½ÃÀ庸°í¼­
»óǰÄÚµå
1600390

AI Æ®·¹ÀÌ´× µ¥ÀÌÅͼ¼Æ® ½ÃÀå : À¯Çüº°, ÃÖÁ¾»ç¿ëÀÚº° - ¼¼°è ¿¹Ãø(2025-2030³â)

AI Training Dataset Market by Type (Audio, Image/Video, Text), End-User (Automotive, Banking, Financial Services & Insurance (BFSI), Government) - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 191 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

AI Æ®·¹ÀÌ´× µ¥ÀÌÅͼ¼Æ® ½ÃÀåÀº 2023³â¿¡ 17¾ï 1,000¸¸ ´Þ·¯·Î Æò°¡µÇ¸ç, 2024³â¿¡´Â 21¾ï 2,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, CAGR 26.41%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 88¾ï 3,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

AI ÈÆ·Ã µ¥ÀÌÅͼ¼Æ® ½ÃÀåÀº ±¤¹üÀ§ÇÑ AI »ê¾÷¿¡¼­ ºü¸£°Ô ¹ßÀüÇϰí ÀÖ´Â ºÐ¾ß·Î, °­·ÂÇÑ AI ¸ðµ¨ ÇнÀ¿¡ ÇÊ¿äÇÑ ±¸Á¶È­µÈ µ¥ÀÌÅ͸¦ Á¦°øÇÏ´Â µ¥ ÃÊÁ¡À» ¸ÂÃß¾ú½À´Ï´Ù. AI ¾Ë°í¸®ÁòÀ» ÈÆ·ÃÇϱâ À§ÇØ ´Ù¾çÇÑ ¼Ò½º¿¡¼­ ¼öÁýµÈ À̹ÌÁö, ÅØ½ºÆ®, À½¼º, ºñµð¿À µî ´Ù¾çÇÑ µ¥ÀÌÅÍ À¯ÇüÀ» Æ÷°ýÇÕ´Ï´Ù. ÇコÄɾî, ÀÚµ¿Â÷, ±ÝÀ¶, ¼Ò¸Å µîÀÇ »ê¾÷¿¡¼­ AI ¿ëµµ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÀÌ ½ÃÀåÀº ¸Å¿ì Áß¿äÇϸç, AI ¸ðµ¨ÀÇ ¼º´ÉÀº ÈÆ·Ã¿¡ »ç¿ëµÇ´Â µ¥ÀÌÅͼ¼Æ®¿¡ Á÷Á¢ÀûÀ¸·Î ¿µÇâÀ» ¹Þ±â ¶§¹®¿¡ °íǰÁúÀÇ ´Ù¾çÇÑ ´ëÇ¥ µ¥ÀÌÅÍ¿¡ ´ëÇÑ Çʿ伺ÀÌ °¡Àå Áß¿äÇÕ´Ï´Ù. µ¥ÀÌÅͼ¼Æ®´Â 꺿, ÀÚÀ²ÁÖÇàÂ÷, ÀÇ·á Áø´Ü, °¨Á¤ ºÐ¼® µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. ¾÷¹« È¿À²¼º, °í°´ °æÇè Çâ»ó, ÷´Ü ºÐ¼® ´É·ÂÀ» ÇÊ¿ä·Î ÇÏ´Â »ê¾÷ ºÐ¾ß±îÁö ÃÖÁ¾ »ç¿ë ¹üÀ§°¡ È®´ëµÇ°í ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ[2023] 17¾ï 1,000¸¸ ´Þ·¯
¿¹Ãø³â[2024] 21¾ï 2,000¸¸ ´Þ·¯
¿¹Ãø³â[2030] 88¾ï 3,000¸¸ ´Þ·¯
CAGR(%) 26.41%

