½ÃÀ庸°í¼­
»óǰÄÚµå
1600466

¼¼°èÀÇ ¿øÀÚÃþ ÁõÂø ½ÃÀå : À¯Çüº°, ¿ëµµº° ¿¹Ãø(2025-2030³â)

Atomic Layer Deposition Market by Type (Aluminum Oxide ALD, Catalytic ALD, Metal ALD), Application (Electronics, Medical Equipment, Semiconductors) - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 194 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

¿øÀÚÃþ ÁõÂø ½ÃÀåÀº 2023³â¿¡ 17¾ï 8,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2024³â¿¡´Â 21¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ°í, CAGR 19.24%·Î ¼ºÀåÇØ 2030³â¿¡´Â 61¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.

¿øÀÚÃþ ÁõÂø(ALD)Àº ¹ÝµµÃ¼¿Í ³ª³ë±â¼ú »ê¾÷¿¡¼­ ¸Å¿ì Áß¿äÇÑ ¹Ú¸· ¼º¸· ±â¼úÀÔ´Ï´Ù. ÀûÇÕ¼º ALDÀÇ Çʿ伺Àº º¹ÀâÇÑ 3Â÷¿ø ±¸Á¶¿¡ ÇÉȦÀÌ ¾ø´Â Ãʹڸ·À» ¼º¸·ÇÒ ¼ö Àֱ⠶§¹®¿¡ ÀüÀÚ ºÎǰÀÇ ¼ÒÇüÈ­¿Í È¿À² Çâ»ó¿¡ ÇʼöÀûÀÔ´Ï´Ù. ¿ëµµ´Â ÀüÀÚ, ž翡³ÊÁö, ÀÚµ¿Â÷, ÀÇ·á±â±â µîÀÇ ºÎ¹®À¸·Î ÆÛÁ® ÃÖÁ¾ ¿ëµµÀÇ ¹üÀ§°¡ ³Ð½À´Ï´Ù. ¶ÇÇÑ, »ç¹° ÀÎÅͳÝ(IoT)°ú 5G ±â¼úÀÇ »ó½ÂÀº ÀåÄ¡ÀÇ ¼º´ÉÀ» Çâ»ó½ÃŰ´Â ALD¿¡ Å« ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. ÀÚº» ºñ¿ëÀÇ ³ôÀÌ¿Í ¼º¸· ÇÁ·Î¼¼½ºÀÇ º¹À⼺ µî ½ÃÀåÀº °úÁ¦¿¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù. ¿¡³ÊÁö ¹× ÀÚµ¿Â÷ ºÎ¹®¿¡ ´ëÀÀÇÏ´Â Àúºñ¿ëÀÇ ´ë±Ô¸ð ALD ½Ã½ºÅÛ °³¹ß¿¡ Á¸ÀçÇÕ´Ï´Ù. ±â¼ú Çõ½ÅÀº Á¤È®¼º°ú ǰÁúÀ» À¯ÁöÇϸ鼭 󸮷®À» Çâ»ó½ÃŰ°í »çÀÌŬ ½Ã°£À» ´ÜÃàÇÏ´Â µ¥ ÁßÁ¡À» µÓ´Ï´Ù. ¶Ç, Çʸ§ Ư¼ºÀ» ´õ¿í Çâ»ó½ÃŰ°í ½Å±â¼ú¿¡ ÀÀ¿ëÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ½ÅÀç·á³ª ½Å¹æ½ÄÀÇ Å½±¸¿¡µµ °¡´É¼ºÀÌ ÀÖ½À´Ï´Ù. »ç¾÷ ¼ºÀåÀº ƯÈ÷ ¼ö¿ä°¡ °ßÁ¶ÇÑ ¹ÝµµÃ¼ ¹× Àç»ý ¿¡³ÊÁö ºÎ¹®ÀÇ Àü·«Àû ÆÄÆ®³Ê½Ê¿¡ ÀÇÇØ °ßÀÎ µÉ ¼ö ÀÖ½À´Ï´Ù. ½ÃÀåÀº ¿©ÀüÈ÷ ¿ªµ¿ÀûÀÌ°í °æÀïÀÌ Ä¡¿­Çϰí ÁøÈ­ÇÏ´Â »ê¾÷ ¿ä±¸¸¦ ÃæÁ·½ÃŰ°í ±âÁ¸ÀÇ ±â¼úÀû Á¦¾àÀ» ±Øº¹Çϱâ À§Çؼ­´Â Áö¼ÓÀûÀÎ ¿¬±¸ °³¹ßÀÌ ÇÊ¿äÇÕ´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ (2023³â) 17¾ï 8,000¸¸ ´Þ·¯
¿¹Ãø³â(2024³â) 21¾ï ´Þ·¯
¿¹Ãø³â(2030³â) 61¾ï ´Þ·¯
CAGR(%) 19.24%

