½ÃÀ庸°í¼­
»óǰÄÚµå
1600918

°í¿Â ÃÊÀüµµ ¼±Àçö°­ ½ÃÀå : À¯Çüº°, À¯Àüüº°, Á¦Á¶ °øÁ¤º°, ¿ëµµº° - ¼¼°è ¿¹Ãø(2025-2030³â)

High-temperature Superconductor Wires Market by Type (First-Generation Superconductor Wires, Second-Generation Superconductor Wires), Dielectric (Cryogenic Dielectric, Warm Dielectric), Manufacturing Process, Application - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 194 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

°í¿Â ÃÊÀüµµ ¼±Àçö°­ ½ÃÀåÀº 2023³â¿¡ 120¾ï 4,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í 2024³â¿¡´Â 131¾ï 1,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹»óµÇ¾î CAGR 9.17%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 222¾ï 6,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù.

°í¿Â ÃÊÀüµµ(HTS) ¼±Àçö°­Àº Àü±â ±â¼ú Çõ¸íÀûÀÎ Áøº¸¸¦ »ó¡ÇÏ´Â °ÍÀ¸·Î, ¿¡³ÊÁö ¼Õ½ÇÀ» ´ëÆø Àú°¨ ÇÑ ¼ÛÀüÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Àü¼±Àº ÀϹÝÀûÀ¸·Î ¼¼¶ó¹Í Àç·á·ÎºÎÅÍ ¸¸µé¾îÁ® ÀÖ¾î, ±âÁ¸ ÃÊÀüµµÃ¼¿¡ ºñÇØ ºñ±³Àû ³ôÀº ¿Âµµ·Î ÃÊÀüµµ¼ºÀ» ³ªÅ¸³À´Ï´Ù. HTS ¼±Àçö°­ Çʿ伺Àº Àü±â ½Ã½ºÅÛ È¿À²À» ´ëÆø Çâ»ó½ÃÄÑ, ¼ÛÀü¸Á º¸Æ²³ØÀ» ÁÙ¿©, Àç»ý¿¡³ÊÁö¿ø ÅëÇÕÀ» °¡´ÉÇÏ°Ô ÇÒ °¡´É¼º¿¡ À¯·¡ÇÕ´Ï´Ù. ±× ¿ëµµ´Â Àü·Â ÄÉÀ̺í, º¯¾Ð±â, ¼ÛÀü¸Á »óÈ£ Á¢¼ÓÀ¸·ÎºÎÅÍ, MRI Àåºñ °°Àº ÷´ÜÀÇ·á¿ë ¿µ»ó Áø´Ü Àåºñ±îÁö ´Ù¹æ¸é¿¡ °ÉĨ´Ï´Ù. ÃÖÁ¾ ¿ëµµ´Â ÁÖ·Î ¿¡³ÊÁö, ÇコÄɾî, ¿î¼Û ºÎ¹®¿¡ À̸£°í, È¿À²°ú ¼º´É ¸é¿¡¼­ Å« ÀÌÁ¡À» °¡Á®¿É´Ï´Ù. HTS ¿ÍÀÌ¾î ½ÃÀå ÁÖ¿ä ¼ºÀå¿äÀÎÀ¸·Î¼­´Â È¿À²ÀûÀÎ Àü·Â ÀÎÇÁ¶ó¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ȯ°æ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °ü½É Áõ°¡, Àç·á °úÇÐ ±â¼ú Áøº¸µîÀ» µé ¼ö ÀÖ½À´Ï´Ù. ½º¸¶Æ® ±×¸®µå¡¤ÀÎÇÁ¶ó³ª Àç»ý¿¡³ÊÁö¡¤¿ëµµ HTS ÄÉÀ̺í äÅà Ȯ´ë³ª, ºñ¿ë È¿À² ³ôÀº Á¦Á¶ °øÁ¤ °³¹ß¿¡´Â ÀáÀçÀûÀÎ ºñÁî´Ï½º ±âȸ°¡ ÀÖ½À´Ï´Ù. ±×·¯³ª, Á¦Á¶ ºñ¿ë ³ôÀÌ, Àç·á Á¦Á¶ ±â¼úÀû º¹À⼺, ±ØÀú¿Â ³Ã°¢ ½Ã½ºÅÛ Çʿ伺µîÀÇ °úÁ¦°¡, ½ÃÀå º¸±Þ Å« À庮ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ±â¼ú Çõ½Å°ú ¿¬±¸°³¹ßÀº ¿ÍÀÌ¾î ¼º´É Çâ»ó, Á¦Á¶ ºñ¿ë Àý°¨, º¸´Ù ½Ç¿ëÀûÀÎ ³Ã°¢ ¼Ö·ç¼Ç °³¹ß·Î ÇâÇØÁ®¾ß ÇÕ´Ï´Ù. ¶ÇÇÑ ±âÁ¸ ÀÎÇÁ¶ó¿¡ ±â¼úÀ» ÅëÇÕÇϱâ À§ÇÑ ÆÄÆ®³Ê½ÊÀ» ¸ð»öÇÏ´Â °ÍÀ¸·Î, ½ÇÁúÀûÀÎ °æÀï ¿ìÀ§¼ºÀ» ¾òÀ» ¼ö ÀÖÀ» °¡´É¼ºÀÌ ÀÖ½À´Ï´Ù. ½ÃÀå ¼ºÁúÀº ´ÙÀ̳ª¹ÍÇϰí, ±Þ¼ÓÇÑ ±â¼ú Áøº¸³ª ¾÷°è °ü°èÀÚ¿Í ¿¬±¸±â°ü °øµ¿ ³ë·ÂÀ» Ư¡À¸·Î Çϰí ÀÖ½À´Ï´Ù. ¿¬±¸, ƯÈ÷ Àç·á °úÇаú ±ØÀú¿Â ±â¼ú ºÐ¾ß¿¡ ÅõÀÚÇϰí ÀÖ´Â ±â¾÷Àº HTS ¿ÍÀ̾î ÀáÀç ´É·ÂÀ» Ç®·Î Ȱ¿ëÇØ, º¸´Ù È¿À²ÀûÀ¸·Î Áö¼Ó°¡´ÉÀü±â ¹Ì·¡¿¡ÀÇ À̵¿À» ÃËÁøÇÏ´Â °¥¸²±æ¿¡ ¼­ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ(2023³â) 120¾ï 4,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ(2024³â) 131¾ï 1,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ(2030³â) 222¾ï 6,000¸¸ ´Þ·¯
CAGR(%) 9.17%

