½ÃÀ庸°í¼­
»óǰÄÚµå
1601036

Áú·® À¯·® ÄÁÆ®·Ñ·¯ ½ÃÀå : À¯·®, Àç·á, ¸Åü À¯Çü, ±â¼ú, ¿¬°á ±â¼ú, ¿ëµµ, ÃÖÁ¾ ¿ëµµº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Mass Flow Controller Market by Flow Rate, Material, Media Type, Technology, Connectivity Technology, Application, End-Use - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 180 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Áú·® À¯·® ÄÁÆ®·Ñ·¯ ½ÃÀåÀº 2023³â¿¡ 11¾ï 8,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2024³â¿¡´Â 12¾ï 5,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, CAGR 5.33%·Î ¼ºÀåÀ» Áö¼ÓÇÏ¿© 2030³â¿¡´Â 17¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù.

Áú·® À¯·® ÄÁÆ®·Ñ·¯(MFC)´Â ´Ù¾çÇÑ »ê¾÷ °øÁ¤¿¡¼­ Á¤È®ÇÑ À¯·® Á¦¾î¿¡ ÇʼöÀûÀ̸ç, ±âü ¹× ¾×üÀÇ À¯·®À» Á¶ÀýÇÏ¿© ÃÖÀûÀÇ ¼º´É°ú È¿À²À» º¸ÀåÇÕ´Ï´Ù. MFC´Â ¹ÝµµÃ¼, Á¦¾à, È­ÇÐ, ½Äǰ ¹× À½·á¿Í °°ÀÌ À¯·®ÀÇ Á¤È®¼º°ú Á¦¾î°¡ ¸Å¿ì Áß¿äÇÑ ºÐ¾ß¿¡¼­ ±× Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, È­ÇÐ ±â»ó ÁõÂø, °¡½º Å©·Î¸¶Åä±×·¡ÇÇ, ¹ßÈ¿ °øÁ¤°ú °°Àº ÀÀ¿ë ºÐ¾ß¿¡¼­ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. È¿À²ÀûÀÎ ¿¡³ÊÁö °ü¸®ÀÇ Çʿ伺¿¡ ÀÇÇØ ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. »ê¾÷ ÀÚµ¿È­¿Í »ç¹°ÀÎÅͳÝ(IoT)ÀÇ ºÎ»óÀ¸·Î ¿¬°á¼º°ú µ¥ÀÌÅÍ ºÐ¼® ±â´ÉÀÌ °­È­µÈ ½º¸¶Æ® MFC¸¦ ÅëÇÕÇÒ ¼ö ÀÖ´Â ÀáÀçÀû ±âȸ°¡ âÃâµÇ°í ÀÖ½À´Ï´Ù. ±×·¯³ª °í±Þ MFCÀÇ ³ôÀº ºñ¿ë, ±â¼úÀÇ º¹À⼺, ¿Âµµ ¹× ¾Ð·Â º¯È­¿Í °°Àº ¿ÜºÎ ¿äÀο¡ ´ëÇÑ ¹Î°¨¼º µîÀÇ ¹®Á¦´Â ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÒ ¼ö ÀÖ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ(2023³â) 11¾ï 8,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ(2024³â) 12¾ï 5,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ(2030³â) 17¾ï ´Þ·¯
CAGR(%) 5.33%

