½ÃÀ庸°í¼­
»óǰÄÚµå
1602148

¼¼°èÀÇ ÃÊÇØ»ó Çö¹Ì°æ ½ÃÀå : ±â¼úº°, ¿ëµµº° ¿¹Ãø(2025-2030³â)

Super-resolution Microscopes Market by Technology, Application - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 187 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

ÃÊÇØ»ó Çö¹Ì°æ ½ÃÀåÀº 2023³â¿¡ 37¾ï7,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2024³â¿¡´Â 41¾ï 6,000¸¸ ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, CAGR 10.30%·Î ¼ºÀåÇϰí, 2030³â¿¡´Â 75¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÃÊÇØ»ó Çö¹Ì°æÀº °úÇÐÀÚ°¡ ºûÀÇ È¸Àý ÇѰ踦 ³ÑÀº ½ºÄÉÀÏ·Î »ý¹°ÇÐÀû ±¸Á¶¸¦ ½Ã°¢È­ÇÏ¿© ºÐÀÚ ¼öÁØ, ½ÉÁö¾î ¿øÀÚ ¼öÁØÀÇ ¼±¸íµµ¸¦ Á¦°øÇÒ ¼ö ÀÖ°Ô ÇÔÀ¸·Î½á Çö¹Ì°æ ºÐ¾ß¿¡ Çõ¸íÀ» ÀÌ Ã·´Ü Çö¹Ì°æÀº ¼¼Æ÷ »ý¹°ÇÐ, ½Å°æ »ý¹°ÇÐ, Àç·á °úÇÐ µîÀÇ ¿¬±¸¿¡¼­ º¹ÀâÇÑ ±¸Á¶¸¦ ÀÌÇØÇϱâÀ§ÇÑ È¹±âÀûÀÎ Çõ½ÅÀ» Á¦°øÇϱâ À§ÇØ À̹Ì¡ÀÌ ÇʼöÀûÀÔ´Ï´Ù. ÃÊÇØ»ó Çö¹Ì°æÀÇ ÀÀ¿ë ¹üÀ§´Â Çмú ¿¬±¸, Á¦¾à, Áø´Ü, ³ª³ë±â¼ú µî Æø³Ð°Ô ÁÖ¿ä ±â¼ú ±â¾÷°ú »ý¹°ÀÇÇÐ ºÐ¾ß¿¡ È¿°úÀûÀ¸·Î ´ëÀÀÇϰí ÀÖ½À´Ï´Ù. À̷νá À̹Ì¡ ±â¼úÀÇ Çâ»ó¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, »ý¹°ÇÐÀû ¿¬±¸¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡, À̹Ì¡ ÇØ»óµµ¿Í ¼Óµµ¸¦ Çâ»ó½ÃŲ º¸´Ù »ç¿ëÇϱ⠽±°í È¿À²ÀûÀÎ Çö¹Ì°æ ¿¡ À̸£´Â ±â¼ú Áøº¸ µîÀ» µé ¼ö ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ À̹Ì¡ ±â¼ú°úÀÇ ÅëÇÕÀÌ °¡´ÉÇØ, Àú·ÅÇÑ °¡°ÝÀ¸·Î ¹ü¿ë¼ºÀÌ ³ôÀº ÃÊÇØ»ó ÅøÀÇ °³¹ß¿¡´Â º¸´Ù Æø³ÐÀº Çмú¡¤»ê¾÷°èÀÇ À¯Àú¸¦ ²ø¾îµéÀÔ´Ï´Ù. ±â¾÷Àº ¶ÇÇÑ ±â¼ú Çõ½Å¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÀ¿ë °¡´É¼ºÀ» ³ÐÈ÷±â À§ÇØ ºÐ¾ß Ⱦ´ÜÀûÀÎ °øµ¿ ¿¬±¸¸¦ ¸ð»öÇØ¾ßÇÕ´Ï´Ù. º¹À⼺, Àü¹®ÀûÀÎ ±³À°ÀÇ Çʿ伺 µîÀÇ Á¦¾àÀÌ ÀÖ¾î Æø³ÐÀº º¸±ÞÀÇ ¹æÇذ¡ µÇ°í ÀÖ½À´Ï´Ù. ´Â¿ëÀÚ ÀÎÅÍÆäÀ̽ºÀÇ °£¼ÒÈ­, Á¦Á¶ °øÁ¤ °³¼±À¸·Î ÀÎÇÑ ºñ¿ë Àý°¨, ÀáÀçÀû »ç¿ëÀÚ¿¡ ´ëÇÑ ±³À° ÇÁ·Î±×·¥ÀÇ Á߿伺 µîÀÌ ÇÊ¿äÇÕ´Ï´Ù. ±â¼ú Çõ½ÅÀÌ ÇÊ¿äÇÑ ¿¬±¸ ºÐ¾ß·Î´Â ÇÏÀ̺긮µå Çö¹Ì°æ ±â¼ú °³¹ß, ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸® ´É·Â °­È­, ÈÞ´ë¿ë Áø´Ü ÀåÄ¡ÀÇ ¼ÒÇüÈ­ µîÀ» µé ¼ö ÀÖ½À´Ï´Ù. ²÷ÀÓ¾øÀÌ ²÷ÀÓ¾ø´Â Çõ½Å°ú Àü·«Àû ÆÄÆ®³Ê½ÊÀÌ ÇÊ¿äÇÕ´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ(2023) 37¾ï 7,000¸¸ ´Þ·¯
¿¹Ãø³â(2024) 41¾ï 6,000¸¸ ´Þ·¯
¿¹Ãø³â(2030) 75¾ï ´Þ·¯
CAGR(%) 10.30%