½ÃÀå ¿ªÇÐ : ±Þ¼ÓÈ÷ ÁøÈ­ÇÏ´Â °í¿Â ÃÊÀüµµ ¼±Àçö°­ ½ÃÀå ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ®¸¦ °ø°³

°í¿Â ÃÊÀüµµ ¼±Àçö°­ ½ÃÀåÀº ¼ö¿ä ¹× °ø±Þ ´ÙÀ̳ª¹ÍÇÑ »óÈ£ÀÛ¿ë¿¡ ÀÇÇØ¼­ º¯¸ð¸¦ ÀÌ·ç°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐ ÁøÈ­¸¦ ÀÌÇØÇÏ´Â °ÍÀ¸·Î, ±â¾÷Àº ÃæºÐÇÑ Á¤º¸¿¡ ±Ù°ÅÇÑ ÅõÀÚ °áÁ¤, Àü·«Àû °áÁ¤ Á¤Ä¡È­, ±×¸®°í »õ·Î¿î ºñÁî´Ï½º ±âȸ ȹµæ¿¡ ´ëºñÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÏ´Â °ÍÀ¸·Î, ±â¾÷Àº Á¤Ä¡Àû, Áö¿ª ¸ñÇ¥, ±â¼úÀû, »çȸÀû, °æÁ¦ÀûÀÎ ¿µ¿ª¿¡ °Ç³Ê°¡´Â ´Ù¾çÇÑ ¸®½ºÅ©¸¦ °æ°¨ÇÒ ¼ö ÀÖ¾î ¶ÇÇÑ ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ëÀ̳ª ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ÀÇ·á¿ë ¿µ»ó Áø´Ü Çâ»ó
    • ¹ßÀü·® Áõ°¡¿Í Àç»ý¿¡³ÊÁö ¹ßÀü ºÐ¾ß È®´ë
    • Àü±â ¿î¼Û ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • HTS ¿ÍÀÌ¾î ³ôÀº Á¦Á¶ ºñ¿ë°ú ¿î¿µ ºñ¿ë
  • ½ÃÀå ±âȸ
    • º¸´Ù Å« ºÎÇÏ ¿ë·®À» À§ÇÑ Ã·´ÜÃÊÀüµµ ÄÉÀÌºí °³¹ß
    • ¿¬±¸°³¹ß Áö¼Ó°ú HTS ¿ÍÀ̾î ÀÀ¿ë¹üÀ§ È®´ë
  • ½ÃÀåÀÌ ÇØ°áÇØ¾ß ÇÒ °úÁ¦
    • HTS ¿ÍÀ̾ °ü·ÃµÈ °Ç°­¡¤¾ÈÀü»ó ¿ì·Á

