½ÃÀ庸°í¼­
»óǰÄÚµå
1602074

½Ç¸®ÄÜ Æ÷Åä´Ð½º ½ÃÀå : Á¦Ç° À¯Çü, ÄÄÆ÷³ÍÆ®, µµÆÄ°ü, ÃÖÁ¾ ¿ëµµº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Silicon Photonics Market by Product Type (Optical Engines, Optical Multiplexers, Optical Transceivers), Component (Laser, Optical Modulators, Photodetectors), Waveguide, End-use - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 191 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

½Ç¸®ÄÜ Æ÷Åä´Ð½º ½ÃÀåÀº 2023³â¿¡ 19¾ï 5,000¸¸ ´Þ·¯·Î Æò°¡µÇ¸ç, 2024³â¿¡´Â 23¾ï 3,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, CAGR 20.34%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 71¾ï 4,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

½Ç¸®ÄÜ Æ÷Åä´Ð½º´Â ½Ç¸®ÄÜÀ» ÀÌ¿ëÇØ ºûÀ» À¯µµÇϰí Á¶ÀÛÇÏ´Â °ÍÀ¸·Î, ±âÁ¸ÀÇ ÀüÀÚ ½ÅÈ£¿Í ´Þ¸® ƯÈ÷ ºñ¿ë È¿À²ÀÌ ³ô°í ÄÄÆÑÆ®ÇÏ¸ç ´Ù¿ëµµÇÏ´Ù´Â Á¡¿¡¼­ ±¤Åë½ÅÀÇ Çõ¸íÀûÀÎ ±â¼ú·Î ºÎ»óÇß½À´Ï´Ù. ½Ç¸®ÄÜ Æ÷Åä´Ð½ºÀÇ Çʿ伺Àº Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ, µ¥ÀÌÅͼ¾ÅÍ, Åë½Å ³×Æ®¿öÅ©ÀÇ È®´ë·Î ÀÎÇØ °í¼Ó µ¥ÀÌÅÍ Àü¼Û¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. ½Ç¸®ÄÜ Æ÷Åä´Ð½ºÀÇ ¿ëµµ´Â °í¼º´É ÄÄÇ»ÆÃ ȯ°æÀÇ µ¥ÀÌÅÍ Åë½ÅºÎÅÍ ÀÇ·á Áø´Ü ¹× ±¹¹æ ºÐ¾ßÀÇ ¼¾½Ì¿¡ À̸£±â±îÁö ´Ù¾çÇÕ´Ï´Ù. ¶ÇÇÑ Åë½Å, ÇコÄɾî, °¡Àü, ÀÚµ¿Â÷ »ê¾÷±îÁö ±× ÃÖÁ¾ ¿ëµµ°¡ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ½Ç¸®ÄÜ Æ÷Åä´Ð½º ½ÃÀåÀÇ ¼ºÀå¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ÁÖ¿ä ¿äÀÎÀ¸·Î´Â ÀÎÅÍ³Ý »ç¿ëÀÇ ±Þ°ÝÇÑ Áõ°¡, 5G ³×Æ®¿öÅ©¿Í °°Àº ÷´Ü Åë½Å ÀÎÇÁ¶óÀÇ °³¹ß, R&D ÅõÀÚ Áõ°¡ µîÀ» µé ¼ö ÀÖ½À´Ï´Ù. ´õ ³ôÀº µ¥ÀÌÅÍ ´ë¿ªÆø ¿ë·®¿¡ ´ëÇÑ ¹ÌÃæÁ· ¼ö¿ä¿Í AI ¹× ¸Ó½Å·¯´× ¾Ë°í¸®Áò°ú Æ÷Åä´Ð½ºÀÇ ÅëÇÕÀ¸·Î ÀÎÇØ ºñÁî´Ï½º ±âȸ°¡ âÃâµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±âȸ¸¦ Ȱ¿ëÇÒ Áغñ°¡ µÇ¾î ÀÖ´Â ±â¾÷Àº ƯÈ÷ µ¥ÀÌÅͼ¾ÅÍ¿Í ÁýÀû ±¤È¸·Î ºÐ¾ß¿¡¼­ ¾÷°è³» ±â¼úÀû ±³Â÷Á¡À» °­È­Çϱâ À§ÇÑ Çù¾÷°ú ÆÄÆ®³Ê½Ê¿¡ ÃÊÁ¡À» ¸ÂÃß¾î¾ß ÇÕ´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ[2023] 19¾ï 5,000¸¸ ´Þ·¯
¿¹Ãø³â[2024] 23¾ï 3,000¸¸ ´Þ·¯
¿¹Ãø³â[2030] 71¾ï 4,000¸¸ ´Þ·¯
CAGR(%) 20.34%

