½ÃÀ庸°í¼­
»óÇ°ÄÚµå
1600757

µ¿Àû ±â°è ºÐ¼®±â ½ÃÀå : ±¸¼º¿ä¼Ò, ±â´É, Å×½ºÆ® Àç·á, ÃÖÁ¾ »ç¿ëÀÚº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Dynamic Mechanical Analyzers Market by Component (Consumables, Equipment, Services), Functionality (DMA in Bending, DMA in Shear, DMA in Tension), Testing Material, End-User - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 190 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

µ¿Àû ±â°è ºÐ¼®±â ½ÃÀåÀº 2023³â¿¡ 1¾ï 6,924¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2024³â¿¡´Â 1¾ï 7,818¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, CAGR 5.42%·Î ¼ºÀåÀ» Áö¼ÓÇÏ¿© 2030³â¿¡´Â 2¾ï 4,498¸¸ ´Þ·¯¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù.

µ¿Àû ±â°è ºÐ¼®±â(DMA)´Â Àç·á Ư¼º Æò°¡¿¡¼­ Áß¿äÇÑ Àåºñ·Î, Æú¸®¸Ó, º¹ÇÕÀç, ±Ý¼ÓÀ» Æ÷ÇÔÇÑ ´Ù¾çÇÑ Àç·áÀÇ °­¼º, °¨¼è, Á¡Åº¼º °Åµ¿°ú °°Àº ±â°èÀû Ư¼ºÀ» ÃøÁ¤ÇÏ´Â µ¥ »ç¿ëµÇ¸ç, ´Ù¾çÇÑ ¿­Àû ¹× ±â°èÀû Á¶°Ç¿¡¼­ Àç·á ¼º´É¿¡ ´ëÇÑ ÀÚ¼¼ÇÑ ÅëÂû·ÂÀ» Á¦°øÇÏ¿© Àç·á ¼±ÅÃ, Ç°Áú ¹× Á¦Ç° °³¹ß¿¡ µµ¿òÀÌ µË´Ï´Ù. ´Ù¾çÇÑ ¿­Àû, ±â°èÀû Á¶°Ç¿¡¼­ Àç·á ¼º´É¿¡ ´ëÇÑ ÀÚ¼¼ÇÑ ÅëÂû·ÂÀ» Á¦°øÇÏ¿© Àç·á ¼±ÅÃ, Ç°Áú °ü¸® ¹× Á¦Ç° °³¹ß¿¡ µµ¿òÀ» ÁÙ ¼ö Àֱ⠶§¹®ÀÔ´Ï´Ù. ÀÀ¿ë ºÐ¾ß´Â ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ, ÀüÀÚ, Á¦¾à µî µ¿Àû ÀÀ·Â ÇÏ¿¡¼­ Àç·áÀÇ °Åµ¿À» ÀÌÇØÇÏ´Â °ÍÀÌ °¡Àå Áß¿äÇÑ »ê¾÷ ºÐ¾ß¿¡ °ÉÃÄ ÀÖ½À´Ï´Ù. ÃÖÁ¾ ¿ëµµ¿¡´Â ¿¬±¸ ±â°ü, Á¦Á¶ ºÎ¹®, Ç°Áú º¸Áõ ¿¬±¸¼Ò µîÀÌ Æ÷ÇԵ˴ϴÙ. ½ÃÀå °³Ã´Àº ±Þ¼ÓÇÑ »ê¾÷È­, ÷´Ü Àç·á ¼Ö·ç¼ÇÀÇ ¹ßÀü, Áö¼Ó °¡´ÉÇÏ°í °í¼º´É Àç·á °³¹ßÀÇ R&D È°µ¿ Áõ°¡ µîÀÇ ¿äÀο¡ ¿µÇâÀ» ¹Þ°í ÀÖÀ¸¸ç, Á¤¹ÐÇÑ Àç·á Å×½ºÆ®°¡ Áß¿äÇÑ ³ª³ë±â¼ú°ú ¹ÙÀÌ¿À±â¼úÀÇ Çõ½ÅÀ¸·Î ÀÎÇØ DMA¿¡ ´ëÇÑ ¼ö¿ä°¡ ´õ¿í Áõ°¡ÇÏ°í ÀÖ½À´Ï´Ù. ÇöÀç AI ¹× IoT¿Í °°Àº µðÁöÅÐ ±â¼úÀ» µ¥ÀÌÅÍ ºÐ¼®¿¡ ÅëÇÕÇÏ°í ÀåºñÀÇ È¿À²¼ºÀ» ³ô¿© Àδõ½ºÆ®¸® 4.0 À̴ϼÅƼºê¸¦ Áö¿øÇÒ ¼ö ÀÖ´Â ÀáÀçÀû ±âȸ°¡ ÀÖ½À´Ï´Ù. ±×·¯³ª ½ÃÀå È®´ë´Â ³ôÀº ÀÚº» ºñ¿ë, ¼÷·ÃµÈ Àη ¿ä±¸ »çÇ×, DMA°¡ »ý¼ºÇÏ´Â º¹ÀâÇÑ µ¥ÀÌÅÍ ¼¼Æ®¸¦ Çؼ®ÇÏ´Â ±â¼úÀû ¹®Á¦ µîÀÇ Á¦¾à¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Àç·á °úÇÐÀÇ ²÷ÀÓ¾ø´Â ¹ßÀü°ú ÇÔ²² °æÀï ȯ°æÀº ÁøÈ­ÇÏ°í ÀÖÀ¸¸ç, ÀÌ´Â ½ÃÀå Âü¿©Àڵ鿡°Ô °úÁ¦¿Í ±âȸ·Î ÀÛ¿ëÇÏ°í ÀÖ½À´Ï´Ù. ±â¾÷µéÀº ÀÌ·¯ÇÑ Àå¾Ö¹°À» ±Øº¹ÇÏ°í ½ÅÈï ½ÃÀåÀ» ¼±Á¡Çϱâ À§ÇØ »ç¿ëÀÚ Ä£È­ÀûÀÌ°í ÀÚµ¿È­µÈ ´Ù¿ëµµ DMA ¼Ö·ç¼ÇÀ» °³¹ßÇÏ´Â µ¥ ÅõÀÚÇØ¾ß ÇÕ´Ï´Ù. ÇÏÀ̺긮µå Àç·á Å×½ºÆ®, ºÐ¼® ÀåºñÀÇ ¼ÒÇüÈ­, °í±Þ ¸ðµ¨¸µ ¹× ½Ã¹Ä·¹À̼ÇÀ» À§ÇÑ ¼ÒÇÁÆ®¿þ¾î ±â´É °­È­ µî Çõ½ÅÀûÀÎ ºÐ¾ß´Â Àç·á ¿¬±¸¿¡ ´ëÇÑ ´ÙÇÐÁ¦Àû Á¢±ÙÀ» °­Á¶ÇÏ°í Çаè¿Í »ê¾÷°èÀÇ Çù¾÷ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó DMA ½ÃÀåÀÌ ²ÙÁØÈ÷ ¼ºÀåÇÏ°í ÀÖ´Â °ÍÀÌ Æ¯Â¡ÀÔ´Ï´Ù. Ư¡ÀÔ´Ï´Ù. ¼ºÀå ÀáÀç·ÂÀ» ÃÖÀûÈ­Çϱâ À§ÇØ ÀÌÇØ°ü°èÀÚµéÀº ±â¼ú ºÎÁ·À» ÇØ°áÇϱâ À§ÇÑ ±³À° À̴ϼÅƼºê¸¦ È®´ëÇÏ°í µ¿Àû ±â°è ºÐ¼®ÀÇ ±â¼ú ¹ßÀüÀ» °¡¼ÓÈ­Çϱâ À§ÇØ ÆÄÆ®³Ê½ÊÀ» È°¿ëÇÏ´Â µ¥ ÁýÁßÇØ¾ß ÇÕ´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ(2023³â) 1¾ï 6,924¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ(2024³â) 1¾ï 7,818¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ(2030³â) 24¾ï 4,498¸¸ ´Þ·¯
CAGR(%) 5.42%

½ÃÀå ¿ªÇÐ: ºü¸£°Ô ÁøÈ­ÇÏ´Â µ¿Àû ±â°è ºÐ¼®±â ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