½ÃÀå ±âȸ¸¦ Ȱ¿ëÇϱâ À§ÇØ ±â¾÷µéÀº Á¤È®¼º°ú ¾ÈÁ¤¼ºÀ» Çâ»ó½ÃŲ ¼ÒÇüÀÇ ºñ¿ë È¿À²ÀûÀÎ MFC °³¹ß¿¡ ÁýÁßÇØ¾ß ÇÕ´Ï´Ù. È帧 ÇÁ·Î¼¼½ºÀÇ ¿¹Ãø ºÐ¼®°ú ÀÚü ÃÖÀûÈ­¸¦ À§ÇÑ AI¿Í ¸Ó½Å·¯´×ÀÇ ÅëÇÕÀ» ޱ¸ÇÏ´Â ¿¬±¸¿¡ ÅõÀÚÇÏ´Â °ÍÀº Å« °¡Ä¡¸¦ âÃâÇÒ ¼ö ÀÖ½À´Ï´Ù. Áö¼Ó°¡´É¼º°ú ȯ°æ ģȭÀûÀÎ °øÁ¤¿¡ ´ëÇÑ °­Á¶´Â ¹Ì·¡ÀÇ ±â¼ú Çõ½ÅÀ» Çü¼ºÇϰí ȯ°æ ¹ßÀÚ±¹ÀÌ ÀûÀº MFC¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±×·¯³ª ±â¾÷µéÀº ±ÔÁ¦ Áؼö¿Í ¾ö°ÝÇÑ »ê¾÷ Ç¥ÁØÀ» ±Øº¹ÇØ¾ß Çϴµ¥, ÀÌ´Â À庮ÀÌ µÉ ¼ö ÀÖÁö¸¸ Çõ½ÅÀÇ Ã˸ÅÁ¦ ¿ªÇÒÀ» ÇÒ ¼öµµ ÀÖ½À´Ï´Ù. ÆÄ±«Àû Çõ½ÅÀº ¸ðµâ½Ä ¾ÆÅ°ÅØÃ³¸¦ Á¦°øÇÏ´Â ÇÏÀ̺긮µå ½Ã½ºÅÛ¿¡¼­ ãÀ» ¼ö ÀÖÀ¸¸ç, ÀÌ´Â º¸´Ù ±¤¹üÀ§ÇÑ ÀÀ¿ë ºÐ¾ß¿Í ½ÅÈï ÃÖÁ¾ »ç¿ë »ê¾÷À» À§ÇÑ ½¬¿î »ç¿ëÀÚ Á¤ÀÇ¿Í È®À强À» Á¦°øÇÕ´Ï´Ù. °æÀï ȯ°æÀº ±Þ¼ÓÇÑ ¹ßÀü°ú Â÷º°È­µÈ Á¦Ç° Á¦°ø¿¡ ´ëÇÑ ²÷ÀÓ¾ø´Â Çʿ伺ÀÌ Æ¯Â¡À̸ç, ÀÌ´Â ±â¾÷µéÀÌ °øµ¿ ¿¬±¸, ÆÄÆ®³Ê½Ê, Àμö¸¦ ÅëÇØ R&D ¿ª·®À» °­È­ÇÏ°í ½ÃÀå ÀÔÁö¸¦ È®´ëÇØ¾ß ÇÔÀ» ½Ã»çÇϰí ÀÖ½À´Ï´Ù. °ú ¹ÎøÇÑ ÀûÀÀÀ» ÅëÇØ ÀÌ·¯ÇÑ º¹À⼺À» ´É¼÷ÇÏ°Ô Ã³¸®ÇÑ´Ù¸é MFC ½ÃÀåÀº »ó´çÇÑ ¼ºÀåÀ» ÀÌ·ê ¼ö ÀÖÀ» °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

½ÃÀå ¿ªÇÐ: ºü¸£°Ô ÁøÈ­ÇÏ´Â Áú·® À¯·® ÄÁÆ®·Ñ·¯ ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

Áú·® À¯·® ÄÁÆ®·Ñ·¯ ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ëÀ¸·Î ÀÎÇØ º¯È­Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐÀÇ º¯È­¸¦ ÀÌÇØÇÔÀ¸·Î½á ±â¾÷Àº Á¤º¸¿¡ ÀÔ°¢ÇÑ ÅõÀÚ °áÁ¤À» ³»¸®°í, Àü·«Àû ÀÇ»ç°áÁ¤À» Á¤±³È­Çϸç, »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Æ÷ÂøÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Æ®·»µå¸¦ Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª Àü¹Ý¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ ÁÙÀÏ ¼ö ÀÖÀ¸¸ç, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë ¹× ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