ÀÌ ½ÃÀå¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ÁÖ¿ä ¼ºÀå ¿äÀÎÀ¸·Î´Â AI ±â¼úÀÇ ±Þ°ÝÇÑ ¼ºÀå, ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀÇ ¹ßÀü, ÀÌ·¯ÇÑ ¸ðµ¨À» È¿°úÀûÀ¸·Î ÈÆ·ÃÇϱâ À§ÇÑ ´ë±Ô¸ð µ¥ÀÌÅͼ¼Æ®ÀÇ Çʿ伺 µîÀÌ ÀÖ½À´Ï´Ù. ½ÅÈï ºÐ¾ß¿Í Áö¿ª¿¡¼­ÀÇ AI È®»êÀº Å« ºñÁî´Ï½º ±âȸ¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. ±â¾÷Àº µ¥ÀÌÅÍ ¼öÁý ¹× ÁÖ¼® ±â¼ú¿¡ ÅõÀÚÇÏ°í ´Ù¾çÇÑ µ¥ÀÌÅͼ¼Æ®¿¡ Á¢±ÙÇϱâ À§ÇÑ ÆÄÆ®³Ê½ÊÀ» Çü¼ºÇÔÀ¸·Î½á À̸¦ Ȱ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ±×·¯³ª µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¿¡ ´ëÇÑ ¿ì·Á, µ¥ÀÌÅÍ È°¿ë¿¡ ´ëÇÑ À±¸®Àû ¹®Á¦, µ¥ÀÌÅÍ Å¥·¹À̼ǰú ¶óº§¸µ¿¡ µå´Â ³ôÀº ºñ¿ë µîÀÇ ¹®Á¦°¡ ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ·¯ÇÑ ¹®Á¦¸¦ ±Øº¹Çϱâ À§Çؼ­´Â ÇÕ¼º µ¥ÀÌÅÍ »ý¼º, Çù¾÷ ÇнÀ, ÀÚµ¿ µ¥ÀÌÅÍ ¶óº§¸µ µîÀÇ ºÐ¾ß¿¡¼­ Çõ½ÅÀÌ ÇʼöÀûÀÔ´Ï´Ù. µ¥ÀÌÅÍÀÇ °øÁ¤¼º°ú ÆíÇ⼺À» Á¦°ÅÇϱâ À§ÇÑ º£½ºÆ® ÇÁ·¢Æ¼½º¸¦ ¿¬±¸ÇÏ´Â °Íµµ °æÀï ¿ìÀ§¸¦ È®º¸ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ½ÃÀåÀÇ Æ¯¼ºÀº ¸Å¿ì ¿ªµ¿ÀûÀ̸ç, ±â¼ú ¹ßÀü°ú ±ÔÁ¦ ȯ°æÀÇ º¯È­¿¡ µû¶ó º¯È­Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­¿¡ ¹Î°¨ÇÏ°Ô ¹ÝÀÀÇϰí Àû±ØÀûÀ¸·Î Àü·«À» Á¶Á¤Çϸé Å« ÀÌÁ¡À» ¾òÀ» ¼ö ÀÖÀ¸¸ç, AI°¡ °¢ ºÐ¾ß·Î È®»êµÊ¿¡ µû¶ó ÇнÀ¿ë µ¥ÀÌÅͼ¼Æ®ÀÇ ¿ªÇÒÀÌ ´õ¿í Áß¿äÇØÁö°í, °íǰÁú, Á¢±Ù¼º, À±¸®ÀûÀ¸·Î È®º¸µÈ µ¥ÀÌÅÍ¿¡ ´ëÇÑ Á߿伺ÀÌ ´õ¿í Ä¿Áú °ÍÀÔ´Ï´Ù.

½ÃÀå ¿ªÇÐ: ºü¸£°Ô ÁøÈ­ÇÏ´Â AI Æ®·¹ÀÌ´× µ¥ÀÌÅͼ¼Æ® ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

AI ÇнÀ µ¥ÀÌÅͼ¼Æ® ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ëÀ¸·Î ÀÎÇØ º¯È­Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐÀÇ ÁøÈ­¸¦ ÀÌÇØÇÔÀ¸·Î½á ±â¾÷Àº Á¤º¸¿¡ ÀÔ°¢ÇÑ ÅõÀÚ °áÁ¤, Àü·«Àû ÀÇ»ç°áÁ¤, »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Æ÷ÂøÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¿ªÀû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ ¿ÏÈ­Çϰí, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë ¹× ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • »ê¾÷ ºÎ¹®ÀÇ AI ÅëÇÕÀ» ÅëÇÑ »ê¾÷ ¿î¿µ ÀÚµ¿È­
    • ´Ù¾çÇÑ ÃÖÁ¾»ç¿ëÀÚ »ê¾÷¿¡¼­ AI ÅëÇÕÀ» À§ÇÑ Á¤ºÎÀÇ Áö¿ø ±¸»ó
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • AI ÇнÀ µ¥ÀÌÅͼ¼Æ®ÀÇ ÇѰè
  • ½ÃÀå ±âȸ
    • AI ÈÆ·Ã µ¥ÀÌÅÍ ¸ðµ¨ÀÇ ±â¼úÀû Áøº¸
    • AI Æ®·¹ÀÌ´× µ¥ÀÌÅÍ Ç÷§Æû °­È­¸¦ À§ÇÑ À¯¸®ÇÑ ÅõÀÚ È¯°æ
  • ½ÃÀå °úÁ¦
    • µ¥ÀÌÅÍ ¶óº§¸µ°ú º¥Ä¡¸¶Å·ÀÇ ¹®Á¦