½ÃÀå ¿ªÇÐ: ±Þ¼ÓÈ÷ ÁøÈ­ÇÏ´Â ¿øÀÚÃþ ÁõÂø ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

¿øÀÚÃþ ÁõÂø ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ë¿¡ ÀÇÇØ º¯¸ðÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐÀÇ ÁøÈ­¸¦ ÀÌÇØÇÔÀ¸·Î½á ±â¾÷Àº ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÅõÀÚ°áÁ¤, Àü·«Àû ÀÇ»ç°áÁ¤, »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ ȹµæÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦ÀûÀÎ ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ °æ°¨ÇÒ ¼ö ÀÖÀ½°ú µ¿½Ã¿¡, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ëÀ̳ª ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ¼ÒºñÀÚ¿ë ÀüÀÚ±â±â ¼ö¿ä Áõ°¡¿¡ ¼ö¹ÝÇÏ´Â ÀÏ·ºÆ®·Î´Ð½º ¹× ¹ÝµµÃ¼ ¼Ö·ç¼ÇÀÇ ¼ºÀå
    • ÄÄÆ÷³ÍÆ®ÀÇ ¼ÒÇüÈ­¿Í º¸´Ù ³ôÀº È¿À²°ú ¾ÈÁ¤¼ºÀ» Á¦°øÇÏ´Â ±âÆÇÀÇ Ã¤¿ë
    • ÇÁ·ÐÆ®¿£µå ¿ëµµÀÇ º¯Ãµ°ú Æ÷Åä´Ð½º¿Í ¹«¼± Á֯ļö(RF) ±â¼úÀÇ ½Å¼¼´ëÀÇ ÁøÈ­
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • R&D¿¡ ´ëÇÑ ³ôÀº ÅõÀÚ ºñ¿ë
    • ¿øÀÚÃþ ÁõÂø(ALD)ÀÇ ´ëüǰ
  • ½ÃÀå ±âȸ
    • ³ì»ö ¿¡³ÊÁö¿øÀ» Àå·ÁÇÏ´Â Á¤ºÎ¿¡ ÀÇÇÑ º¸Á¶±Ý
    • ÀÇ·á¿ë ÀÓÇöõÆ®³ª ¿þ¾î·¯ºí ÀÇ·á±â±â¿¡ÀÇ ¿ëµµ
    • ¿øÀÚÃþ ÁõÂø¿¡ À־ÀÇ ¿¬±¸°³¹ßÀÇ ¼ºÀå
  • ½ÃÀåÀÇ °úÁ¦
    • ¿©·¯ ±â´ÉÀ» Áö¿øÇÏ´Â ¹ü¿ë ÅøÀÇ Çʿ伺

Porter's Five Force : ¿øÀÚÃþ ÁõÂø ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Porter's Five Force Framework´Â ¿øÀÚÃþ ÁõÂø ½ÃÀå °æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ ÀÛ¾÷Àº ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¸°ÔÇÏ¸é ´õ °­ÀÎÇÑ ½ÃÀå¿¡¼­ Æ÷Áö¼Å´×À» º¸Àå ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : ¿øÀÚÃþ ÁõÂø ½ÃÀå¿¡¼­ ¿ÜºÎ·ÎºÎÅÍÀÇ ¿µÇâ ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº ¿øÀÚÃþ ÁõÂø ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ»ÇÕ´Ï´Ù. PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. Àû±ØÀûÀÎ ÀÇ»ç °áÁ¤À» ÇÒ Áغñ°¡µÇ¾î ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® : ¿øÀÚÃþ ÁõÂø ½ÃÀå °æÀï ±¸µµ ÆÄ¾Ç