±×·¯³ª ³ôÀº Ãʱâ Á¦Á¶ ºñ¿ë, ±âÁ¸ ÀüÀÚ±â±â¿ÍÀÇ ÅëÇÕ ¹®Á¦, ¿­ °ü¸® ¹®Á¦ µîÀÇ Á¦¾àÀÌ ½ÃÀå ¼ºÀå¿¡ Å« °É¸²µ¹·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ º¹ÀâÇÑ ½Ç¸®ÄÜ Æ÷Åä´Ð ½Ã½ºÅÛÀ» ´Ù·ê ¼ö ÀÖ´Â ¼÷·ÃµÈ Àü¹®°¡°¡ ºÎÁ·ÇÏ´Ù´Â Á¡µµ ºü¸¥ ½ÃÀå È®´ë¸¦ °¡·Î¸·´Â ¿äÀÎÀÔ´Ï´Ù. ÇÏÀ̺긮µå Æ÷Åä´Ð ÁýÀû ¿¬±¸, ±×·¡Çɰú °°Àº ½Å¼ÒÀç ¿¬±¸, ½Ç¸®ÄÜÀÇ È¿À²¼ºÀ» º¸¿ÏÇÏ´Â 3D Æ÷Åä´Ð Ĩ ÇÁ¸°ÆÃ°ú °°Àº »õ·Î¿î Á¦Á¶ ±â¼ú °³¹ßÀ» ÅëÇØ Çõ½ÅÀÌ ÀÌ·ç¾îÁú ¼ö ÀÖ½À´Ï´Ù. ÇöÀç ½ÃÀåÀº ¿ªµ¿ÀûÀÎ °æÀï°ú ±Þ¼ÓÇÑ ±â¼ú ¹ßÀüÀÌ Æ¯Â¡À̸ç, ±â¾÷ÀÌ ÀûÀÀ·Â°ú ¼±°ßÁö¸íÀ» À¯ÁöÇÏ´Â °ÍÀÌ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº ±¤¼ÒÀÚ °³¹ß ¹× Ĩ ¼öÁØÀÇ ÁýÀûµµ Çâ»ó°ú °°Àº ºÐ¾ß´Â °æÀï ¿ìÀ§¸¦ À¯ÁöÇÏ°í ¹Ì·¡ ¼ºÀå¿¡ ÁýÁßÇÏ´Â ½ÃÀå ±â¾÷¿¡°Ô À¯¸®ÇÑ ÀáÀç·ÂÀ» Á¦°øÇÕ´Ï´Ù.

½ÃÀå ¿ªÇÐ: ºü¸£°Ô ÁøÈ­ÇÏ´Â ½Ç¸®ÄÜ Æ÷Åä´Ð½º ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