Portre's Five Forces: AI Æ®·¹ÀÌ´× µ¥ÀÌÅͼ¼Æ® ½ÃÀå °ø·«À» À§ÇÑ Àü·« Åø

Portre's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â AI ÇнÀ µ¥ÀÌÅͼ¼Æ® ½ÃÀå °æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â µ¥ Áß¿äÇÑ ÅøÀÔ´Ï´Ù. Portre's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÇ °æÀï·ÂÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ Ž»öÇÒ ¼ö ÀÖ´Â ¸íÈ®ÇÑ ¹æ¹ýÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÀλçÀÌÆ®À» ÅëÇØ ±â¾÷Àº °­Á¡À» Ȱ¿ëÇϰí, ¾àÁ¡À» ÇØ°áÇϰí, ÀáÀçÀûÀÎ µµÀüÀ» ÇÇÇϰí, º¸´Ù °­·ÂÇÑ ½ÃÀå Æ÷Áö¼Å´×À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : AI ÇнÀ¿ë µ¥ÀÌÅͼ¼Æ® ½ÃÀåÀÇ ¿ÜºÎ ¿µÇâ·Â ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº AI ÇнÀ µ¥ÀÌÅͼ¼Æ® ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ÀÖÀ¸¸ç, ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀο¡ ´ëÇÑ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇϸç, PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀû À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£µµ, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¼±Á¦ÀûÀÌ°í ´Éµ¿ÀûÀÎ ÀÇ»ç°áÁ¤À» ³»¸± Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® AI ÇнÀ¿ë µ¥ÀÌÅͼ¼Æ® ½ÃÀå¿¡¼­ °æÀï ±¸µµ ÆÄ¾Ç

AI Æ®·¹ÀÌ´× µ¥ÀÌÅͼ¼Æ® ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ º¥´õÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¸ÅÃâ, °í°´ ±â¹Ý, ¼ºÀå·ü µî ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀïÀû Æ÷Áö¼Å´×À» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®Àº ½ÃÀåÀÇ ÁýÁßÈ­, ´ÜÆíÈ­, ÅëÇÕÀÇ Ãß¼¼¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖÀ¸¸ç, °ø±Þ¾÷ü´Â Ä¡¿­ÇÑ °æÀï ¼Ó¿¡¼­ ÀÚ½ÅÀÇ ÀÔÁö¸¦ °­È­ÇÒ ¼ö ÀÖ´Â Àü·«Àû ÀÇ»ç°áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ ÀλçÀÌÆ®À» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º AI Æ®·¹ÀÌ´× µ¥ÀÌÅͼ¼Æ® ½ÃÀå¿¡¼­ÀÇ º¥´õ ¼º°ú Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â AI ÇнÀ µ¥ÀÌÅͼ¼Æ® ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ ÅøÀÔ´Ï´Ù. ÀÌ ¸ÅÆ®¸¯½º¸¦ ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº º¥´õÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±â¹ÝÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ºÎÇÕÇÏ´Â Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖÀ¸¸ç, 4°³ÀÇ »çºÐ¸éÀº º¥´õ¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ±¸ºÐÇÏ¿© »ç¿ëÀÚ°¡ Àü·«Àû¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê¿Í ¼Ö·ç¼ÇÀ» ½Äº°ÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ½Äº°ÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â Á¾ÇÕÀûÀÎ ½ÃÀå ºÐ¼®À» Á¦°øÇÕ´Ï´Ù. :

1. ½ÃÀå ħÅõµµ : ¾÷°è ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅ͸¦ Æ÷ÇÔÇÑ ÇöÀç ½ÃÀå ȯ°æ¿¡ ´ëÇÑ »ó¼¼ÇÑ °ËÅä.