Porter's Five Forces : °í¿Â ÃÊÀüµµ ¼±Àçö°­ ½ÃÀåÀ» ¾È³»ÇÏ´Â Àü·« Åø

Porter's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ½ÃÀå ±¸µµ °æÀï ±¸µµ¸¦ ÀÌÇØÇϱâ À§ÇÑ Áß¿ä ÅøÀÔ´Ï´Ù. Porter's Five Forces¡¤ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ °æÀï·ÂÀ» Æò°¡ÇØ, Àü·«Àû ±âȸ¸¦ ã±â À§ÇÑ ¸íÈ®ÇÑ ¹æ¹ýÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå³» ¼¼·Âµµ¸¦ Æò°¡ÇØ, ½Å±Ô »ç¾÷ ¼öÀͼºÀ» ÆÇ´ÜÇϴµ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÅëÂû¿¡ ÀÇÇØ ±â¾÷Àº ÀÚ»ç °­Á¡À» »ì·Á, ¾àÁ¡¿¡ ´ëÃ³ÇØ, ÀáÀçÀûÀÎ °úÁ¦¸¦ ȸÇÇÇÒ ¼ö À־´Ù °­ÀÎÇÑ ½ÃÀå¿¡¼­ÀÇ Æ÷Áö¼Å´×À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : °í¿Â ÃÊÀüµµ ¼±Àçö°­ ½ÃÀå ¿ÜºÎ·ÎºÎÅÍ ¿µÇâ ÆÄ¾Ç

¿ÜºÎ °Å½Ãȯ°æ ¿äÀÎÀº °í¿Â ÃÊÀüµµ ¼±Àçö°­ ½ÃÀå ½ÇÀû ¿ªÇÐÀ» Çü¼ºÇϴµ¥ À־ ¸Å¿ì Áß¿ä ¿ªÇÒÀ» ¿Ï¼öÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀÎ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» ¾È³»Çϱâ À§Çؼ­ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. PESTLE ¿äÀÎÀ» Á¶»çÇÏ´Â °ÍÀ¸·Î, ±â¾÷Àº ÀáÀçÀûÀÎ ¸®½ºÅ©¿Í ±âȸ¸¦ º¸´Ù ÁÁ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®¿¡ ÀÇÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£µµ, °æÁ¦ µ¿Çâ º¯È­¸¦ ¿¹ÃøÇØ, ¾ÕÀ» ¿¹ÃøÇÑ Àû±ØÀûÀÎ ÀÇ»ç°áÁ¤À» ½Ç½ÃÇÒ Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® °í¿Â ÃÊÀüµµ ¼±Àçö°­ ½ÃÀå °æÀï ±¸µµ ÆÄ¾Ç