µ¿Àû ±â°è ºÐ¼®±â ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ë¿¡ ÀÇÇØ º¯È­ÇÏ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐÀÇ ÁøÈ­¸¦ ÀÌÇØÇÔÀ¸·Î½á ±â¾÷Àº Á¤º¸¿¡ ÀÔ°¢ÇÑ ÅõÀÚ °áÁ¤À» ³»¸®°í, Àü·«ÀûÀÎ ÀÇ»ç°áÁ¤À» Á¤±³È­Çϸç, »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Æ÷ÂøÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Æ®·»µå¸¦ Á¾ÇÕÀûÀ¸·Î ÆľÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª Àü¹Ý¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ ÁÙÀÏ ¼ö ÀÖÀ¸¸ç, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë ¹× ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • °íºÐÀÚ Àç·á Á¦Á¶ »ê¾÷¿¡¼­ ±â°èÀû Ư¼º ÃøÁ¤ ÀÀ¿ë ºÐ¾ß È®Àå
    • ½ÄÇ° °¡°ø ¹× Á¦¾à ºÎ¹® ¼ö¿ä Áõ°¡
    • °ÇÃàÀÚÀç ¼º´É Çâ»ó ¹× ÃÖÀûÈ­ÀÇ Çʿ伺
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • µ¿Àû ±â°è ºÐ¼®±âÀÇ ³ôÀº ºñ¿ë
  • ½ÃÀå ±âȸ
    • ÈÞ´ë¿ë ÷´Ü µ¿Àû ±â°è ºÐ¼®±â ¼Ò°³
    • ½ÅÀç»ý¿¡³ÊÁö ÇÁ·ÎÁ§Æ® È®´ë ¹× ÷´Ü ¼ÒÀç µµÀÔÀÇ Çʿ伺
  • ½ÃÀå °úÁ¦
    • ºÎÁ¤È®ÇÏ°í À߸øµÈ °á°ú¿Í °ü·ÃµÈ ¿ì·Á

Porter's Five Forces : µ¿Àû ±â°è ºÐ¼®±â ½ÃÀåÀ» Ž»öÇÏ´Â Àü·«Àû µµ±¸

Portre's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ½ÃÀå »óȲ°æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Portre's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÇ °æÀï·ÂÀ» Æò°¡ÇÏ°í Àü·«Àû ±âȸ¸¦ Ž»öÇÒ ¼ö ÀÖ´Â ¸íÈ®ÇÑ ¹æ¹ýÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÅëÂû·ÂÀ» ÅëÇØ ±â¾÷Àº °­Á¡À» È°¿ëÇÏ°í, ¾àÁ¡À» ÇØ°áÇÏ°í, ÀáÀçÀûÀÎ µµÀüÀ» ÇÇÇÏ°í, º¸´Ù °­·ÂÇÑ ½ÃÀå Æ÷Áö¼Å´×À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : µ¿Àû ±â°è ºÐ¼®±â ½ÃÀåÀÇ ¿ÜºÎ ¿µÇâ ÆľÇ

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº µ¿Àû ±â°è ºÐ¼®±â ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀο¡ ´ëÇÑ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇϸç, PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£µµ, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¼±Á¦ÀûÀÌ°í ´Éµ¿ÀûÀÎ ÀÇ»ç°áÁ¤À» ³»¸± Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® µ¿Àû ±â°è ºÐ¼®±â ½ÃÀå¿¡¼­°æÀï ±¸µµ ÆľÇ