¿øÀÚÃþ ÁõÂø ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®Àº ½ÃÀåÀÇ ÁýÁß, ºÎ¹®È­ ¹× ÅëÇÕ µ¿ÇâÀ» ¹àÇô³»°í, º¥´õ´Â °æÀïÀÌ °ÝÈ­µÇ´Â °¡¿îµ¥ ÀÚ½ÅÀÇ ÁöÀ§¸¦ ³ôÀÌ´Â Àü·«Àû ÀÇ»ç°áÁ¤À» Çϱâ À§ÇØ ÇÊ¿äÇÑ Áö°ßÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º: ¿øÀÚÃþ ÁõÂø ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â ¿øÀÚÃþ ÁõÂø ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ¿¡ µû¶ó °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ³× °¡Áö »çºÐ¸éÀº °ø±Þ¾÷ü¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ±¸ºÐÇÏ¿© »ç¿ëÀÚ°¡ Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê ¹× ¼Ö·ç¼ÇÀ» ½Äº°ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â Á¾ÇÕÀûÀÎ ½ÃÀå ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ: »ê¾÷ ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅ͸¦ Æ÷ÇÔÇÑ ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä.

2. ½ÃÀå °³Ã´µµ: ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇϰí, ±âÁ¸ ºÎ¹®¿¡¼­ÀÇ È®Àå °¡´É¼ºÀ» Æò°¡Çϸç, ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» ¼³¸íÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­: ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, »ê¾÷ÀÇ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, R&D Ȱµ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¾òÀº ÈÄ ÀÇ»ç°áÁ¤ÇÒ ¼ö ÀÖµµ·Ï Áß¿äÇÑ Áú¹®¿¡µµ ´ë´äÇϰí ÀÖ½À´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, Áö¿ªÀº ¾îµðÀԴϱî?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ¡¤Ã¶¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • ¼ÒºñÀÚ¿ë ÀüÀÚ±â±â Á¦Ç° ¼ö¿ä Áõ°¡¿¡ ¼ö¹ÝÇÏ´Â ÀüÀÚ±â±â ¹× ¹ÝµµÃ¼ ¼Ö·ç¼ÇÀÇ ¼ºÀå
      • ºÎǰÀÇ ¼ÒÇüÈ­¿Í ±âÆÇÀÇ °íÈ¿À²¡¤°í¾ÈÁ¤¼ºÀ» ½ÇÇöÇÏ´Â Àç·áÀÇ Ã¤¿ë
      • ÇÁ·ÐÆ®ÃÖÁ¾ ¿ëµµÀÇ º¯È­ÀÇ Áõ´ë¿Í Æ÷Åä´Ð½º¿Í ¹«¼± Á֯ļö(RF) ±â¼úÀÇ ½Å¼¼´ëÀÇ ÁøÈ­
    • ¾ïÁ¦¿äÀÎ
      • R&D¿¡ ´ëÇÑ ³ôÀº ÅõÀÚ ºñ¿ë
      • ¿øÀÚÃþ ÁõÂø(ALD)ÀÇ ´ëü
    • ±âȸ
      • ³ì»ö ¿¡³ÊÁö¿øÀ» Àå·ÁÇÏ´Â Á¤ºÎ¿¡ ÀÇÇÑ º¸Á¶±Ý
      • ÀÇ·á¿ë ÀÓÇöõÆ®³ª ¿þ¾î·¯ºí ÀÇ·á±â±â¿¡ÀÇ ¿ëµµ
      • ¿øÀÚÃþ ÁõÂø¿¡ À־ÀÇ ¿¬±¸ °³¹ßÀÇ È®´ë
    • °úÁ¦
      • ¿©·¯ ±â´ÉÀ» Áö¿øÇÏ´Â ´Ù¸ñÀû µµ±¸ÀÇ Çʿ伺
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
    • À¯Çü : Àü±â Ư¼º¿¡ µû¶ó »êÈ­ ¾Ë·ç¹Ì´½ ALD°¡ ¿ì¼±
    • ¿ëµµ : ¹ÝµµÃ¼ »ê¾÷¿¡ À־ÀÇ ¿øÀÚÃþ ÁõÂøÀÇ À¯È¿ Ȱ¿ë
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡
    • °æÁ¦
    • »çȸ
    • ±â¼ú
    • ¹ý·ü
    • ȯ°æ
  • °í°´ ¸ÂÃãÇü