°í¿Â ÃÊÀüµµ ¼±Àçö°­ ½ÃÀå »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®¿¡ ÀÇÇØ º¥´õ ½ÇÀûÀ» Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¸ÅÃâ, °í°´ ±â¹Ý, ¼ºÀå·üµîÀÇ ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ´Â °ÍÀ¸·Î, °æÀï»ó Æ÷Áö¼Å´×À» ºÐ¸íÈ÷ ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®¿¡ ÀÇÇØ ½ÃÀå ÁýÁß, ´ÜÆíÈ­, ÅëÇÕ µ¿ÇâÀÌ ¹àÇôÁ®, º¥´õ´Â °æÀïÀÌ °ÝÈ­ÇÏ´Â °¡¿îµ¥ ÀÚ»ç ÁöÀ§¸¦ ³ôÀÌ´Â Àü·«Àû ÀÇ»ç°áÁ¤À» ½Ç½ÃÇϱâ À§Çؼ­ ÇÊ¿äÇÑ Áö°ßÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º °í¿Â ÃÊÀüµµ ¼±Àçö°­ ½ÃÀå º¥´õ ÆÛÆ÷¸Õ½º Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â °í¿Â ÃÊÀüµµ ¼±Àçö°­ ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡Çϱâ À§ÇÑ Áß¿ä ÅøÀÔ´Ï´Ù. ÀÌ ¸ÅÆ®¸¯½º¿¡ ÀÇÇØ ºñÁî´Ï½º Á¶Á÷Àº º¥´õ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¿¡ ±Ù°ÅÇØ Æò°¡ÇÏ´Â °ÍÀ¸·Î, ¸ñÇ¥¿¡ µû¸¥ ÃæºÐÇÑ Á¤º¸¿¡ ±Ù°ÅÇÑ ÀÇ»ç°áÁ¤À» ½Ç½ÃÇÒ ¼ö ÀÖ½À´Ï´Ù. 4°³ »óÇÑÀº º¥´õ¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ±¸ºÐÇØ, »ç¿ëÀÚ°¡ Àü·« ¸ñÇ¥·Î ÃÖÀûÀÎ ÆÄÆ®³Ê³ª ¼Ö·ç¼ÇÀ» ƯÁ¤Çϴµ¥ µµ¿òÀÌ µË´Ï´Ù.

º» º¸°í¼­´Â ÁÖ¿ä ÁÖ¸ñ ºÐ¾ß¸¦ ¸Á¶óÇÑ Á¾ÇÕÀû½ÃÀå ºÐ¼®À» Á¦°øÇϰí ÀÖ½À´Ï´Ù :

1.½ÃÀå ħÅõµµ : ¾÷°è ÁÖ¿ä ±â¾÷ ±¤¹üÀ§ÇÑ µ¥ÀÌÅ͸¦ Æ÷ÇÔÇÑ ÇöÀç ½ÃÀå ȯ°æ »ó¼¼ÇÑ ¸®ºä.

2.½ÃÀå °³Ã´µµ : ½ÅÈï ½ÃÀå ¼ºÀå ±âȸ¸¦ ƯÁ¤ÇØ, ±âÁ¸ ºÐ¾ß È®´ë °¡´É¼ºÀ» Æò°¡ÇØ, ÇâÈÄ ¼ºÀåÀ» ÇâÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3.½ÃÀå ´Ù¾çÈ­ : ÃÖ±Ù Á¦Ç° ¹ß¸Å, ¹Ì°³Ã´ Áö¿ª, ¾÷°è ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4.°æÀï Æò°¡¿Í Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÇÏ°Ô ºÐ¼®ÇÏ°í ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦±â°ü ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ ±â¼ú Áøº¸µîÀ» °ËÁõ ÇÕ´Ï´Ù.

5.Á¦Ç° °³¹ß ¹× Çõ½Å : ÇâÈÄ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÑ´Ù°í ±â´ëµÇ´Â ÃÖ÷´Ü ±â¼ú, ¿¬±¸°³¹ß Ȱµ¿, Á¦Ç° Çõ½ÅÀ» ÇÏÀ̶óÀÌÆ® Çϰí ÀÖ½À´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¾òÀº ´ÙÀ½ ÀÇ»ç°áÁ¤ ÇÒ ¼ö ÀÖµµ·Ï, Áß¿ä Áú¹®¿¡µµ ´äÇϰí ÀÖ½À´Ï´Ù :

1.ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2.ÃÖ°í ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹®, Áö¿ªÀº ¾îµò°¡?

3.½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ ¿µÇâÀ̶õ?