µ¿Àû ±â°è ºÐ¼®±â ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ º¥´õÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¼öÀÍ, °í°´ ±â¹Ý, ¼ºÀå·ü°ú °°Àº ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀïÀû À§Ä¡¸¦ ÆľÇÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®Àº ½ÃÀåÀÇ ÁýÁßÈ­, ´ÜÆíÈ­, ÅëÇÕÀÇ Ãß¼¼¸¦ ÆľÇÇÒ ¼ö ÀÖÀ¸¸ç, °ø±Þ¾÷ü´Â Ä¡¿­ÇÑ °æÀï ¼Ó¿¡¼­ ÀÚ½ÅÀÇ ÀÔÁö¸¦ °­È­ÇÒ ¼ö ÀÖ´Â Àü·«Àû ÀÇ»ç°áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ ÅëÂû·ÂÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º µ¿Àû ±â°è ºÐ¼®±â ½ÃÀå¿¡¼­ÀÇ º¥´õ ¼º°ú Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â µ¿Àû ±â°è ºÐ¼®±â ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ ¸ÅÆ®¸¯½º¸¦ ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº º¥´õÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±â¹ÝÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ºÎÇÕÇÏ´Â Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖÀ¸¸ç, 4°³ÀÇ »çºÐ¸éÀº º¥´õ¸¦ ¸íÈ®ÇÏ°í Á¤È®ÇÏ°Ô ±¸ºÐÇÏ¿© »ç¿ëÀÚ°¡ Àü·«Àû ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê¿Í ¼Ö·ç¼ÇÀ» ½Äº°ÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù. ½Äº°ÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â Á¾ÇÕÀûÀÎ ½ÃÀå ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõµµ : ¾÷°è ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅ͸¦ Æ÷ÇÔÇÑ ÇöÀç ½ÃÀå ȯ°æ¿¡ ´ëÇÑ »ó¼¼ÇÑ °ËÅä.

2. ½ÃÀå °³Ã´µµ: ½ÅÈï ½ÃÀå¿¡¼­ÀÇ ¼ºÀå ±âȸ¸¦ ÆľÇÇÏ°í, ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡Çϸç, ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù°¢È­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä ¹ßÀü, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú ¹ßÀü µîÀ» °ËÅäÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÷´Ü ±â¼ú, ¿¬±¸ °³¹ß È°µ¿ ¹× Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

ÀÌÇØ°ü°èÀÚµéÀÌ ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï ´ÙÀ½°ú °°Àº Áß¿äÇÑ Áú¹®¿¡ ´ëÇÑ ´äº¯µµ Á¦°øÇÕ´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå Àü¸ÁÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹®, Áö¿ªÀº?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5.º¥´õ ½ÃÀå ÁøÀÔ ¹× ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
    • ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ±âȸ
    • °úÁ¦
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡
    • °æÁ¦
    • »çȸ
    • ±â¼ú
    • ¹ý·ü
    • ȯ°æ

Á¦6Àå µ¿Àû ±â°è ºÐ¼®±â ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • ¼Ò¸ðÇ°
  • Àåºñ
    • °­Á¦ °øÁø ºÐ¼®±â
    • ¹«·á °ø¸í ºÐ¼®±â
  • ¼­ºñ½º

Á¦7Àå µ¿Àû ±â°è ºÐ¼®±â ½ÃÀå : ±â´Éº°

  • DMA in Bending
  • DMA in Shear
  • DMA in Tension
  • DMA in Torsion

Á¦8Àå µ¿Àû ±â°è ºÐ¼®±â ½ÃÀå : Àç·á ½ÃÇ躰

  • ¼¼¶ó¹Í
  • º¹ÇÕÀç·á
  • ±Ý¼Ó
  • Æú¸®¸Ó ¹× Çöó½ºÆ½

Á¦9Àå µ¿Àû ±â°è ºÐ¼®±â ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • Ç×°ø¿ìÁÖ
  • ÀÚµ¿Â÷
  • °Ç¼³
  • ÀÏ·ºÆ®·Î´Ð½º
  • ½ÄÇ° ¹× Æ÷Àå
  • Á¦¾à

Á¦10Àå ¾Æ¸Þ¸®Ä«ÀÇ µ¿Àû ±â°è ºÐ¼®±â ½ÃÀå

  • ¾Æ¸£ÇîƼ³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦11Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ µ¿Àû ±â°è ºÐ¼®±â ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦12Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ µ¿Àû ±â°è ºÐ¼®±â ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍÅ°
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦13Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2023³â
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2023³â
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®

