËÅä.

2. ½ÃÀå °³Ã´µµ: ½ÅÈï ½ÃÀå¿¡¼­ÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇϰí, ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡Çϸç, ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù°¢È­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä ¹ßÀü, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú ¹ßÀü µîÀ» °ËÅäÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÷´Ü ±â¼ú, ¿¬±¸°³¹ß Ȱµ¿ ¹× Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

ÀÌÇØ°ü°èÀÚµéÀÌ ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï ´ÙÀ½°ú °°Àº Áß¿äÇÑ Áú¹®¿¡ ´ëÇÑ ´äº¯µµ Á¦°øÇÕ´Ï´Ù. :

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå Àü¸ÁÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹®, Áö¿ªÀº?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5.º¥´õ ½ÃÀå ÁøÀÔ ¹× ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÔ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå °³¿ä

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
    • ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ±âȸ
    • °úÁ¦
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡
    • °æÁ¦
    • »çȸ
    • ±â¼ú
    • ¹ý·ü
    • ȯ°æ

Á¦6Àå ÀÇ·á±â±â¿ë 3D ÇÁ¸°ÆÃ ½ÃÀå : Á¦Ç° À¯Çüº°

  • »À ¹× ¿¬°ñ ½ºÄ³Æúµå
  • Àδë¿Í °Ç ½ºÄ³Æúµå
  • º¸Ã¶ ¹× ÀÓÇöõÆ®
    • Ä¿½ºÅÒ ÀÓÇöõÆ®
    • Ç¥ÁØ ÀÓÇöõÆ®
  • ¿Ü°ú¿ë °¡À̵å
    • µÎ°³¾Ç¾È¸é °¡À̵å
    • Ä¡°ú °¡À̵å
    • Á¤Çü¿Ü°ú °¡À̵å
  • ¼ö¼ú ±â±¸
    • ¸®Æ®·¢ÅÍ
    • ¸Þ½º
    • ¿Ü°ú¿ë ÆÐ½º³Ê
  • Á¶Á÷°øÇÐ Á¦Ç°

Á¦7Àå ÀÇ·á±â±â¿ë 3D ÇÁ¸°ÆÃ ½ÃÀå : ±â¼úº°

  • ¾×Àû ÁõÂø/¾ÐÃâ ±â¹Ý ±â¼ú
    • ¿­¿ëÇØ ÀûÃþ¹ý
    • Àú¿Â ÁõÂø Á¦Á¶
    • ´Ù»ó Á¦Æ® ÀÀ°í
  • ÀüÀÚºö ¿ëÇØ
  • ·¹ÀÌÀú ºö ¿ëÇØ
    • Á÷Á¢ ±Ý¼Ó ·¹ÀÌÀú ¼Ò°á
    • ¼±ÅÃÀû ·¹ÀÌÀú ¿ëÀ¶
    • ¼±ÅÃÀû ·¹ÀÌÀú ¼Ò°á
  • ±¤ÁßÇÕ
    • µðÁöÅÐ ±¤Ã³¸®
    • Æú¸® Á¦Æ® 3D Àμ⠱â¼ú
    • ½ºÅ×·¹¿À ¸®¼Ò±×·¡ÇÇ
    • 2±¤ÀÚ ÁßÇÕ

Á¦8Àå ÀÇ·á±â±â¿ë 3D ÇÁ¸°ÆÃ ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • Àåºñ
  • Àç·á
    • ¼¼¶ó¹Í
    • Á¾ÀÌ
    • ¼öÁö
  • ¼­ºñ½º¿Í ¼ÒÇÁÆ®¿þ¾î

Á¦9Àå ÀÇ·á±â±â¿ë 3D ÇÁ¸°ÆÃ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • Çмú±â°ü¡¤Á¶»ç±â°ü
  • ¿Ü·¡ ¼ö¼ú ¼¾ÅÍ
  • Áø´Ü ¼¾ÅÍ
  • º´¿ø

Á¦10Àå ¾Æ¸Þ¸®Ä«ÀÇ ÀÇ·á±â±â¿ë 3D ÇÁ¸°ÆÃ ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦11Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ÀÇ·á±â±â¿ë 3D ÇÁ¸°ÆÃ ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦12Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ÀÇ·á±â±â¿ë 3D ÇÁ¸°ÆÃ ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®
  • ¿µ±¹

Á¦13Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼® 2023
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2023
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®