2. ½ÃÀå °³Ã´µµ: ½ÅÈï ½ÃÀå¿¡¼­ÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇϰí, ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡Çϸç, ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù°¢È­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä ¹ßÀü, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú ¹ßÀü µîÀ» °ËÅäÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÷´Ü ±â¼ú, ¿¬±¸°³¹ß Ȱµ¿ ¹× Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

ÀÌÇØ°ü°èÀÚµéÀÌ ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï ´ÙÀ½°ú °°Àº Áß¿äÇÑ Áú¹®¿¡ ´ëÇÑ ´äº¯µµ Á¦°øÇÕ´Ï´Ù. :

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå Àü¸ÁÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹®, Áö¿ªÀº?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5.º¥´õ ½ÃÀå ÁøÀÔ ¹× ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÔ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå °³¿ä

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
    • ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ±âȸ
    • °úÁ¦
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡
    • °æÁ¦
    • »çȸ
    • ±â¼ú
    • ¹ý·ü
    • ȯ°æ

Á¦6Àå AI Æ®·¹ÀÌ´× µ¥ÀÌÅͼ¼Æ® ½ÃÀå : À¯Çüº°

  • ¿Àµð¿À
  • À̹ÌÁö/ºñµð¿À
  • ¹®Àå

Á¦7Àå AI Æ®·¹ÀÌ´× µ¥ÀÌÅͼ¼Æ® ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • ÀÚµ¿Â÷
  • ÀºÇà, ±ÝÀ¶ ¼­ºñ½º, º¸Çè(BFSI)
  • Á¤ºÎ
  • ÇコÄɾî
  • Á¤º¸±â¼ú
  • ¼Ò¸Å¡¤E-Commerce

Á¦8Àå ¾Æ¸Þ¸®Ä«ÀÇ AI Æ®·¹ÀÌ´× µ¥ÀÌÅͼ¼Æ® ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦9Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ AI Æ®·¹ÀÌ´× µ¥ÀÌÅͼ¼Æ® ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦10Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ AI Æ®·¹ÀÌ´× µ¥ÀÌÅͼ¼Æ® ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®
  • ¿µ±¹

Á¦11Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼® 2023
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2023
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®

±â¾÷ ¸®½ºÆ®

  • ADLINK Technology Inc.
  • Alegion Inc.
  • Amazon Web Services, Inc.
  • Anolytics
  • Appen Limited
  • Atos SE
  • Automaton AI Infosystem Pvt. Ltd.
  • Clarifai, Inc.
  • Clickworker GmbH
  • Cogito Tech LLC
  • DataClap
  • DataRobot, Inc.
  • Deep Vision Data by Kinetic Vision
  • Deeply, Inc.
  • Google LLC by Alphabet, Inc.
  • Gretel Labs, Inc.
  • Huawei Technologies Co., Ltd.
  • International Business Machines Corporation
  • Lionbridge Technologies, LLC
  • Meta Platforms, Inc.
  • Microsoft Corporation
  • Mindtech Global Limited
  • Mostly AI Solutions MP GmbH
  • NVIDIA Corporation
  • Oracle Corporation
  • PIXTA Inc.
  • Samasource Impact Sourcing, Inc.
  • SAP SE
  • Scale AI, Inc.
  • Siemens AG
  • Snorkel AI, Inc.
  • Sony Group Corporation
  • SuperAnnotate AI, Inc.
  • TagX
  • UniCourt Inc.
  • Wisepl Private Limited
KSA 24.12.05

The AI Training Dataset Market was valued at USD 1.71 billion in 2023, expected to reach USD 2.12 billion in 2024, and is projected to grow at a CAGR of 26.41%, to USD 8.83 billion by 2030.

The AI Training Dataset market is a rapidly evolving segment within the broader AI industry, focusing on providing structured data required for training robust AI models. Its scope broadly covers various data types including images, text, audio, and video collected from diverse sources to train AI algorithms. This market is crucial due to the growing demand for AI applications in industries such as healthcare, automotive, finance, and retail. The necessity for high-quality, diverse, and representative data is paramount, as the performance of AI models is directly linked to the datasets used for training. Application-wise, AI training datasets find use in developing chatbots, autonomous vehicles, medical diagnostics, sentiment analysis, and many other domains. The end-use scope extends to industries seeking operational efficiencies, enhanced customer experiences, and advanced analytical capabilities.