Porter's Five Forces: Áú·® À¯·® ÄÁÆ®·Ñ·¯ ½ÃÀå Ž»öÀ» À§ÇÑ Àü·« µµ±¸

Porter's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â Áú·® À¯·® Á¦¾î±â ½ÃÀå °æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â µ¥ Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. PorterÀÇ Five Forces Framework´Â ±â¾÷ÀÇ °æÀï·ÂÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ Ž»öÇÏ´Â ¸íÈ®ÇÑ ¹æ¹ýÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÅëÂû·ÂÀ» ÅëÇØ ±â¾÷Àº °­Á¡À» Ȱ¿ëÇϰí, ¾àÁ¡À» ÇØ°áÇϰí, ÀáÀçÀûÀÎ µµÀüÀ» ÇÇÇϰí, º¸´Ù °­·ÂÇÑ ½ÃÀå Æ÷Áö¼Å´×À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : Áú·® À¯·® ÄÁÆ®·Ñ·¯ ½ÃÀåÀÇ ¿ÜºÎ ¿µÇâ·Â ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº Áú·® À¯·® ÄÁÆ®·Ñ·¯ ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀο¡ ´ëÇÑ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇϸç, PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀû À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£µµ, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¼±Á¦ÀûÀÌ°í ´Éµ¿ÀûÀÎ ÀÇ»ç°áÁ¤À» ³»¸± Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® : Áú·® À¯·® ÄÁÆ®·Ñ·¯ ½ÃÀå¿¡¼­°æÀï ±¸µµ ÆÄ¾Ç

Áú·® À¯·® ÄÁÆ®·Ñ·¯ ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¼öÀÍ, °í°´ ±â¹Ý, ¼ºÀå·ü°ú °°Àº ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀïÀû À§Ä¡¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®Àº ½ÃÀåÀÇ ÁýÁßÈ­, ´ÜÆíÈ­ ¹× ÅëÇÕ Ãß¼¼¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖÀ¸¸ç, °ø±Þ¾÷ü´Â Ä¡¿­ÇÑ °æÀï ¼Ó¿¡¼­ ÀÚ½ÅÀÇ ÀÔÁö¸¦ °­È­ÇÒ ¼ö ÀÖ´Â Àü·«Àû ÀÇ»ç°áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ ÅëÂû·ÂÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º: Áú·® À¯·® ÄÁÆ®·Ñ·¯ ½ÃÀå¿¡¼­°ø±Þ¾÷ü ¼º°ú Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â Áú·® À¯·® ÄÁÆ®·Ñ·¯ ½ÃÀå¿¡¼­ °ø±Þ¾÷ü¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ ¸ÅÆ®¸¯½º¸¦ ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº º¥´õÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±â¹ÝÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ºÎÇÕÇÏ´Â Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖÀ¸¸ç, 4°³ÀÇ »çºÐ¸éÀ¸·Î º¥´õ¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ¼¼ºÐÈ­ÇÏ¿© Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê¿Í ¼Ö·ç¼ÇÀ» ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù. Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê¿Í ¼Ö·ç¼ÇÀ» ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× Ãßõ: Áú·® À¯·® ÄÁÆ®·Ñ·¯ ½ÃÀå¿¡¼­ ¼º°øÀÇ ±æÀ» ±×¸³´Ï´Ù.

Áú·® À¯·® ÄÁÆ®·Ñ·¯ ½ÃÀå Àü·« ºÐ¼®Àº ¼¼°è ½ÃÀå¿¡¼­ ÀÔÁö¸¦ °­È­ÇϰíÀÚ ÇÏ´Â ±â¾÷¿¡°Ô ÇʼöÀûÀÔ´Ï´Ù. ÁÖ¿ä ÀÚ¿ø, ¿ª·® ¹× ¼º°ú ÁöÇ¥¸¦ °ËÅäÇÔÀ¸·Î½á ±â¾÷Àº ¼ºÀå ±âȸ¸¦ ½Äº°ÇÏ°í °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀ» ÅëÇØ °æÀï ȯ°æÀÇ µµÀüÀ» ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö ÀÖµµ·Ï ÁغñÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀå¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõµµ : ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·ÂÀ» Æò°¡ÇÕ´Ï´Ù.

2. ½ÃÀå °³Ã´µµ: ½ÅÈï ½ÃÀå¿¡¼­ÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇϰí, ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡Çϸç, ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù°¢È­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä ¹ßÀü, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú ¹ßÀü µîÀ» °ËÅäÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÷´Ü ±â¼ú, ¿¬±¸ °³¹ß Ȱµ¿ ¹× Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

ÀÌÇØ°ü°èÀÚµéÀÌ ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï ´ÙÀ½°ú °°Àº Áß¿äÇÑ Áú¹®¿¡ ´ëÇÑ ´äº¯µµ Á¦°øÇÕ´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå Àü¸ÁÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹®, Áö¿ªÀº?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5.º¥´õ ½ÃÀå ÁøÀÔ ¹× ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
    • ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ±âȸ
    • °úÁ¦
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡
    • °æÁ¦
    • »çȸ
    • ±â¼ú
    • ¹ý·ü
    • ȯ°æ