±â¾÷ ¸®½ºÆ®

  • ACE Laboratories
  • ACOEM AB
  • Admet, Inc.
  • Anton Paar GmbH
  • Bruker Corporation
  • C-Therm Technologies Ltd.
  • Dynisco by Roper Industries Inc.
  • Elastocon AB
  • Eurofins Scientific SE
  • Freeman Technology Ltd. by Micromeritics Instrument Corporation
  • Gearing Scientific Ltd
  • Hitachi High-Tech Corporation
  • Illinois Tool Works Inc.
  • IMR Test Labs by Curtiss-Wright Corporation
  • Integrated Service Technology Inc.
  • Intertek Group plc
  • Keysight Technologies, Inc.
  • Malvern Panalytical Ltd by Spectris Plc
  • Mettler-Toledo International Inc.
  • NETZSCH-Geratebau GmbH
  • PerkinElmer Inc.
  • RheoSense, Inc.
  • Shimadzu Corporation
  • Shraddha Analytical Services
  • Stress Engineering Services, Inc.
  • TA Instruments by Waters Corporation
  • The Smithers Group Inc.
  • Thermo Fisher Scientific Inc.
  • Veryst Engineering, LLC
  • ZwickRoell GmbH & Co. KG
LSH

The Dynamic Mechanical Analyzers Market was valued at USD 169.24 million in 2023, expected to reach USD 178.18 million in 2024, and is projected to grow at a CAGR of 5.42%, to USD 244.98 million by 2030.

Dynamic Mechanical Analyzers (DMAs) are critical instruments in material characterization, used to measure mechanical properties such as stiffness, damping, and viscoelastic behavior of various materials, including polymers, composites, and metals. The necessity for DMAs arises from their capability to provide detailed insights into material performance under different thermal and mechanical conditions, informing material selection, quality control, and product development. Applications span industries like automotive, aerospace, electronics, and pharmaceuticals, where understanding material behavior under dynamic stress is paramount. The end-use scope includes research institutions, manufacturing sectors, and quality assurance labs. Market growth is influenced by factors such as rapid industrialization, the push for advanced material solutions, and increasing R&D activities in developing sustainable and high-performance materials. The demand for DMAs is further driven by innovations in nanotechnology and biotechnology, where precise material testing is crucial. Currently, potential opportunities lie in integrating digital technologies like AI and IoT for data analysis and enhancing instrument efficiency, supporting Industry 4.0 initiatives. However, market expansion faces limitations like high capital costs, a requirement for skilled personnel, and technical challenges in interpreting complex datasets generated by DMAs. Furthermore, the competitive landscape's evolving nature with continuous advancements in material science presents both challenges and opportunities for market players. Companies must invest in developing user-friendly, automated, and versatile DMA solutions to overcome these hurdles and capture emerging markets. Innovation areas include hybrid material testing, miniaturization of analyzers, and enhancing software capabilities for advanced modeling and simulations. The DMA market is characterized by steady growth with increasing collaborations between academia and industry, emphasizing multidisciplinary approaches to material research. To optimize growth potential, stakeholders should focus on expanding educational initiatives to address skill shortages and leverage partnerships to accelerate technological advancements in dynamic mechanical analysis.

KEY MARKET STATISTICS
Base Year [2023] USD 169.24 million
Estimated Year [2024] USD 178.18 million
Forecast Year [2030] USD 244.98 million
CAGR (%) 5.42%

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Dynamic Mechanical Analyzers Market

The Dynamic Mechanical Analyzers Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Growing use for measurement of mechanical properties in polymer material manufacturing industries
    • Increasing demand from the food processing and pharmaceutical sector
    • Need to enhance and optimize performance of construction materials
  • Market Restraints
    • High cost of dynamic mechanical analyzers
  • Market Opportunities
    • Introduction of portable and advanced dynamic mechanical analyzers
    • Expanding renewable energy projects and the need for the deployment of advanced materials
  • Market Challenges
    • Concerns associated with inaccurate and false results

Porter's Five Forces: A Strategic Tool for Navigating the Dynamic Mechanical Analyzers Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Dynamic Mechanical Analyzers Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Dynamic Mechanical Analyzers Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Dynamic Mechanical Analyzers Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Dynamic Mechanical Analyzers Market

A detailed market share analysis in the Dynamic Mechanical Analyzers Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Dynamic Mechanical Analyzers Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Dynamic Mechanical Analyzers Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Key Company Profiles