KEY MARKET STATISTICS
Base Year [2023] USD 1.71 billion
Estimated Year [2024] USD 2.12 billion
Forecast Year [2030] USD 8.83 billion
CAGR (%) 26.41%

Key growth factors influencing this market include the exponential growth of AI technologies, advancements in machine learning algorithms, and the need for large-scale datasets to train these models effectively. The increasing penetration of AI in emerging sectors and regions opens up significant opportunities. Companies can capitalize on these by investing in data acquisition, annotation technologies, and forming partnerships to access diversified datasets. However, challenges such as data privacy concerns, ethical issues surrounding data use, and the high cost of data curation and labeling can hinder market growth.

To navigate these challenges, innovation in areas like synthetic data generation, federated learning, and automated data labeling becomes essential. Researching best practices for ensuring data fairness and bias elimination can also offer competitive advantages. The nature of the market is highly dynamic, driven by technological advancements and evolving regulatory landscapes. Staying attuned to these changes and proactively adapting strategies can offer a significant edge. As AI's footprint across sectors broadens, the role of training datasets becomes even more critical, placing a premium on high-quality, accessible, and ethically sourced data.

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving AI Training Dataset Market

The AI Training Dataset Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Integration of AI in industrial sectors to automate industrial operations
    • Supportive government initiatives for AI-integration across various end-user industries
  • Market Restraints
    • Limitations of AI training datasets
  • Market Opportunities
    • Technological advancements in AI training data models
    • Favorable investment landscape to enhance AI training data platforms
  • Market Challenges
    • Issues with the data labeling and benchmarking

Porter's Five Forces: A Strategic Tool for Navigating the AI Training Dataset Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the AI Training Dataset Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the AI Training Dataset Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the AI Training Dataset Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the AI Training Dataset Market

A detailed market share analysis in the AI Training Dataset Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the AI Training Dataset Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the AI Training Dataset Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Key Company Profiles

The report delves into recent significant developments in the AI Training Dataset Market, highlighting leading vendors and their innovative profiles. These include ADLINK Technology Inc., Alegion Inc., Amazon Web Services, Inc., Anolytics, Appen Limited, Atos SE, Automaton AI Infosystem Pvt. Ltd., Clarifai, Inc., Clickworker GmbH, Cogito Tech LLC, DataClap, DataRobot, Inc., Deep Vision Data by Kinetic Vision, Deeply, Inc., Google LLC by Alphabet, Inc., Gretel Labs, Inc., Huawei Technologies Co., Ltd., International Business Machines Corporation, Lionbridge Technologies, LLC, Meta Platforms, Inc., Microsoft Corporation, Mindtech Global Limited, Mostly AI Solutions MP GmbH, NVIDIA Corporation, Oracle Corporation, PIXTA Inc., Samasource Impact Sourcing, Inc., SAP SE, Scale AI, Inc., Siemens AG, Snorkel AI, Inc., Sony Group Corporation, SuperAnnotate AI, Inc., TagX, UniCourt Inc., and Wisepl Private Limited.

Market Segmentation & Coverage

This research report categorizes the AI Training Dataset Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Type, market is studied across Audio, Image/Video, and Text.
  • Based on End-User, market is studied across Automotive, Banking, Financial Services & Insurance (BFSI), Government, Healthcare, Information Technology, and Retail & e-Commerce.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across Arizona, California, Florida, Illinois, Indiana, Massachusetts, Nevada, New Jersey, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Integration of AI in industrial sectors to automate industrial operations
      • 5.1.1.2. Supportive government initiatives for AI-integration across various end-user industries
    • 5.1.2. Restraints
      • 5.1.2.1. Limitations of AI training datasets
    • 5.1.3. Opportunities
      • 5.1.3.1. Technological advancements in AI training data models
      • 5.1.3.2. Favorable investment landscape to enhance AI training data platforms
    • 5.1.4. Challenges
      • 5.1.4.1. Issues with the data labeling and benchmarking
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Type: Adoption of text-based AI training datasets for text classification and sentiment analysis in various industries
    • 5.2.2. End-user: Expansion of information technology hubs across the world necessitating deployment of advanced AI training dataset
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. AI Training Dataset Market, by Type

  • 6.1. Introduction
  • 6.2. Audio
  • 6.3. Image/Video
  • 6.4. Text

7. AI Training Dataset Market, by End-User

  • 7.1. Introduction
  • 7.2. Automotive
  • 7.3. Banking, Financial Services & Insurance (BFSI)
  • 7.4. Government
  • 7.5. Healthcare
  • 7.6. Information Technology
  • 7.7. Retail & e-Commerce