Á¦6Àå Áú·® À¯·® ÄÁÆ®·Ñ·¯ ½ÃÀå : À¯·®º°

  • °íÀ¯·® Áú·® À¯·® ÄÁÆ®·Ñ·¯
  • Àú·ù·® Áú·® À¯·® ÄÁÆ®·Ñ·¯
  • Áß°£À¯·® Áú·® À¯·® ÄÁÆ®·Ñ·¯

Á¦7Àå Áú·® À¯·® ÄÁÆ®·Ñ·¯ ½ÃÀå : Àç·áº°

  • ÇÕ±Ý
  • ½ºÅ×Àθ®½º ½ºÆ¿

Á¦8Àå Áú·® À¯·® ÄÁÆ®·Ñ·¯ ½ÃÀå : ¹Ìµð¾î À¯Çüº°

  • °¡½º Áú·® À¯·® ÄÁÆ®·Ñ·¯
  • ¾×ü Áú·® À¯·® ÄÁÆ®·Ñ·¯

Á¦9Àå Áú·® À¯·® ÄÁÆ®·Ñ·¯ ½ÃÀå : ±â¼úº°

  • Áú·® À¯·® ÄÁÆ®·Ñ·¯
  • ¾Ð·Â ±â¹Ý Áú·® À¯·® ÄÁÆ®·Ñ·¯
  • ¿­½Ä Áú·® À¯·® ÄÁÆ®·Ñ·¯

Á¦10Àå Áú·® À¯·® ÄÁÆ®·Ñ·¯ ½ÃÀå : Á¢¼Ó ±â¼úº°

  • Analog
  • Devicenet
  • EtherCAT
  • Ethernet/IP
  • Foundation Fieldbus
  • Modbus RTU
  • Modbus TCP/IP
  • Profibus
  • Profinet
  • RS-485

Á¦11Àå Áú·® À¯·® ÄÁÆ®·Ñ·¯ ½ÃÀå : ¿ëµµº°

  • Ã˸ŠÁ¶»ç
  • À¯Ã¼ ¹× °¡½º ó¸®/Á¦¾î
  • ¿¬·áÀüÁö
  • °¡½º Å©·Î¸¶Åä±×·¡ÇÇ
  • ¿­Ã³¸®
  • žçÀüÁö
  • ½ºÇÁ·¹ÀÌ ¹× ÄÚÆÃ ÇÁ·Î¼¼½º

Á¦12Àå Áú·® À¯·® ÄÁÆ®·Ñ·¯ ½ÃÀå : ÃÖÁ¾ ¿ëµµº°

  • È­ÇÐÁ¦Ç°
  • ½Äǰ ¹× À½·á
  • ±Ý¼Ó ¹× ±¤¾÷
  • ¼®À¯ ¹× °¡½º
  • ÀǾàǰ
  • ¹ÝµµÃ¼
  • ¹° ¹× Æó¼ö ó¸®

Á¦13Àå ¾Æ¸Þ¸®Ä«ÀÇ Áú·® À¯·® ÄÁÆ®·Ñ·¯ ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦14Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Áú·® À¯·® ÄÁÆ®·Ñ·¯ ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦15Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ Áú·® À¯·® ÄÁÆ®·Ñ·¯ ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦16Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2023³â
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2023³â
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
  • Àü·« ºÐ¼®°ú Á¦¾È

±â¾÷ ¸®½ºÆ®

  • Aalborg Instruments & Controls, Inc.
  • Alicat Scientific, Inc. by Halma PLC
  • Avantor, Inc.
  • Axetris AG by Leister AG
  • Azbil Corporation
  • Bronkhorst High-Tech B.V.
  • Brooks Instrument by Illinois Tool Works Inc.
  • Christian Burkert GmbH & Co. KG
  • Dakota Instruments, Inc.
  • Dover Corporation
  • Dwyer Instruments, LLC
  • DwyerOmega
  • Fcon Co., Ltd.
  • HORIBA, Ltd.
  • Hyko Technologies
  • Kelly Pneumatics, Inc.
  • KOFLOC Corp.
  • KROHNE Messtechnik GmbH
  • MKS Instruments, Inc.
  • Ohkura Electric Co., Ltd.
  • Parker-Hannifin Corporation
  • Proterial, Ltd.
  • Sensirion AG
  • Sierra Instruments, Inc. by TASI Group
  • Teledyne Technologies Incorporated
  • Thermo Fisher Scientific Inc.
  • Tokyo Keiso Co., Ltd.
  • Vogtlin Instruments GmbH
LSH

The Mass Flow Controller Market was valued at USD 1.18 billion in 2023, expected to reach USD 1.25 billion in 2024, and is projected to grow at a CAGR of 5.33%, to USD 1.70 billion by 2030.