The report delves into recent significant developments in the Dynamic Mechanical Analyzers Market, highlighting leading vendors and their innovative profiles. These include ACE Laboratories, ACOEM AB, Admet, Inc., Anton Paar GmbH, Bruker Corporation, C-Therm Technologies Ltd., Dynisco by Roper Industries Inc., Elastocon AB, Eurofins Scientific SE, Freeman Technology Ltd. by Micromeritics Instrument Corporation, Gearing Scientific Ltd, Hitachi High-Tech Corporation, Illinois Tool Works Inc., IMR Test Labs by Curtiss-Wright Corporation, Integrated Service Technology Inc., Intertek Group plc, Keysight Technologies, Inc., Malvern Panalytical Ltd by Spectris Plc, Mettler-Toledo International Inc., NETZSCH-Geratebau GmbH, PerkinElmer Inc., RheoSense, Inc., Shimadzu Corporation, Shraddha Analytical Services, Stress Engineering Services, Inc., TA Instruments by Waters Corporation, The Smithers Group Inc., Thermo Fisher Scientific Inc., Veryst Engineering, LLC, and ZwickRoell GmbH & Co. KG.

Market Segmentation & Coverage

This research report categorizes the Dynamic Mechanical Analyzers Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Component, market is studied across Consumables, Equipment, and Services. The Equipment is further studied across Forced Resonance Analyzers and Free Resonance Analyzers.
  • Based on Functionality, market is studied across DMA in Bending, DMA in Shear, DMA in Tension, and DMA in Torsion.
  • Based on Testing Material, market is studied across Ceramics, Composites, Metals, and Polymers & Plastics.
  • Based on End-User, market is studied across Aerospace, Automotive, Construction, Electronics, Food & Packaging, and Pharmaceutical.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Growing use for measurement of mechanical properties in polymer material manufacturing industries
      • 5.1.1.2. Increasing demand from the food processing and pharmaceutical sector
      • 5.1.1.3. Need to enhance and optimize performance of construction materials
    • 5.1.2. Restraints
      • 5.1.2.1. High cost of dynamic mechanical analyzers
    • 5.1.3. Opportunities
      • 5.1.3.1. Introduction of portable and advanced dynamic mechanical analyzers
      • 5.1.3.2. Expanding renewable energy projects and the need for the deployment of advanced materials
    • 5.1.4. Challenges
      • 5.1.4.1. Concerns associated with inaccurate and false results
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Component: Burgeoning adoption of forced resonance analyzers to provide detailed information on the material's storage and loss moduli
    • 5.2.2. Functionality: Emerging adoption of DMA in tension analysis to evaluate fundamental material properties such as tensile strength, elasticity, and ductility,
    • 5.2.3. Testing Material: Constant innovation and research in polymers and plastics needing frequent testing and performance analysis
    • 5.2.4. End-User: Evolving utilization of dynamic mechanical analyzers in the electronics industry
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Dynamic Mechanical Analyzers Market, by Component

  • 6.1. Introduction
  • 6.2. Consumables
  • 6.3. Equipment
    • 6.3.1. Forced Resonance Analyzers
    • 6.3.2. Free Resonance Analyzers
  • 6.4. Services

7. Dynamic Mechanical Analyzers Market, by Functionality

  • 7.1. Introduction
  • 7.2. DMA in Bending
  • 7.3. DMA in Shear
  • 7.4. DMA in Tension
  • 7.5. DMA in Torsion

8. Dynamic Mechanical Analyzers Market, by Testing Material

  • 8.1. Introduction
  • 8.2. Ceramics
  • 8.3. Composites
  • 8.4. Metals
  • 8.5. Polymers & Plastics

9. Dynamic Mechanical Analyzers Market, by End-User

  • 9.1. Introduction
  • 9.2. Aerospace
  • 9.3. Automotive
  • 9.4. Construction
  • 9.5. Electronics
  • 9.6. Food & Packaging
  • 9.7. Pharmaceutical

10. Americas Dynamic Mechanical Analyzers Market

  • 10.1. Introduction
  • 10.2. Argentina
  • 10.3. Brazil
  • 10.4. Canada
  • 10.5. Mexico
  • 10.6. United States