½ÃÀå ¿ªÇÐ: ºü¸£°Ô ÁøÈ­ÇÏ´Â ÃÊÇØ»ó Çö¹Ì°æ ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

ÃÊÇØ»ó Çö¹Ì°æ ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ë¿¡ ÀÇÇØ º¯¸ð¸¦ ÀÌ·ç°í ÀÖ½À´Ï´Ù., »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ °æ°¨ÇÒ ¼ö ÀÖÀ» »Ó¸¸ ¾Æ´Ï¶ó, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë ¶Ç´Â ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ»º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • »ý¹° ÀÇÇÐ ¿¬±¸ ¹× ³ª³ë Å×Å©³î·ÎÁö Á¶»ç¿¡ ´ëÇÑ ÁÖ¸ñ Áõ°¡
    • SRM¿¡ ´ëÇÑ Àνİú °³¹ßÀ» Ã˱¸ÇÏ´Â Á¤ºÎÃâÀÚ ÇÁ·ÎÁ§Æ®
    • ¹ÝµµÃ¼ °Ë»ç³ª ¿þÀÌÆÛ °Ë»ç¿¡ À־ÀÇ SRMÀÇ »ç¿ë Áõ°¡
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • SRM Á¦Á¶¿¡ ÇÊ¿äÇÑ ¼³ºñ ÅõÀÚ°¡ ³ô´Ù
  • ½ÃÀå ±âȸ
    • ÀûÀýÇÑ ¿¬±¸ °³¹ß Ȱµ¿¿¡ ÀÇÇÑ ÃÊÇØ»ó Çö¹Ì°æÀÇ Áøº¸
    • °ø°£ À¯ÀüüÇп¡¼­ÀÇ ÃÊÇØ»ó Çö¹Ì°æÀÇ °¡´É¼º
  • ½ÃÀåÀÇ °úÁ¦
    • ÃÊÇØ»ó Çö¹Ì°æÀÇ ±â¼úÀû¡¤Á¶ÀÛÀû ÇѰè

Porter's Five Force: ÃÊÇØ»óµµ Çö¹Ì°æ ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Porter's Five Force Framework´Â ½ÃÀå »óȲ°æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù. ´ç½ÅÀº ´õ °­ÀÎÇÑ ½ÃÀå¿¡¼­ Æ÷Áö¼Å´×À» º¸ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : ÃÊÇØ»ó Çö¹Ì°æ ½ÃÀå¿¡¼­ ¿ÜºÎ·ÎºÎÅÍÀÇ ¿µÇâ ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº ÃÊÇØ»ó Çö¹Ì°æ ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ»ÇÕ´Ï´Ù. PESTLE ¿äÀÎÀ» Á¶»çÇÏ¸é ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. Àû±ØÀûÀÎ ÀÇ»ç °áÁ¤À» ÇÒ Áغñ°¡µÇ¾î ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® : ÃÊÇØ»ó Çö¹Ì°æ ½ÃÀå¿¡¼­ °æÀï ±¸µµ ÆÄ¾Ç