½Ç¸®ÄÜ Æ÷Åä´Ð½º ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ëÀ» ÅëÇØ º¯È­Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐÀÇ ÁøÈ­¸¦ ÀÌÇØÇÔÀ¸·Î½á ±â¾÷Àº Á¤º¸¿¡ ÀÔ°¢ÇÑ ÅõÀÚ °áÁ¤À» ³»¸®°í, Àü·«Àû ÀÇ»ç°áÁ¤À» Á¤±³È­Çϸç, »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Æ÷ÂøÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¿ªÀû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª Àü¹Ý¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ ÁÙÀÏ ¼ö ÀÖÀ¸¸ç, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë ¹× ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • µ¥ÀÌÅÍ Àü¼Û °­È­¿¡ ´ëÇÑ ½Ç¸®ÄÜ Æ÷Åä´Ð½º¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
    • ½Ç¸®ÄÜ Æ÷Åä´Ð Æ®·£½Ã¹ö¸¦ ÅëÇÑ Àü·Â Àý°¨¿¡ ´ëÇÑ ¿ä±¸ Áõ°¡
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ½Ç¸®ÄÜ Æ÷Åä´Ð½º ÁýÀûȸ·ÎÀÇ Á¦Á¶ ºñ¿ë »ó½Â
  • ½ÃÀå ±âȸ
    • ½Ç¸®ÄÜ Æ÷Åä´Ð½º ¼Ö·ç¼Ç »ý»ê·® Áõ°¡¸¦ À§ÇÑ ÅõÀÚ ¹× ÀÚ±Ý Á¶´Þ ±ÞÁõ
    • LiDAR ĨÀÇ ½Å±â¼úÀÇ Áö¼ÓÀûÀÎ ÅëÇÕ
  • ½ÃÀå °úÁ¦
    • ¿ÂĨ ·¹ÀÌÀú ÅëÇÕÀÇ º¹À⼺ ¹× ¿­ ¿µÇâÀÇ À§Ç輺

Portre's Five Forces: ½Ç¸®ÄÜ Æ÷Åä´Ð½º ½ÃÀå °ø·«À» À§ÇÑ Àü·«Àû Åø

Portre's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ½ÃÀå »óȲ°æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ ÅøÀÔ´Ï´Ù. Portre's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÇ °æÀï·ÂÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ Ž»öÇÒ ¼ö ÀÖ´Â ¸íÈ®ÇÑ ¹æ¹ýÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÀλçÀÌÆ®À» ÅëÇØ ±â¾÷Àº °­Á¡À» Ȱ¿ëÇϰí, ¾àÁ¡À» ÇØ°áÇϰí, ÀáÀçÀûÀÎ µµÀüÀ» ÇÇÇϰí, º¸´Ù °­·ÂÇÑ ½ÃÀå Æ÷Áö¼Å´×À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : ½Ç¸®ÄÜ Æ÷Åä´Ð½º ½ÃÀåÀÇ ¿ÜºÎ ¿µÇâ·Â ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº ½Ç¸®ÄÜ Æ÷Åä´Ð½º ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀο¡ ´ëÇÑ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇϸç, PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀû À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£µµ, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¼±Á¦ÀûÀÌ°í ´Éµ¿ÀûÀÎ ÀÇ»ç°áÁ¤À» ³»¸± Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® ½Ç¸®ÄÜ Æ÷Åä´Ð½º ½ÃÀå °æÀï ±¸µµ ÆÄ¾Ç

½Ç¸®ÄÜ Æ÷Åä´Ð½º ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ º¥´õÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¸ÅÃâ, °í°´ ±â¹Ý, ¼ºÀå·ü°ú °°Àº ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀïÀû À§Ä¡¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®Àº ½ÃÀåÀÇ ÁýÁßÈ­, ´ÜÆíÈ­ ¹× ÅëÇÕ Ãß¼¼¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖÀ¸¸ç, °ø±Þ¾÷ü´Â Ä¡¿­ÇÑ °æÀï ¼Ó¿¡¼­ ÀÚ½ÅÀÇ ÀÔÁö¸¦ °­È­ÇÒ ¼ö ÀÖ´Â Àü·«Àû ÀÇ»ç°áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ ÀλçÀÌÆ®À» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º ½Ç¸®ÄÜ Æ÷Åä´Ð½º ½ÃÀå¿¡¼­ÀÇ º¥´õ ¼º°ú Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â ½Ç¸®ÄÜ Æ÷Åä´Ð½º ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡ÇÒ ¼ö ÀÖ´Â Áß¿äÇÑ ÅøÀÔ´Ï´Ù. ÀÌ ¸ÅÆ®¸¯½º¸¦ ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº º¥´õÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±â¹ÝÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ºÎÇÕÇÏ´Â Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖÀ¸¸ç, 4°³ÀÇ »çºÐ¸éÀ¸·Î º¥´õ¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ¼¼ºÐÈ­ÇÏ¿© Àü·«Àû¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê¿Í ¼Ö·ç¼ÇÀ» ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù. Àü·«Àû¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê¿Í ¼Ö·ç¼ÇÀ» ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× Ãßõ ½Ç¸®ÄÜ Æ÷Åä´Ð½º ½ÃÀå¿¡¼­ÀÇ ¼º°øÀ» À§ÇÑ Àü·« ºÐ¼® ¹× ±ÇÀå »çÇ×