4.ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5.º¥´õ ½ÃÀå Âü¿©¡¤Ã¶Åð Àü·« ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÔ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
    • ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ±âȸ
    • °úÁ¦
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡
    • °æÁ¦
    • »çȸ
    • ±â¼ú
    • ¹ý·ü
    • ȯ°æ

Á¦6Àå °í¿Â ÃÊÀüµµ ¼±Àçö°­ ½ÃÀå : À¯Çüº°

  • Á¦1¼¼´ë ÃÊÀüµµ ¼±Àçö°­
  • Á¦2¼¼´ë ÃÊÀüµµ ¼±Àçö°­

Á¦7Àå °í¿Â ÃÊÀüµµ ¼±Àçö°­ ½ÃÀå : À¯Àüüº°

  • Cryogenic Dielectric
  • Warm Dielectric

Á¦8Àå °í¿Â ÃÊÀüµµ ¼±Àçö°­ ½ÃÀå : Á¦Á¶ °øÁ¤º°

  • IBAD (Ion Beam Assisted Deposition)
  • MOD (Metal Organic Deposition)
  • PIT (Powder-in-Tube)
  • RCE (Reactive Co-evaporation)

Á¦9Àå °í¿Â ÃÊÀüµµ ¼±Àçö°­ ½ÃÀå : ¿ëµµº°

  • ¿¡³ÊÁö ¹× À¯Æ¿¸®Æ¼
  • ÇコÄÉ¾î ¹× »ý¸í°úÇÐ
  • »ê¾÷ ±â±â

Á¦10Àå ¾Æ¸Þ¸®Ä«ÀÇ °í¿Â ÃÊÀüµµ ¼±Àçö°­ ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦11Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ °í¿Â ÃÊÀüµµ ¼±Àçö°­ ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦12Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ °í¿Â ÃÊÀüµµ ¼±Àçö°­ ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦13Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2023
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2023
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®

±â¾÷ ¸®½ºÆ®

  • Advanced Conductor Technologies LLC
  • American Superconductor Corporation
  • AMPeers LLC
  • BASF SE
  • Beijing Intronic Superconducting Technology Co., Ltd.
  • Brookhaven Technology Group
  • Bruker Corporation
  • Fujikura Ltd.
  • Furukawa Electric Co., Ltd.
  • General Electric Company
  • High Temperature Superconductors, Inc
  • Hitachi, Ltd.
  • Kobe Steel Ltd.
  • LS Cable & System Ltd.
  • Merck KGaA
  • MetOx Technologies, Inc.
  • Nexans S.A.
  • Patil Group
  • Sam Dong
  • Siemens AG
  • Solid Material Solutions, LLC
  • Strescon Group
  • Sumitomo Electric Industries, Ltd.
  • SuperOx Company
  • THEVA Dunnschichttechnik GmbH
  • VEIR Corporation
LSH 24.12.06

The High-temperature Superconductor Wires Market was valued at USD 12.04 billion in 2023, expected to reach USD 13.11 billion in 2024, and is projected to grow at a CAGR of 9.17%, to USD 22.26 billion by 2030.

High-temperature superconductor (HTS) wires represent a revolutionary advancement in electrical technology, enabling the transmission of electricity with considerably reduced energy losses. These wires are typically made from ceramic materials, which exhibit superconductivity at relatively higher temperatures compared to conventional superconductors. The necessity of HTS wires stems from their potential to significantly enhance the efficiency of electrical systems, reducing grid bottlenecks and enabling the integration of renewable energy sources. Their applications range from power cables, transformers, and grid interconnects to advanced medical imaging devices like MRI machines. The end-use scope primarily spans across energy, healthcare, and transportation sectors, offering significant benefits in terms of efficiency and performance. Key growth factors for the HTS wires market include the increasing demand for efficient power infrastructure, a growing focus on environmental sustainability, and technological advances in materials science. Potential opportunities lie in expanding the adoption of HTS cables in smart grid infrastructure and renewable energy applications, as well as in the development of cost-effective manufacturing processes. However, challenges such as high production costs, technical complexities in material fabrication, and the requirement for cryogenic cooling systems represent substantial barriers to widespread market adoption. Innovation and research efforts should be directed towards enhancing wire performance, reducing manufacturing costs, and developing more practical cooling solutions. Furthermore, exploring partnerships for technology integration in existing infrastructures could provide substantial competitive advantages. The nature of the market is dynamic, characterized by rapid technological advancements and collaborative efforts between industry players and research institutions. Companies investing in research, particularly in the areas of material science and cryogenic technology, stand on the brink of harnessing the full potential of HTS wires, catalyzing the transition to a more efficient and sustainable electrical future.