Á¦6Àå ¿øÀÚÃþ ÁõÂø ½ÃÀå : À¯Çüº°

  • ¼Ò°³
  • »êÈ­¾Ë·ç¹Ì´½ ALD
  • Ã˸ŠALD
  • ±Ý¼Ó ALD
  • ÇöóÁ °­È­ ALD

Á¦7Àå ¿øÀÚÃþ ÁõÂø ½ÃÀå : ¿ëµµº°

  • ¼Ò°³
  • ÀÏ·ºÆ®·Î´Ð½º
  • ÀÇ·á±â±â
  • ¹ÝµµÃ¼
  • ¼Ö¶ó µð¹ÙÀ̽º

Á¦8Àå ¾Æ¸Þ¸®Ä«ÀÇ ¿øÀÚÃþ ÁõÂø ½ÃÀå

  • ¼Ò°³
  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦9Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¿øÀÚÃþ ÁõÂø ½ÃÀå

  • ¼Ò°³
  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦10Àå À¯·´¡¤Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ¿øÀÚÃþ ÁõÂø ½ÃÀå

  • ¼Ò°³
  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦11Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2023³â
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2023³â
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
    • SkyWater°¡ ÷´Ü ±â¼ú °³¹ß°ú »ý»êÀ» À§ÇÑ ¿øÀÚÃþ ÁõÂø ½Ã½ºÅÛÀ» µµÀÔ
    • 6K Energy, NMC 811ÀÇ »ó¾÷ »ý»êÀ» À§ÇÑ Forge Nano ¼³ºñ µµÀÔ
    • Oxford Instruments, ¾çÀÚ±â¼ú°ú ¼±ÁøÀû ¿¬±¸°³¹ßÀ» À§ÇÑ È¹±âÀûÀÎ Ãʰí¼Ó ALD Á¦Ç° ¹ßÇ¥

±â¾÷ ¸ñ·Ï

  • Aixtron SE
  • Oxford Instruments PLC
  • ALD NanoSolutions, Inc.
  • NCD Co., Ltd.
  • Encapsulix SAS
  • HZO, Inc.
  • Denton Vacuum LLC
  • Anric Technologies LLC
  • SkyWater Technology Foundry, Inc.
  • Applied Materials Inc.
  • Veeco Instruments Inc.
  • Merck KGaA
  • Arradiance, LLC
  • Canon Anvela Corporation
  • Adeka Corporation
  • Eugenus, Inc.
  • Hitachi, Ltd.
  • Forge Nano, Inc.
  • SENTECH Instruments GmbH
  • Beneq Oy
  • Entegris, Inc.
  • CVD Equipment Corporation
  • Lam Research Corporation
  • Kurt J. Lesker Company
  • ASM International NV
JHS 24.12.09

The Atomic Layer Deposition Market was valued at USD 1.78 billion in 2023, expected to reach USD 2.10 billion in 2024, and is projected to grow at a CAGR of 19.24%, to USD 6.10 billion by 2030.