½Ç¸®ÄÜ Æ÷Åä´Ð½º ½ÃÀå Àü·« ºÐ¼®Àº ¼¼°è ½ÃÀå¿¡¼­ ÀÔÁö¸¦ °­È­ÇϰíÀÚ ÇÏ´Â ±â¾÷¿¡°Ô ÇʼöÀûÀÔ´Ï´Ù. ÁÖ¿ä ÀÚ¿ø, ¿ª·® ¹× ¼º°ú ÁöÇ¥¸¦ °ËÅäÇÔÀ¸·Î½á ±â¾÷Àº ¼ºÀå ±âȸ¸¦ ½Äº°ÇÏ°í °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀº °æÀï ȯ°æÀÇ °úÁ¦¸¦ ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö Àִ ü°è¸¦ ±¸ÃàÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀå¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù. :

1. ½ÃÀå ħÅõµµ : ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·Â Æò°¡.

2. ½ÃÀå °³Ã´µµ: ½ÅÈï ½ÃÀå¿¡¼­ÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇϰí, ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡Çϸç, ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù°¢È­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä ¹ßÀü, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú ¹ßÀü µîÀ» °ËÅäÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÷´Ü ±â¼ú, ¿¬±¸°³¹ß Ȱµ¿ ¹× Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

ÀÌÇØ°ü°èÀÚµéÀÌ ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï ´ÙÀ½°ú °°Àº Áß¿äÇÑ Áú¹®¿¡ ´ëÇÑ ´äº¯µµ Á¦°øÇÕ´Ï´Ù. :

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå Àü¸ÁÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹®, Áö¿ªÀº?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5.º¥´õ ½ÃÀå ÁøÀÔ ¹× ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÔ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå °³¿ä

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
    • ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ±âȸ
    • °úÁ¦
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡
    • °æÁ¦
    • »çȸ
    • ±â¼ú
    • ¹ý·ü
    • ȯ°æ

Á¦6Àå ½Ç¸®ÄÜ Æ÷Åä´Ð½º ½ÃÀå : Á¦Ç° À¯Çüº°

  • ±¤ÇÐ ¿£Áø
  • ±¤¸ÖƼÇ÷º¼­
  • ±¤ Æ®·£½Ã¹ö
  • µµÆÄ°ü

Á¦7Àå ½Ç¸®ÄÜ Æ÷Åä´Ð½º ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • ·¹ÀÌÀú
  • ±¤º¯Á¶±â
  • ±¤°ËÃâ±â
  • ÆÄÀå ºÐÇÒ ´ÙÁß ÇÊÅÍ

Á¦8Àå ½Ç¸®ÄÜ Æ÷Åä´Ð½º ½ÃÀå : µµÆÄ°üº°

  • 1,310-1,550NM
  • 400-1,500NM
  • 900-7,000NM

Á¦9Àå ½Ç¸®ÄÜ Æ÷Åä´Ð½º ½ÃÀå : ÃÖÁ¾ ¿ëµµº°

  • ÀÚµ¿Â÷
  • °¡Àü
  • ¹æÀ§¿Í º¸¾È
  • ÇコÄɾî¿Í »ý¸í°úÇÐ
  • IT ¹× Åë½Å

Á¦10Àå ¾Æ¸Þ¸®Ä«ÀÇ ½Ç¸®ÄÜ Æ÷Åä´Ð½º ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦11Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ½Ç¸®ÄÜ Æ÷Åä´Ð½º ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦12Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ½Ç¸®ÄÜ Æ÷Åä´Ð½º ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®
  • ¿µ±¹