8. Americas AI Training Dataset Market

  • 8.1. Introduction
  • 8.2. Argentina
  • 8.3. Brazil
  • 8.4. Canada
  • 8.5. Mexico
  • 8.6. United States

9. Asia-Pacific AI Training Dataset Market

  • 9.1. Introduction
  • 9.2. Australia
  • 9.3. China
  • 9.4. India
  • 9.5. Indonesia
  • 9.6. Japan
  • 9.7. Malaysia
  • 9.8. Philippines
  • 9.9. Singapore
  • 9.10. South Korea
  • 9.11. Taiwan
  • 9.12. Thailand
  • 9.13. Vietnam

10. Europe, Middle East & Africa AI Training Dataset Market

  • 10.1. Introduction
  • 10.2. Denmark
  • 10.3. Egypt
  • 10.4. Finland
  • 10.5. France
  • 10.6. Germany
  • 10.7. Israel
  • 10.8. Italy
  • 10.9. Netherlands
  • 10.10. Nigeria
  • 10.11. Norway
  • 10.12. Poland
  • 10.13. Qatar
  • 10.14. Russia
  • 10.15. Saudi Arabia
  • 10.16. South Africa
  • 10.17. Spain
  • 10.18. Sweden
  • 10.19. Switzerland
  • 10.20. Turkey
  • 10.21. United Arab Emirates
  • 10.22. United Kingdom

11. Competitive Landscape

  • 11.1. Market Share Analysis, 2023
  • 11.2. FPNV Positioning Matrix, 2023
  • 11.3. Competitive Scenario Analysis
    • 11.3.1. IBM and SAP SE Forge Ahead with Enhanced AI and Industry-Specific Cloud Solutions
    • 11.3.2. Huawei Launches New AI Storage Product for the Era of Large Model at GITEX GLOBAL 2023
    • 11.3.3. Meta's new AI chatbot trained on public Facebook and Instagram posts
    • 11.3.4. Railtown AI Launches Knowledge-based AI Assistant and Files Provisional Patent Application Relating to AI
    • 11.3.5. IBM Commits to Train 2 Million in Artificial Intelligence in Three Years, with a Focus on Underrepresented Communities
    • 11.3.6. Nokia launches AVA Data Suite to run on Google Cloud to facilitate AI/ML development
    • 11.3.7. CGI to Invest USD 1 Billion On Expansion Of Ai Capabilities To Help Clients Design And Deliver Responsible, Roi-Led Strategies
    • 11.3.8. Databricks Completes Acquisition of MosaicML
    • 11.3.9. RWS Launches AI Training Dataset for Natural Language Processing
    • 11.3.10. Appen Launches Three New Products to Build Trustworthy Generative AI Applications
    • 11.3.11. BioNTech to Acquire InstaDeep to Strengthen the Position in the Field of AI-powered Drug Discovery, Design and Development
    • 11.3.12. Accenture and Google Cloud Expand Partnership to Accelerate Value from Technology, Data and AI

Companies Mentioned

  • 1. ADLINK Technology Inc.
  • 2. Alegion Inc.
  • 3. Amazon Web Services, Inc.
  • 4. Anolytics
  • 5. Appen Limited
  • 6. Atos SE
  • 7. Automaton AI Infosystem Pvt. Ltd.
  • 8. Clarifai, Inc.
  • 9. Clickworker GmbH
  • 10. Cogito Tech LLC
  • 11. DataClap
  • 12. DataRobot, Inc.
  • 13. Deep Vision Data by Kinetic Vision
  • 14. Deeply, Inc.
  • 15. Google LLC by Alphabet, Inc.
  • 16. Gretel Labs, Inc.
  • 17. Huawei Technologies Co., Ltd.
  • 18. International Business Machines Corporation
  • 19. Lionbridge Technologies, LLC
  • 20. Meta Platforms, Inc.
  • 21. Microsoft Corporation
  • 22. Mindtech Global Limited
  • 23. Mostly AI Solutions MP GmbH
  • 24. NVIDIA Corporation
  • 25. Oracle Corporation
  • 26. PIXTA Inc.
  • 27. Samasource Impact Sourcing, Inc.
  • 28. SAP SE
  • 29. Scale AI, Inc.
  • 30. Siemens AG
  • 31. Snorkel AI, Inc.
  • 32. Sony Group Corporation
  • 33. SuperAnnotate AI, Inc.
  • 34. TagX
  • 35. UniCourt Inc.
  • 36. Wisepl Private Limited
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