±â¾÷ ¸®½ºÆ®

  • Zimmer Biomet Holdings, Inc.
  • Henkel AG & Co. KGaA
  • Solvay S.A.
  • EOS GmbH
  • Zortrax S.A.
  • Stryker Corporation
  • Carbon, Inc.
  • Abbott Laboratories
  • Biomedical Modeling Inc.
  • BICO Group
  • Apium Additive Technologies GmbH
  • Stratasys Ltd.
  • RapidMade Inc.
  • Proto Labs, Inc.
  • Organovo Holdings Inc.
  • Materialise NV
  • Formlabs Inc.
  • Thermo Fisher Scientific Inc.
  • Evonik Industries AG
  • SLM Solutions Group AG
  • GE HealthCare Technologies Inc.
  • Anatomics Pty Ltd.
  • Arkema SA
  • 3D Systems Corporation
  • Restor3d, Inc.
  • Ansys, Inc.
  • Siemens AG
  • Prodways Group
  • Anisoprint SARL
  • Smith & Nephew PLC
  • Renishaw PLC
  • Johnson & Johnson Services, Inc.
KSA 24.12.05

The 3D Printing in Medical Devices Market was valued at USD 7.09 billion in 2023, expected to reach USD 8.69 billion in 2024, and is projected to grow at a CAGR of 22.99%, to USD 30.19 billion by 2030.

The scope and definition of 3D printing in the medical devices market encompasses the production of patient-specific implants, surgical instruments, and anatomical models that optimize pre-surgical planning. The necessity for these innovations stems from the increasing demand for personalized medicine and precision healthcare solutions. Applications range from orthopedic implants and dental restorations to bioprinting tissues and organs for research and therapeutic purposes. Key end-users include hospitals, dental clinics, and research institutions. Market growth is driven by technological advancements, cost-effectiveness, and rapid prototyping capabilities allowing for customized solutions, thus increasing surgical efficiency and patient outcomes. Recent trends highlight opportunities like the integration of AI and machine learning for design optimization and the burgeoning demand for biocompatible, durable materials that enhance the functional integrity of printed devices.

KEY MARKET STATISTICS
Base Year [2023] USD 7.09 billion
Estimated Year [2024] USD 8.69 billion
Forecast Year [2030] USD 30.19 billion
CAGR (%) 22.99%

Potential opportunities lie in expanding the use of 3D printing to create more complex tissue structures and integrated systems, tapping into the untapped potential of emerging markets, and improving regulatory frameworks that facilitate faster market entry while ensuring safety. In this dynamic landscape, collaboration among manufacturers, research institutions, and regulatory bodies can accelerate the pace of innovation. However, market growth faces limitations such as high initial setup costs, regulatory hurdles, and material constraints limiting the range of producible devices. Additionally, the need for specialized workforce training poses operational challenges. To spur business growth, innovation should focus on advancing multi-material printing technologies and hybrid manufacturing techniques that combine traditional and additive processes for better outcomes. Research could be concentrated on developing biodegradable materials and enhancing the scalability of bioprinting technologies.

The market is inherently dynamic, with significant investment being funneled into research and development aimed at overcoming current technical and regulatory barriers. As the landscape evolves, companies investing in gaining and harnessing expertise in material science, digital design, and process automation are likely to secure a competitive edge. Aligning technological advancements with clinical and patient needs remains a central strategy for long-term growth and leadership in the 3D printing medical device sector.

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving 3D Printing in Medical Devices Market

The 3D Printing in Medical Devices Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • High demand for personalized or customized medical devices
    • Awareness about 3D printing of medical devices provided by regulatory authorities
  • Market Restraints
    • High cost and quality concerns of 3D printed medical device
  • Market Opportunities
    • Advancements in printing materials and emergence of bioprinting
    • Enhanced potential in point-of-care diagnostics manufacturing
  • Market Challenges
    • Dearth of trained professionals for using 3D-printed medical device

Porter's Five Forces: A Strategic Tool for Navigating the 3D Printing in Medical Devices Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the 3D Printing in Medical Devices Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the 3D Printing in Medical Devices Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the 3D Printing in Medical Devices Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the 3D Printing in Medical Devices Market

A detailed market share analysis in the 3D Printing in Medical Devices Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the 3D Printing in Medical Devices Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the 3D Printing in Medical Devices Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Key Company Profiles

The report delves into recent significant developments in the 3D Printing in Medical Devices Market, highlighting leading vendors and their innovative profiles. These include Zimmer Biomet Holdings, Inc., Henkel AG & Co. KGaA, Solvay S.A., EOS GmbH, Zortrax S.A., Stryker Corporation, Carbon, Inc., Abbott Laboratories, Biomedical Modeling Inc., BICO Group, Apium Additive Technologies GmbH, Stratasys Ltd., RapidMade Inc., Proto Labs, Inc., Organovo Holdings Inc., Materialise NV, Formlabs Inc., Thermo Fisher Scientific Inc., Evonik Industries AG, SLM Solutions Group AG, GE HealthCare Technologies Inc., Anatomics Pty Ltd., Arkema SA, 3D Systems Corporation, Restor3d, Inc., Ansys, Inc., Siemens AG, Prodways Group, Anisoprint SARL, Smith & Nephew PLC, Renishaw PLC, and Johnson & Johnson Services, Inc..