Mass Flow Controllers (MFCs) are integral to precise flow management in diverse industrial processes, regulating the flow rate of gases or liquids to ensure optimal performance and efficiency. They find substantial necessity in sectors such as semiconductors, pharmaceuticals, chemicals, and food and beverage, where precision and control over flow are crucial. MFCs are pivotal in applications such as chemical vapor deposition, gas chromatography, and fermentation processes. The market for MFCs is experiencing growth driven by the increasing demand for high-performance materials, advancements in process automation, and the need for efficient energy management practices. The rise in industrial automation and the Internet of Things (IoT) is creating potential opportunities for integrating smart MFCs with enhanced connectivity and data analytics capabilities. However, challenges such as the high cost of advanced MFCs, technical complexity, and sensitivity to external factors like temperature and pressure changes can impede market growth.

KEY MARKET STATISTICS
Base Year [2023] USD 1.18 billion
Estimated Year [2024] USD 1.25 billion
Forecast Year [2030] USD 1.70 billion
CAGR (%) 5.33%

To capitalize on market opportunities, companies should focus on developing compact, cost-effective MFCs with improved accuracy and stability. Investment in research that explores the integration of AI and machine learning for predictive analysis and self-optimization of flow processes could unlock significant value. The emphasis on sustainability and eco-friendly processes is also forecasted to shape future innovation, driving demand for MFCs with lower environmental footprints. However, companies need to navigate regulatory compliance and stringent industry standards, which can be barriers but also serve as innovation catalysts. Disruptive innovation lies in hybrid systems that offer modular architecture, enabling easy customization and scalability, catering to a wider array of applications and emerging end-use industries. The competitive landscape is marked by rapid advancements and the constant need for differentiated product offerings, suggesting firms should leverage collaborations, partnerships, and acquisitions to bolster R&D capabilities and expand their market presence. The MFC market is poised for substantial growth, provided stakeholders adeptly address these complexities through strategic foresight and agile adaptation.

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Mass Flow Controller Market

The Mass Flow Controller Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Rising trend towards industrial automation across the globe
    • Expansion of the semiconductor industry with demand for precise gas flow control
  • Market Restraints
    • High cost associated with the maintenance of mass flow controllers
  • Market Opportunities
    • Developing a mass flow controller with a higher flow range control
    • Rising adoption of mass flow controller in space applications
  • Market Challenges
    • Technical limitations associated with mass flow controller

Porter's Five Forces: A Strategic Tool for Navigating the Mass Flow Controller Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Mass Flow Controller Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Mass Flow Controller Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Mass Flow Controller Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Mass Flow Controller Market

A detailed market share analysis in the Mass Flow Controller Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Mass Flow Controller Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Mass Flow Controller Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Mass Flow Controller Market

A strategic analysis of the Mass Flow Controller Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Mass Flow Controller Market, highlighting leading vendors and their innovative profiles. These include Aalborg Instruments & Controls, Inc., Alicat Scientific, Inc. by Halma PLC, Avantor, Inc., Axetris AG by Leister AG, Azbil Corporation, Bronkhorst High-Tech B.V., Brooks Instrument by Illinois Tool Works Inc., Christian Burkert GmbH & Co. KG, Dakota Instruments, Inc., Dover Corporation, Dwyer Instruments, LLC, DwyerOmega, Fcon Co., Ltd., HORIBA, Ltd., Hyko Technologies, Kelly Pneumatics, Inc., KOFLOC Corp., KROHNE Messtechnik GmbH, MKS Instruments, Inc., Ohkura Electric Co., Ltd., Parker-Hannifin Corporation, Proterial, Ltd., Sensirion AG, Sierra Instruments, Inc. by TASI Group, Teledyne Technologies Incorporated, Thermo Fisher Scientific Inc., Tokyo Keiso Co., Ltd., and Vogtlin Instruments GmbH.