KEY MARKET STATISTICS
Base Year [2023] USD 12.04 billion
Estimated Year [2024] USD 13.11 billion
Forecast Year [2030] USD 22.26 billion
CAGR (%) 9.17%

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving High-temperature Superconductor Wires Market

The High-temperature Superconductor Wires Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Improvement in medical imaging and diagnostics
    • Rise in electric power generation and expansion of renewable energy sector
    • Increasing demand for electric transportation technologies
  • Market Restraints
    • High manufacturing and operating costs of HTS wires
  • Market Opportunities
    • Development of advanced superconductor cables for larger load capacities
    • Ongoing research & development (R&D) and expanding application scope of HTS wires
  • Market Challenges
    • Adverse health and safety concerns associated with HTS wires

Porter's Five Forces: A Strategic Tool for Navigating the High-temperature Superconductor Wires Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the High-temperature Superconductor Wires Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the High-temperature Superconductor Wires Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the High-temperature Superconductor Wires Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the High-temperature Superconductor Wires Market

A detailed market share analysis in the High-temperature Superconductor Wires Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the High-temperature Superconductor Wires Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the High-temperature Superconductor Wires Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Key Company Profiles

The report delves into recent significant developments in the High-temperature Superconductor Wires Market, highlighting leading vendors and their innovative profiles. These include Advanced Conductor Technologies LLC, American Superconductor Corporation, AMPeers LLC, BASF SE, Beijing Intronic Superconducting Technology Co., Ltd., Brookhaven Technology Group, Bruker Corporation, Fujikura Ltd., Furukawa Electric Co., Ltd., General Electric Company, High Temperature Superconductors, Inc, Hitachi, Ltd., Kobe Steel Ltd., LS Cable & System Ltd., Merck KGaA, MetOx Technologies, Inc., Nexans S.A., Patil Group, Sam Dong, Siemens AG, Solid Material Solutions, LLC, Strescon Group, Sumitomo Electric Industries, Ltd., SuperOx Company, THEVA Dunnschichttechnik GmbH, and VEIR Corporation.

Market Segmentation & Coverage

This research report categorizes the High-temperature Superconductor Wires Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Type, market is studied across First-Generation Superconductor Wires and Second-Generation Superconductor Wires.
  • Based on Dielectric, market is studied across Cryogenic Dielectric and Warm Dielectric.
  • Based on Manufacturing Process, market is studied across IBAD (Ion Beam Assisted Deposition), MOD (Metal Organic Deposition), PIT (Powder-in-Tube), and RCE (Reactive Co-evaporation).
  • Based on Application, market is studied across Energy & Utilities, Healthcare & Life Sciences, and Industrial Equipment.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Improvement in medical imaging and diagnostics
      • 5.1.1.2. Rise in electric power generation and expansion of renewable energy sector
      • 5.1.1.3. Increasing demand for electric transportation technologies
    • 5.1.2. Restraints
      • 5.1.2.1. High manufacturing and operating costs of HTS wires
    • 5.1.3. Opportunities
      • 5.1.3.1. Development of advanced superconductor cables for larger load capacities
      • 5.1.3.2. Ongoing research & development (R&D) and expanding application scope of HTS wires
    • 5.1.4. Challenges
      • 5.1.4.1. Adverse health and safety concerns associated with HTS wires
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Type: Increasing significance of second-generation superconductor wires in higher performance and long-term durability
    • 5.2.2. Dielectric: Growing preference of warm dielectrics in low temperatures applications
    • 5.2.3. Application: Increase in use across industrial equipment to withstand higher mechanical stresses and deliver consistent performance
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. High-temperature Superconductor Wires Market, by Type

  • 6.1. Introduction
  • 6.2. First-Generation Superconductor Wires
  • 6.3. Second-Generation Superconductor Wires

7. High-temperature Superconductor Wires Market, by Dielectric

  • 7.1. Introduction
  • 7.2. Cryogenic Dielectric
  • 7.3. Warm Dielectric

8. High-temperature Superconductor Wires Market, by Manufacturing Process

  • 8.1. Introduction
  • 8.2. IBAD (Ion Beam Assisted Deposition)
  • 8.3. MOD (Metal Organic Deposition)
  • 8.4. PIT (Powder-in-Tube)
  • 8.5. RCE (Reactive Co-evaporation)