Á¦13Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼® 2023
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2023
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
  • Àü·« ºÐ¼®°ú Á¦¾È

±â¾÷ ¸®½ºÆ®

  • AIM Photonics
  • AIO Core Co., Ltd.
  • Ayar Labs, Inc.
  • Broadcom Inc.
  • Cadence Design Systems, Inc.
  • Cisco Systems, Inc.
  • Coherent Corp.
  • FormFactor, Inc.
  • GlobalFoundries Inc.
  • Hamamatsu Photonics, K. K.
  • Hewlett Packard Enterprise(HPE)
  • Huawei Technologies Co., Ltd.
  • IMEC
  • Intel Corporation
  • International Business Machines Corporation
  • Lumentum Operations LLC
  • MACOM Technology Solutions Holdings, Inc. :
  • MACOM Technology Solutions Inc.
  • Marvell Technology, Inc.
  • MRSI Systems
  • Nokia Corporation
  • OSCPS Motion Sensing Inc.
  • Sicoya GmbH
  • Skorpios Technologies Inc
  • STMicroelectronics N.V.
  • Sumitomo Electric Industries, Ltd.
  • Tower Semiconductor Ltd.
  • VLC Photonics S.L. by Hitachi, Ltd.
KSA 24.12.10

The Silicon Photonics Market was valued at USD 1.95 billion in 2023, expected to reach USD 2.33 billion in 2024, and is projected to grow at a CAGR of 20.34%, to USD 7.14 billion by 2030.

Silicon photonics involves the use of silicon to guide and manipulate light-eschewing traditional electronic signals-and has emerged as a revolutionary technology in optical communications, particularly due to its cost-effective, compact, and versatile nature. The necessity of silicon photonics is driven by burgeoning demand for high-speed data transmission, as cloud computing, data centers, and telecommunication networks expand. Its applications span from data communication in high-performance computing environments to sensing in medical diagnostics and defense sectors. Additionally, its end-use scope extends to telecommunications, healthcare, consumer electronics, and automotive industries. Key influencers for growth in the silicon photonics market include the exponential rise in internet usage, the development of advanced telecommunications infrastructure such as 5G networks, and increased investments in research and development. Opportunities arise from unmet needs for higher data bandwidth capacities and the integration of photonics with AI and machine learning algorithms. Companies poised to capitalize on these opportunities should focus on collaborations and partnerships to enhance the technological intersections within the industry, particularly in data centers and integrated photonic circuits.

KEY MARKET STATISTICS
Base Year [2023] USD 1.95 billion
Estimated Year [2024] USD 2.33 billion
Forecast Year [2030] USD 7.14 billion
CAGR (%) 20.34%

However, limitations such as high initial manufacturing costs, integration challenges with existing electronics, and thermal management issues pose significant barriers to market growth. Furthermore, a shortage of skilled professionals to handle complex silicon photonic systems also hinders rapid deployment. Innovation can be advanced through research into hybrid photonic integration, exploring new materials like graphene, or developing novel fabrication techniques such as 3D photonic chip printing that supplement silicon's efficiency. The market is currently characterized by dynamic competition and rapid technological advancements, making it crucial for businesses to remain adaptable and forward-thinking. Areas such as the development of energy-efficient photonic devices and enhancing chip-level integration offer lucrative potential for market players focused on sustaining competitive advantage and driving future growth.