Market Segmentation & Coverage

This research report categorizes the Mass Flow Controller Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Flow Rate, market is studied across High Flow Rate Mass Flow Controller, Low Flow Rate Mass Flow Controller, and Medium Flow Rate Mass Flow Controller.
  • Based on Material, market is studied across Alloys and Stainless Steel.
  • Based on Media Type, market is studied across Gas Mass Flow Controllers and Liquid Mass Flow Controllers.
  • Based on Technology, market is studied across Coriolis Mass Flow Controller, Pressure-based Mass Flow Controllers, and Thermal Mass Flow Controllers.
  • Based on Connectivity Technology, market is studied across Analog, Devicenet, EtherCAT, Ethernet/IP, Foundation Fieldbus, Modbus RTU, Modbus TCP/IP, Profibus, Profinet, and RS-485.
  • Based on Application, market is studied across Catalyst Research, Fluid & Gas Processing and Control, Fuel Cell, Gas Chromatography, Heat Treating, Solar Cell, and Spray & Coating Processes.
  • Based on End-Use, market is studied across Chemicals, Food & Beverages, Metals & Mining, Oil & Gas, Pharmaceuticals, Semiconductors, and Water & Wastewater Treatment.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Rising trend towards industrial automation across the globe
      • 5.1.1.2. Expansion of the semiconductor industry with demand for precise gas flow control
    • 5.1.2. Restraints
      • 5.1.2.1. High cost associated with the maintenance of mass flow controllers
    • 5.1.3. Opportunities
      • 5.1.3.1. Developing a mass flow controller with a higher flow range control
      • 5.1.3.2. Rising adoption of mass flow controller in space applications
    • 5.1.4. Challenges
      • 5.1.4.1. Technical limitations associated with mass flow controller
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Application: Enhancing efficiency in fluid and gas processing with mass flow controllers
    • 5.2.2. Technology: Achieving precision and stability in fluid control with pressure-based mass flow controllers
    • 5.2.3. Media Type: Optimizing industrial processes with reliable gas mass flow controllers
    • 5.2.4. Material: Enhancing durability and performance in mass flow controllers with advanced alloys
    • 5.2.5. Flow Rate: Usage of High flow rate MFC's in semiconductor and chemical processing.
    • 5.2.6. Connectivity Technology: Expanding usage of foundation fieldbus in mass flow controller for intelligent diagnostics and automation
    • 5.2.7. End-Use: Increasing application of mass flow controllers in oil & gas sector for chemical injection
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Mass Flow Controller Market, by Flow Rate

  • 6.1. Introduction
  • 6.2. High Flow Rate Mass Flow Controller
  • 6.3. Low Flow Rate Mass Flow Controller
  • 6.4. Medium Flow Rate Mass Flow Controller

7. Mass Flow Controller Market, by Material

  • 7.1. Introduction
  • 7.2. Alloys
  • 7.3. Stainless Steel

8. Mass Flow Controller Market, by Media Type

  • 8.1. Introduction
  • 8.2. Gas Mass Flow Controllers
  • 8.3. Liquid Mass Flow Controllers

9. Mass Flow Controller Market, by Technology

  • 9.1. Introduction
  • 9.2. Coriolis Mass Flow Controller
  • 9.3. Pressure-based Mass Flow Controllers
  • 9.4. Thermal Mass Flow Controllers

10. Mass Flow Controller Market, by Connectivity Technology

  • 10.1. Introduction
  • 10.2. Analog
  • 10.3. Devicenet
  • 10.4. EtherCAT
  • 10.5. Ethernet/IP
  • 10.6. Foundation Fieldbus
  • 10.7. Modbus RTU
  • 10.8. Modbus TCP/IP
  • 10.9. Profibus
  • 10.10. Profinet
  • 10.11. RS-485

11. Mass Flow Controller Market, by Application

  • 11.1. Introduction
  • 11.2. Catalyst Research
  • 11.3. Fluid & Gas Processing and Control
  • 11.4. Fuel Cell
  • 11.5. Gas Chromatography
  • 11.6. Heat Treating
  • 11.7. Solar Cell
  • 11.8. Spray & Coating Processes

12. Mass Flow Controller Market, by End-Use

  • 12.1. Introduction
  • 12.2. Chemicals
  • 12.3. Food & Beverages
  • 12.4. Metals & Mining
  • 12.5. Oil & Gas
  • 12.6. Pharmaceuticals
  • 12.7. Semiconductors
  • 12.8. Water & Wastewater Treatment