Atomic Layer Deposition (ALD) is a thin-film deposition technique that is crucial in the semiconductor and nanotechnology industries. It enables the precise control over film thickness and composition, making it ideal for applications requiring high uniformity and conformity, such as semiconductor manufacturing, energy storage devices, and medical coatings. The necessity of ALD arises from its ability to deposit ultra-thin, pinhole-free films over complex 3D structures, which is essential for the miniaturization and efficiency improvements of electronic components. Applications extend across sectors like electronics, solar energy, automotive, and medical devices, providing a wide end-use scope. Market growth is largely influenced by factors such as the increasing demand for miniaturized components in consumer electronics, advancements in semiconductor technology, and the push for renewable energy solutions. Additionally, the rise of Internet of Things (IoT) and 5G technologies offer significant opportunities for ALD in enhancing device performance. However, the market faces challenges, including the high initial investment costs for ALD technology and the complexity of the deposition process. Moreover, limited availability of skilled professionals can restrain growth. Latest opportunities exist in developing low-cost, large-scale ALD systems to cater to the energy and automotive sectors. Innovation can focus on improving throughput and reducing cycle times while maintaining accuracy and quality. There's also potential to explore new materials and methods that can further enhance film properties, making them applicable for emerging technologies. Business growth can be driven by strategic partnerships, particularly in the semiconductor and renewables sectors, where demand remains robust. The market remains highly dynamic and competitive, with continuous research and development required to meet evolving industrial needs and overcome existing technical limitations.

KEY MARKET STATISTICS
Base Year [2023] USD 1.78 billion
Estimated Year [2024] USD 2.10 billion
Forecast Year [2030] USD 6.10 billion
CAGR (%) 19.24%

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Atomic Layer Deposition Market

The Atomic Layer Deposition Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Growing electronics and semiconductor solutions accompanied by increase in the demand of consumer electronics
    • Component miniaturization and introduction of materials offering higher efficiency and stability of substrates
    • Increasing inflections in front end applications and evolution of a new gneneration of photonics and radio frequency (RF) technologies
  • Market Restraints
    • High investment Cost in R&D
    • Alternatives of Atomic Layer Deposition (ALD)
  • Market Opportunities
    • Subsidies offered by government encouraging green energy sources
    • Applications in medical implants and wearable medical devices
    • Growing R&D in atomic layer deposition
  • Market Challenges
    • Need for versatile tools to support multiple capabilities

Porter's Five Forces: A Strategic Tool for Navigating the Atomic Layer Deposition Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Atomic Layer Deposition Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Atomic Layer Deposition Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Atomic Layer Deposition Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Atomic Layer Deposition Market

A detailed market share analysis in the Atomic Layer Deposition Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Atomic Layer Deposition Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Atomic Layer Deposition Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Key Company Profiles

The report delves into recent significant developments in the Atomic Layer Deposition Market, highlighting leading vendors and their innovative profiles. These include Aixtron SE, Oxford Instruments PLC, ALD NanoSolutions, Inc., NCD Co., Ltd., Encapsulix SAS, HZO, Inc., Denton Vacuum LLC, Anric Technologies LLC, SkyWater Technology Foundry, Inc., Applied Materials Inc., Veeco Instruments Inc., Merck KGaA, Arradiance, LLC, Canon Anvela Corporation, Adeka Corporation, Eugenus, Inc., Hitachi, Ltd., Forge Nano, Inc., SENTECH Instruments GmbH, Beneq Oy, Entegris, Inc., CVD Equipment Corporation, Lam Research Corporation, Kurt J. Lesker Company, and ASM International N.V..

Market Segmentation & Coverage

This research report categorizes the Atomic Layer Deposition Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Type, market is studied across Aluminum Oxide ALD, Catalytic ALD, Metal ALD, and Plasma Enhanced ALD.
  • Based on Application, market is studied across Electronics, Medical Equipment, Semiconductors, and Solar Devices.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Growing electronics and semiconductor solutions accompanied by increase in the demand of consumer electronics
      • 5.1.1.2. Component miniaturization and introduction of materials offering higher efficiency and stability of substrates
      • 5.1.1.3. Increasing inflections in front end applications and evolution of a new gneneration of photonics and radio frequency (RF) technologies
    • 5.1.2. Restraints
      • 5.1.2.1. High investment Cost in R&D
      • 5.1.2.2. Alternatives of Atomic Layer Deposition (ALD)
    • 5.1.3. Opportunities
      • 5.1.3.1. Subsidies offered by government encouraging green energy sources
      • 5.1.3.2. Applications in medical implants and wearable medical devices
      • 5.1.3.3. Growing R&D in atomic layer deposition
    • 5.1.4. Challenges
      • 5.1.4.1. Need for versatile tools to support multiple capabilities
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Type: Preference towards Aluminum Oxide ALD due to its electrical properties
    • 5.2.2. Application: Significant utilization of atomic layer deposition in semiconductor industry
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental
  • 5.5. Client Customization