Market Segmentation & Coverage

This research report categorizes the 3D Printing in Medical Devices Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Product Type, market is studied across Bone & Cartilage Scaffolds, Ligament & Tendon Scaffolds, Prosthetics & Implants, Surgical Guides, Surgical Instruments, and Tissue Engineering Products. The Prosthetics & Implants is further studied across Custom Implants and Standard Implants. The Surgical Guides is further studied across Craniomaxillofacial Guides, Dental Guides, and Orthopedic Guides. The Surgical Instruments is further studied across Retractors, Scalpels, and Surgical Fasteners.
  • Based on Technology, market is studied across Droplet Deposition/Extrusion-Based Technologies, Electron Beam Melting, Laser Beam Melting, and Photopolymerization. The Droplet Deposition/Extrusion-Based Technologies is further studied across Fused Deposition Modeling, Low-Temperature Deposition Manufacturing, and Multiphase Jet Solidification. The Laser Beam Melting is further studied across Direct Metal Laser Sintering, Selective Laser Melting, and Selective Laser Sintering. The Photopolymerization is further studied across Digital Light Processing, Polyjet 3D Printing Technology, Stereolithography, and Two-Photon Polymerization.
  • Based on Component, market is studied across Equipment, Materials, and Services & Software. The Materials is further studied across Ceramics, Paper, and Resin.
  • Based on End User, market is studied across Academic Institutions & Research Laboratories, Ambulatory Surgical Centers, Diagnostic Centers, and Hospitals.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. High demand for personalized or customized medical devices
      • 5.1.1.2. Awareness about 3D printing of medical devices provided by regulatory authorities
    • 5.1.2. Restraints
      • 5.1.2.1. High cost and quality concerns of 3D printed medical device
    • 5.1.3. Opportunities
      • 5.1.3.1. Advancements in printing materials and emergence of bioprinting
      • 5.1.3.2. Enhanced potential in point-of-care diagnostics manufacturing
    • 5.1.4. Challenges
      • 5.1.4.1. Dearth of trained professionals for using 3D-printed medical device
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Product Type: Increasing demand for prosthetics & implants for increased satisfaction with medical treatments
    • 5.2.2. Technology: Rising adoption of photopolymerization technology for manufacturing microscale devices
    • 5.2.3. Component: Growing utilization of various equipments based on material compatibility, and production speed
    • 5.2.4. End User: Wider application across the hospitals for better patient care and efficiently streamline clinical workflows
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. 3D Printing in Medical Devices Market, by Product Type

  • 6.1. Introduction
  • 6.2. Bone & Cartilage Scaffolds
  • 6.3. Ligament & Tendon Scaffolds
  • 6.4. Prosthetics & Implants
    • 6.4.1. Custom Implants
    • 6.4.2. Standard Implants
  • 6.5. Surgical Guides
    • 6.5.1. Craniomaxillofacial Guides
    • 6.5.2. Dental Guides
    • 6.5.3. Orthopedic Guides
  • 6.6. Surgical Instruments
    • 6.6.1. Retractors
    • 6.6.2. Scalpels
    • 6.6.3. Surgical Fasteners
  • 6.7. Tissue Engineering Products

7. 3D Printing in Medical Devices Market, by Technology

  • 7.1. Introduction
  • 7.2. Droplet Deposition/Extrusion-Based Technologies
    • 7.2.1. Fused Deposition Modeling
    • 7.2.2. Low-Temperature Deposition Manufacturing
    • 7.2.3. Multiphase Jet Solidification
  • 7.3. Electron Beam Melting
  • 7.4. Laser Beam Melting
    • 7.4.1. Direct Metal Laser Sintering
    • 7.4.2. Selective Laser Melting
    • 7.4.3. Selective Laser Sintering
  • 7.5. Photopolymerization
    • 7.5.1. Digital Light Processing
    • 7.5.2. Polyjet 3D Printing Technology
    • 7.5.3. Stereolithography
    • 7.5.4. Two-Photon Polymerization