13. Americas Mass Flow Controller Market

  • 13.1. Introduction
  • 13.2. Argentina
  • 13.3. Brazil
  • 13.4. Canada
  • 13.5. Mexico
  • 13.6. United States

14. Asia-Pacific Mass Flow Controller Market

  • 14.1. Introduction
  • 14.2. Australia
  • 14.3. China
  • 14.4. India
  • 14.5. Indonesia
  • 14.6. Japan
  • 14.7. Malaysia
  • 14.8. Philippines
  • 14.9. Singapore
  • 14.10. South Korea
  • 14.11. Taiwan
  • 14.12. Thailand
  • 14.13. Vietnam

15. Europe, Middle East & Africa Mass Flow Controller Market

  • 15.1. Introduction
  • 15.2. Denmark
  • 15.3. Egypt
  • 15.4. Finland
  • 15.5. France
  • 15.6. Germany
  • 15.7. Israel
  • 15.8. Italy
  • 15.9. Netherlands
  • 15.10. Nigeria
  • 15.11. Norway
  • 15.12. Poland
  • 15.13. Qatar
  • 15.14. Russia
  • 15.15. Saudi Arabia
  • 15.16. South Africa
  • 15.17. Spain
  • 15.18. Sweden
  • 15.19. Switzerland
  • 15.20. Turkey
  • 15.21. United Arab Emirates
  • 15.22. United Kingdom

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2023
  • 16.2. FPNV Positioning Matrix, 2023
  • 16.3. Competitive Scenario Analysis
    • 16.3.1. Horiba Group expands global footprint with new mass flow controller facility to boost India's semiconductor manufacturing
    • 16.3.2. Sensirion enhances production capacity and sustainability with major expansion in Debrecen facility
    • 16.3.3. Exploring the impact of surface channel technology innovations on the future of gas flow control systems
    • 16.3.4. Brooks Instrument enhances semiconductor capabilities with strategic acquisition of Creative Machining Technology, expanding mass flow controller expertise
    • 16.3.5. Siemens AG elevates precision with new SITRANS FC Coriolis mass flowmeters, enhancing industry versatility
    • 16.3.6. Brooks Instrument transforms semiconductor manufacturing with high-temperature GF120xHT mass flow controllers
    • 16.3.7. Alicat Scientific's breakthrough with BASIS 2 mass flow controllers transforms precision gas control
    • 16.3.8. Azbil Corporation's strategic sale of Azbil VorTek to Sierra Instruments, Inc. marks a shift towards innovation in energy measurement
    • 16.3.9. Alicat Scientific, Inc. launches BASIS 2 electronic mass flow controller, enhancing accuracy and automation in gas flow processes
    • 16.3.10. Brooks Instrument opens mass flow controller plant in Malaysia
  • 16.4. Strategy Analysis & Recommendation
    • 16.4.1. Parker-Hannifin Corporation
    • 16.4.2. Sensirion AG
    • 16.4.3. Azbil Corporation
    • 16.4.4. Brooks Instrument

Companies Mentioned

  • 1. Aalborg Instruments & Controls, Inc.
  • 2. Alicat Scientific, Inc. by Halma PLC
  • 3. Avantor, Inc.
  • 4. Axetris AG by Leister AG
  • 5. Azbil Corporation
  • 6. Bronkhorst High-Tech B.V.
  • 7. Brooks Instrument by Illinois Tool Works Inc.
  • 8. Christian Burkert GmbH & Co. KG
  • 9. Dakota Instruments, Inc.
  • 10. Dover Corporation
  • 11. Dwyer Instruments, LLC
  • 12. DwyerOmega
  • 13. Fcon Co., Ltd.
  • 14. HORIBA, Ltd.
  • 15. Hyko Technologies
  • 16. Kelly Pneumatics, Inc.
  • 17. KOFLOC Corp.
  • 18. KROHNE Messtechnik GmbH
  • 19. MKS Instruments, Inc.
  • 20. Ohkura Electric Co., Ltd.
  • 21. Parker-Hannifin Corporation
  • 22. Proterial, Ltd.
  • 23. Sensirion AG
  • 24. Sierra Instruments, Inc. by TASI Group
  • 25. Teledyne Technologies Incorporated
  • 26. Thermo Fisher Scientific Inc.
  • 27. Tokyo Keiso Co., Ltd.
  • 28. Vogtlin Instruments GmbH
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