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Silicon Photonics Market

The Silicon Photonics Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Increasing demand for silicon photonics in enhancing data transmission
    • Surging need to alleviate power consumption using silicon photonic transceivers
  • Market Restraints
    • Elevated cost of manufacturing Silicon Photonics integrated circuits
  • Market Opportunities
    • Surging investments and funding for increasing production of silicon photonics solutions
    • Ongoing integration of novel technology in LiDAR chips
  • Market Challenges
    • Complexity in the integration of on-chip laser and risk of thermal effect

Porter's Five Forces: A Strategic Tool for Navigating the Silicon Photonics Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Silicon Photonics Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Silicon Photonics Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Silicon Photonics Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Silicon Photonics Market

A detailed market share analysis in the Silicon Photonics Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Silicon Photonics Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Silicon Photonics Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Silicon Photonics Market

A strategic analysis of the Silicon Photonics Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Silicon Photonics Market, highlighting leading vendors and their innovative profiles. These include AIM Photonics, AIO Core Co., Ltd., Ayar Labs, Inc., Broadcom Inc., Cadence Design Systems, Inc., Cisco Systems, Inc., Coherent Corp., FormFactor, Inc., GlobalFoundries Inc., Hamamatsu Photonics, K. K., Hewlett Packard Enterprise (HPE), Huawei Technologies Co., Ltd., IMEC, Intel Corporation, International Business Machines Corporation, Lumentum Operations LLC, MACOM Technology Solutions Holdings, Inc.:, MACOM Technology Solutions Inc., Marvell Technology, Inc., MRSI Systems, Nokia Corporation, OSCPS Motion Sensing Inc., Sicoya GmbH, Skorpios Technologies Inc, STMicroelectronics N.V., Sumitomo Electric Industries, Ltd., Tower Semiconductor Ltd., and VLC Photonics S.L. by Hitachi, Ltd..

Market Segmentation & Coverage

This research report categorizes the Silicon Photonics Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Product Type, market is studied across Optical Engines, Optical Multiplexers, Optical Transceivers, and Waveguides.
  • Based on Component, market is studied across Laser, Optical Modulators, Photodetectors, and Wavelength-Division Multiplexing Filters.
  • Based on Waveguide, market is studied across 1,310-1,550 NM, 400-1,500 NM, and 900-7,000 NM.
  • Based on End-use, market is studied across Automotive, Consumer Electronics, Defense & Security, Healthcare & Life Sciences, and IT & Telecommunications.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Increasing demand for silicon photonics in enhancing data transmission
      • 5.1.1.2. Surging need to alleviate power consumption using silicon photonic transceivers
    • 5.1.2. Restraints
      • 5.1.2.1. Elevated cost of manufacturing Silicon Photonics integrated circuits
    • 5.1.3. Opportunities
      • 5.1.3.1. Surging investments and funding for increasing production of silicon photonics solutions
      • 5.1.3.2. Ongoing integration of novel technology in LiDAR chips
    • 5.1.4. Challenges
      • 5.1.4.1. Complexity in the integration of on-chip laser and risk of thermal effect
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Product Type: Growing usage of optical transceivers for miniaturizing optical devices
    • 5.2.2. Components: Increasing demand for silicon-based laser in optical networks
    • 5.2.3. Waveguide: Rising preference for 1,310-1,550 NM waveguide in telecommunications for high precision and stability
    • 5.2.4. End-use: Extending applications of silicon photonics in healthcare & life Sciences due to improved medical imaging accuracy
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Silicon Photonics Market, by Product Type

  • 6.1. Introduction
  • 6.2. Optical Engines
  • 6.3. Optical Multiplexers
  • 6.4. Optical Transceivers
  • 6.5. Waveguides

7. Silicon Photonics Market, by Component

  • 7.1. Introduction
  • 7.2. Laser
  • 7.3. Optical Modulators
  • 7.4. Photodetectors
  • 7.5. Wavelength-Division Multiplexing Filters

8. Silicon Photonics Market, by Waveguide

  • 8.1. Introduction
  • 8.2. 1,310-1,550 NM
  • 8.3. 400-1,500 NM
  • 8.4. 900-7,000 NM

9. Silicon Photonics Market, by End-use

  • 9.1. Introduction
  • 9.2. Automotive
  • 9.3. Consumer Electronics
  • 9.4. Defense & Security
  • 9.5. Healthcare & Life Sciences
  • 9.6. IT & Telecommunications

10. Americas Silicon Photonics Market

  • 10.1. Introduction
  • 10.2. Argentina
  • 10.3. Brazil
  • 10.4. Canada
  • 10.5. Mexico
  • 10.6. United States