11. Asia-Pacific Dynamic Mechanical Analyzers Market

  • 11.1. Introduction
  • 11.2. Australia
  • 11.3. China
  • 11.4. India
  • 11.5. Indonesia
  • 11.6. Japan
  • 11.7. Malaysia
  • 11.8. Philippines
  • 11.9. Singapore
  • 11.10. South Korea
  • 11.11. Taiwan
  • 11.12. Thailand
  • 11.13. Vietnam

12. Europe, Middle East & Africa Dynamic Mechanical Analyzers Market

  • 12.1. Introduction
  • 12.2. Denmark
  • 12.3. Egypt
  • 12.4. Finland
  • 12.5. France
  • 12.6. Germany
  • 12.7. Israel
  • 12.8. Italy
  • 12.9. Netherlands
  • 12.10. Nigeria
  • 12.11. Norway
  • 12.12. Poland
  • 12.13. Qatar
  • 12.14. Russia
  • 12.15. Saudi Arabia
  • 12.16. South Africa
  • 12.17. Spain
  • 12.18. Sweden
  • 12.19. Switzerland
  • 12.20. Turkey
  • 12.21. United Arab Emirates
  • 12.22. United Kingdom

13. Competitive Landscape

  • 13.1. Market Share Analysis, 2023
  • 13.2. FPNV Positioning Matrix, 2023
  • 13.3. Competitive Scenario Analysis
    • 13.3.1. Intertek Expands its Testing Capabilities with the Acquisition of Base Met Labs
    • 13.3.2. Advancements in Cold Weather Safety Gear, Understanding Polycarbonate's Durability
    • 13.3.3. University of Michigan's ARC Secures USD 100 Million Funding for Automotive Research Through 2028
    • 13.3.4. Bruker Bolsters Biopharma Offerings with Strategic Acquisition of Tornado Spectral Systems
    • 13.3.5. Intertek Forges Strategic Partnership with Emitech Group to Enhance Testing Services
    • 13.3.6. Exploring the Nano World with Bruker's Breakthrough in Advanced Material Testing
    • 13.3.7. Introducing Hitachi High-Tech Science's DMA200, A Cutting-Edge Dynamic Mechanical Analyzer for Next-Generation Material Innovation
    • 13.3.8. Innovative Partnership between Carrar and Gentherm Elevates EV Battery Efficiency through Advanced Thermal Management
    • 13.3.9. Strategic Funding Boosts Research on Plastic Degradation at Image Permanence Institute

Companies Mentioned

  • 1. ACE Laboratories
  • 2. ACOEM AB
  • 3. Admet, Inc.
  • 4. Anton Paar GmbH
  • 5. Bruker Corporation
  • 6. C-Therm Technologies Ltd.
  • 7. Dynisco by Roper Industries Inc.
  • 8. Elastocon AB
  • 9. Eurofins Scientific SE
  • 10. Freeman Technology Ltd. by Micromeritics Instrument Corporation
  • 11. Gearing Scientific Ltd
  • 12. Hitachi High-Tech Corporation
  • 13. Illinois Tool Works Inc.
  • 14. IMR Test Labs by Curtiss-Wright Corporation
  • 15. Integrated Service Technology Inc.
  • 16. Intertek Group plc
  • 17. Keysight Technologies, Inc.
  • 18. Malvern Panalytical Ltd by Spectris Plc
  • 19. Mettler-Toledo International Inc.
  • 20. NETZSCH-Geratebau GmbH
  • 21. PerkinElmer Inc.
  • 22. RheoSense, Inc.
  • 23. Shimadzu Corporation
  • 24. Shraddha Analytical Services
  • 25. Stress Engineering Services, Inc.
  • 26. TA Instruments by Waters Corporation
  • 27. The Smithers Group Inc.
  • 28. Thermo Fisher Scientific Inc.
  • 29. Veryst Engineering, LLC
  • 30. ZwickRoell GmbH & Co. KG
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óÇ°À» ¼±Åà Áß
»óÇ° ºñ±³Çϱâ
Àüü»èÁ¦