8. 3D Printing in Medical Devices Market, by Component

  • 8.1. Introduction
  • 8.2. Equipment
  • 8.3. Materials
    • 8.3.1. Ceramics
    • 8.3.2. Paper
    • 8.3.3. Resin
  • 8.4. Services & Software

9. 3D Printing in Medical Devices Market, by End User

  • 9.1. Introduction
  • 9.2. Academic Institutions & Research Laboratories
  • 9.3. Ambulatory Surgical Centers
  • 9.4. Diagnostic Centers
  • 9.5. Hospitals

10. Americas 3D Printing in Medical Devices Market

  • 10.1. Introduction
  • 10.2. Argentina
  • 10.3. Brazil
  • 10.4. Canada
  • 10.5. Mexico
  • 10.6. United States

11. Asia-Pacific 3D Printing in Medical Devices Market

  • 11.1. Introduction
  • 11.2. Australia
  • 11.3. China
  • 11.4. India
  • 11.5. Indonesia
  • 11.6. Japan
  • 11.7. Malaysia
  • 11.8. Philippines
  • 11.9. Singapore
  • 11.10. South Korea
  • 11.11. Taiwan
  • 11.12. Thailand
  • 11.13. Vietnam

12. Europe, Middle East & Africa 3D Printing in Medical Devices Market

  • 12.1. Introduction
  • 12.2. Denmark
  • 12.3. Egypt
  • 12.4. Finland
  • 12.5. France
  • 12.6. Germany
  • 12.7. Israel
  • 12.8. Italy
  • 12.9. Netherlands
  • 12.10. Nigeria
  • 12.11. Norway
  • 12.12. Poland
  • 12.13. Qatar
  • 12.14. Russia
  • 12.15. Saudi Arabia
  • 12.16. South Africa
  • 12.17. Spain
  • 12.18. Sweden
  • 12.19. Switzerland
  • 12.20. Turkey
  • 12.21. United Arab Emirates
  • 12.22. United Kingdom

13. Competitive Landscape

  • 13.1. Market Share Analysis, 2023
  • 13.2. FPNV Positioning Matrix, 2023
  • 13.3. Competitive Scenario Analysis
    • 13.3.1. restor3d to acquire fellow 3D printed medical device firm Conformis
    • 13.3.2. EOS, Tecomet, Precision ADM, and OIC partner to provide end-to-end solution for medical device 3D printing
    • 13.3.3. Formlabs Introduces BioMed Durable Resin for Strong, Impact-Resistant Medical Devices
    • 13.3.4. Materialise and Vuzix Announce Collaboration to Bring Smart Eyewear to Consumers
    • 13.3.5. Zimmer Biomet to acquire medical device company OSSIS
    • 13.3.6. Stratasys Completes Acquisition of Covestro's Additive Manufacturing Materials Business
    • 13.3.7. Stratasys Signs Agreement with Ricoh USA, Inc. for Print-On-Demand Medical Models
    • 13.3.8. Desktop Metal and Henkel announce the onboarding of Loctite branded formulations on the Xtreme 8k machine
    • 13.3.9. Stryker Corporation opens new Additive Manufacturing facility in Ireland
    • 13.3.10. 9T Labs raises USD 17 million in Series A funding to advance carbon fiber 3D printing

Companies Mentioned

  • 1. Zimmer Biomet Holdings, Inc.
  • 2. Henkel AG & Co. KGaA
  • 3. Solvay S.A.
  • 4. EOS GmbH
  • 5. Zortrax S.A.
  • 6. Stryker Corporation
  • 7. Carbon, Inc.
  • 8. Abbott Laboratories
  • 9. Biomedical Modeling Inc.
  • 10. BICO Group
  • 11. Apium Additive Technologies GmbH
  • 12. Stratasys Ltd.
  • 13. RapidMade Inc.
  • 14. Proto Labs, Inc.
  • 15. Organovo Holdings Inc.
  • 16. Materialise NV
  • 17. Formlabs Inc.
  • 18. Thermo Fisher Scientific Inc.
  • 19. Evonik Industries AG
  • 20. SLM Solutions Group AG
  • 21. GE HealthCare Technologies Inc.
  • 22. Anatomics Pty Ltd.
  • 23. Arkema SA
  • 24. 3D Systems Corporation
  • 25. Restor3d, Inc.
  • 26. Ansys, Inc.
  • 27. Siemens AG
  • 28. Prodways Group
  • 29. Anisoprint SARL
  • 30. Smith & Nephew PLC
  • 31. Renishaw PLC
  • 32. Johnson & Johnson Services, Inc.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