6. Atomic Layer Deposition Market, by Type

  • 6.1. Introduction
  • 6.2. Aluminum Oxide ALD
  • 6.3. Catalytic ALD
  • 6.4. Metal ALD
  • 6.5. Plasma Enhanced ALD

7. Atomic Layer Deposition Market, by Application

  • 7.1. Introduction
  • 7.2. Electronics
  • 7.3. Medical Equipment
  • 7.4. Semiconductors
  • 7.5. Solar Devices

8. Americas Atomic Layer Deposition Market

  • 8.1. Introduction
  • 8.2. Argentina
  • 8.3. Brazil
  • 8.4. Canada
  • 8.5. Mexico
  • 8.6. United States

9. Asia-Pacific Atomic Layer Deposition Market

  • 9.1. Introduction
  • 9.2. Australia
  • 9.3. China
  • 9.4. India
  • 9.5. Indonesia
  • 9.6. Japan
  • 9.7. Malaysia
  • 9.8. Philippines
  • 9.9. Singapore
  • 9.10. South Korea
  • 9.11. Taiwan
  • 9.12. Thailand
  • 9.13. Vietnam

10. Europe, Middle East & Africa Atomic Layer Deposition Market

  • 10.1. Introduction
  • 10.2. Denmark
  • 10.3. Egypt
  • 10.4. Finland
  • 10.5. France
  • 10.6. Germany
  • 10.7. Israel
  • 10.8. Italy
  • 10.9. Netherlands
  • 10.10. Nigeria
  • 10.11. Norway
  • 10.12. Poland
  • 10.13. Qatar
  • 10.14. Russia
  • 10.15. Saudi Arabia
  • 10.16. South Africa
  • 10.17. Spain
  • 10.18. Sweden
  • 10.19. Switzerland
  • 10.20. Turkey
  • 10.21. United Arab Emirates
  • 10.22. United Kingdom

11. Competitive Landscape

  • 11.1. Market Share Analysis, 2023
  • 11.2. FPNV Positioning Matrix, 2023
  • 11.3. Competitive Scenario Analysis
    • 11.3.1. SkyWater Installs an Atomic Layer Deposition System for the Development and Production of Advanced Technologies
    • 11.3.2. 6K Energy to Implement Forge Nano Equipment for Commercial Production of NMC 811
    • 11.3.3. Oxford Instruments Launches Breakthrough Ultra-fast ALD Product for Quantum Technology and Advanced R&D

Companies Mentioned

  • 1. Aixtron SE
  • 2. Oxford Instruments PLC
  • 3. ALD NanoSolutions, Inc.
  • 4. NCD Co., Ltd.
  • 5. Encapsulix SAS
  • 6. HZO, Inc.
  • 7. Denton Vacuum LLC
  • 8. Anric Technologies LLC
  • 9. SkyWater Technology Foundry, Inc.
  • 10. Applied Materials Inc.
  • 11. Veeco Instruments Inc.
  • 12. Merck KGaA
  • 13. Arradiance, LLC
  • 14. Canon Anvela Corporation
  • 15. Adeka Corporation
  • 16. Eugenus, Inc.
  • 17. Hitachi, Ltd.
  • 18. Forge Nano, Inc.
  • 19. SENTECH Instruments GmbH
  • 20. Beneq Oy
  • 21. Entegris, Inc.
  • 22. CVD Equipment Corporation
  • 23. Lam Research Corporation
  • 24. Kurt J. Lesker Company
  • 25. ASM International N.V.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