11. Asia-Pacific Silicon Photonics Market

  • 11.1. Introduction
  • 11.2. Australia
  • 11.3. China
  • 11.4. India
  • 11.5. Indonesia
  • 11.6. Japan
  • 11.7. Malaysia
  • 11.8. Philippines
  • 11.9. Singapore
  • 11.10. South Korea
  • 11.11. Taiwan
  • 11.12. Thailand
  • 11.13. Vietnam

12. Europe, Middle East & Africa Silicon Photonics Market

  • 12.1. Introduction
  • 12.2. Denmark
  • 12.3. Egypt
  • 12.4. Finland
  • 12.5. France
  • 12.6. Germany
  • 12.7. Israel
  • 12.8. Italy
  • 12.9. Netherlands
  • 12.10. Nigeria
  • 12.11. Norway
  • 12.12. Poland
  • 12.13. Qatar
  • 12.14. Russia
  • 12.15. Saudi Arabia
  • 12.16. South Africa
  • 12.17. Spain
  • 12.18. Sweden
  • 12.19. Switzerland
  • 12.20. Turkey
  • 12.21. United Arab Emirates
  • 12.22. United Kingdom

13. Competitive Landscape

  • 13.1. Market Share Analysis, 2023
  • 13.2. FPNV Positioning Matrix, 2023
  • 13.3. Competitive Scenario Analysis
    • 13.3.1. Jabil expand its silicon photonics capabilities to support advanced AI and data center technologies
    • 13.3.2. Taiwan's silicon photonics alliance accelerates AI energy solutions with global standards and R&D collaborations
    • 13.3.3. Coherent Corp introduces high-efficiency lasers to enhance silicon photonics transceivers
    • 13.3.4. Sivers Semiconductors to combine Sivers' Photonics subsidiary with byNordic
    • 13.3.5. Intel and Source Photonics propel 800G transceivers to the forefront of datacentre solutions
    • 13.3.6. Samsung Foundry's 2027 roadmap enhances AI integration with 1.4nm process and silicon photonics advancements
    • 13.3.7. DustPhotonics secures USD 24 million in Series B funding to advance silicon photonics for next-gen data centers
    • 13.3.8. Infleqtion propels quantum technology commercialization with strategic silicon photonics acquisitions
    • 13.3.9. TSMC-Broadcom-Nvidia alliance advancing silicon photonics for high-speed AI data transmission
    • 13.3.10. Tower Semiconductor and InnoLight's strategic partnership advances the development of next-gen silicon photonics-based optical transceivers
  • 13.4. Strategy Analysis & Recommendation
    • 13.4.1. STMicroelectronics N.V.
    • 13.4.2. Cisco Systems, Inc.
    • 13.4.3. Broadcom Inc.
    • 13.4.4. Intel Corporation

Companies Mentioned

  • 1. AIM Photonics
  • 2. AIO Core Co., Ltd.
  • 3. Ayar Labs, Inc.
  • 4. Broadcom Inc.
  • 5. Cadence Design Systems, Inc.
  • 6. Cisco Systems, Inc.
  • 7. Coherent Corp.
  • 8. FormFactor, Inc.
  • 9. GlobalFoundries Inc.
  • 10. Hamamatsu Photonics, K. K.
  • 11. Hewlett Packard Enterprise (HPE)
  • 12. Huawei Technologies Co., Ltd.
  • 13. IMEC
  • 14. Intel Corporation
  • 15. International Business Machines Corporation
  • 16. Lumentum Operations LLC
  • 17. MACOM Technology Solutions Holdings, Inc.:
  • 18. MACOM Technology Solutions Inc.
  • 19. Marvell Technology, Inc.
  • 20. MRSI Systems
  • 21. Nokia Corporation
  • 22. OSCPS Motion Sensing Inc.
  • 23. Sicoya GmbH
  • 24. Skorpios Technologies Inc
  • 25. STMicroelectronics N.V.
  • 26. Sumitomo Electric Industries, Ltd.
  • 27. Tower Semiconductor Ltd.
  • 28. VLC Photonics S.L. by Hitachi, Ltd.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