9. High-temperature Superconductor Wires Market, by Application

  • 9.1. Introduction
  • 9.2. Energy & Utilities
  • 9.3. Healthcare & Life Sciences
  • 9.4. Industrial Equipment

10. Americas High-temperature Superconductor Wires Market

  • 10.1. Introduction
  • 10.2. Argentina
  • 10.3. Brazil
  • 10.4. Canada
  • 10.5. Mexico
  • 10.6. United States

11. Asia-Pacific High-temperature Superconductor Wires Market

  • 11.1. Introduction
  • 11.2. Australia
  • 11.3. China
  • 11.4. India
  • 11.5. Indonesia
  • 11.6. Japan
  • 11.7. Malaysia
  • 11.8. Philippines
  • 11.9. Singapore
  • 11.10. South Korea
  • 11.11. Taiwan
  • 11.12. Thailand
  • 11.13. Vietnam

12. Europe, Middle East & Africa High-temperature Superconductor Wires Market

  • 12.1. Introduction
  • 12.2. Denmark
  • 12.3. Egypt
  • 12.4. Finland
  • 12.5. France
  • 12.6. Germany
  • 12.7. Israel
  • 12.8. Italy
  • 12.9. Netherlands
  • 12.10. Nigeria
  • 12.11. Norway
  • 12.12. Poland
  • 12.13. Qatar
  • 12.14. Russia
  • 12.15. Saudi Arabia
  • 12.16. South Africa
  • 12.17. Spain
  • 12.18. Sweden
  • 12.19. Switzerland
  • 12.20. Turkey
  • 12.21. United Arab Emirates
  • 12.22. United Kingdom

13. Competitive Landscape

  • 13.1. Market Share Analysis, 2023
  • 13.2. FPNV Positioning Matrix, 2023
  • 13.3. Competitive Scenario Analysis
    • 13.3.1. High-Temperature Superconductors Inc. receives USD 5M ARPA-E Program for advancing energy technology
    • 13.3.2. DOE awards USD 6 Million for advancements in high-temperature superconductor wire technology
    • 13.3.3. Tokamak Energy collaborates with Furukawa Electric to drive sustainable energy future
    • 13.3.4. Philips Signs Research Agreement to Explore New Magnet Technologies
    • 13.3.5. CERN and Airbus partnership on future clean aviation
    • 13.3.6. National Grid UK, VEIR to Test Superconductor Power Lines
    • 13.3.7. Superconducting cable project aims to boost urban electricity grid
    • 13.3.8. High Temperature Superconductors, Inc. Completes Acquisition of PVD Products Inc.
    • 13.3.9. Office of Electricity Selects Five Small Business Innovation Research Awards
    • 13.3.10. Researchers developing next-generation superconducting cables
    • 13.3.11. AMSC Delivers Breakthrough System for U.S. Navy
    • 13.3.12. Scientists discover new behaviour in high temperature superconductors

Companies Mentioned

  • 1. Advanced Conductor Technologies LLC
  • 2. American Superconductor Corporation
  • 3. AMPeers LLC
  • 4. BASF SE
  • 5. Beijing Intronic Superconducting Technology Co., Ltd.
  • 6. Brookhaven Technology Group
  • 7. Bruker Corporation
  • 8. Fujikura Ltd.
  • 9. Furukawa Electric Co., Ltd.
  • 10. General Electric Company
  • 11. High Temperature Superconductors, Inc
  • 12. Hitachi, Ltd.
  • 13. Kobe Steel Ltd.
  • 14. LS Cable & System Ltd.
  • 15. Merck KGaA
  • 16. MetOx Technologies, Inc.
  • 17. Nexans S.A.
  • 18. Patil Group
  • 19. Sam Dong
  • 20. Siemens AG
  • 21. Solid Material Solutions, LLC
  • 22. Strescon Group
  • 23. Sumitomo Electric Industries, Ltd.
  • 24. SuperOx Company
  • 25. THEVA Dunnschichttechnik GmbH
  • 26. VEIR Corporation
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