ÃÊÇØ»óµµ Çö¹Ì°æ ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. Æ÷Áö¼Å´×À» ºÐ¸íÈ÷ ÀÌ ºÐ¼®À» ÅëÇØ ½ÃÀå ÁýÁß, ´ÜÆíÈ­, ÅëÇÕ µ¿ÇâÀ» ¹àÇô³»°í º¥´õ´Â °æÀïÀÌ Ä¡¿­ÇØÁö¸é¼­ ÀÚ»çÀÇ ÁöÀ§¸¦ ³ôÀÌ´Â Àü·«Àû ÀÇ»ç°áÁ¤À» Çϱâ À§ÇØ ÇÊ¿äÇÑ Áö°ß ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º : ÃÊ ÇØ»ó Çö¹Ì°æ ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â ÃÊÇØ»ó Çö¹Ì°æ ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Á¤º¸¸¦ ±â¹ÝÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. 4°³ÀÇ »çºÐ¸éÀº °ø±Þ¾÷ü¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ±¸ºÐÇÏ¿© »ç¿ëÀÚ°¡ Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê ¹× ¼Ö·ç¼ÇÀ» ½Äº°ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â Á¾ÇÕÀûÀÎ ½ÃÀå ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ: ¾÷°è ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅ͸¦ Æ÷ÇÔÇÑ ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä.

2. ½ÃÀå °³Ã´µµ: ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡ÇÏ¸ç ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­: ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, R&D Ȱµ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¾ò°í ÀÇ»ç°áÁ¤À» ÇÒ ¼ö ÀÖµµ·Ï Áß¿äÇÑ Áú¹®¿¡ ´ë´äÇϰí ÀÖ½À´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹® ¹× Áö¿ªÀº ¾îµðÀԴϱî?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ¡¤Ã¶¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • ¹ÙÀÌ¿À¸ÞµðÄà Á¶»ç¿Í ³ª³ëÅ×Å©³î·ÎÁö ¿¬±¸¿¡ ´ëÇÑ ÁÖ¸ñ Áõ°¡
      • SRMÀÇ ÀÎÁö¿Í °³¹ßÀ» ÃËÁøÇÏ´Â Á¤ºÎ Àڱݿ¡ ÀÇÇÑ ÇÁ·ÎÁ§Æ®
      • ¹ÝµµÃ¼ ¹× ¿þÀÌÆÛ °Ë»ç¿¡ À־ÀÇ SRMÀÇ »ç¿ë Áõ°¡
    • ¾ïÁ¦¿äÀÎ
      • SRMÀÇ Á¦Á¶¿¡´Â ´Ù¾×ÀÇ ÀÚº» ÅõÀÚ°¡ ÇÊ¿ä
    • ±âȸ
      • ÀûÀýÇÑ ¿¬±¸ °³¹ß Ȱµ¿¿¡ ÀÇÇÑ ÃÊÇØ»ó Çö¹Ì°æÀÇ Áøº¸
      • °ø°£ À¯ÀüüÇп¡¼­ÀÇ ÃÊÇØ»ó Çö¹Ì°æÀÇ °¡´É¼º
    • °úÁ¦
      • ÃÊÇØ»ó Çö¹Ì°æÀÇ ±â¼úÀû ¹× ¿î¿ë»óÀÇ ÇѰè
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
    • Å×Å©³î·ÎÁö : ÃÊÇØ»ó Çö¹Ì°æ¿¡ À־ÀÇ ¼±Áø ±â¼úÀÇ È°¿ë¿¡ ÀÇÇØ Áö±Ý±îÁö ¾ø¾ú´ø ÅëÂû·ÂÀ» Á¦°ø
    • ÀÀ¿ë: º¹ÀâÇÑ »ý¹°ÇÐÀû ½Ã½ºÅÛ°ú ÇÁ·Î¼¼½º¸¦ ÀÌÇØÇϱâ À§ÇØ »ý¸í°úÇаú ¹°Áú°úÇп¡¼­ ÃÊÇØ»ó Çö¹Ì°æÀÇ »ç¿ëÀ» ´Ã¸°´Ù
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡Àû
    • °æÁ¦
    • »ç±³
    • ±â¼úÀû
    • ¹ý·ü»ó
    • ȯ°æ
  • °í°´ ¸ÂÃãÇü

Á¦6Àå ÃÊÇØ»ó Çö¹Ì°æ ½ÃÀå : ±â¼úº°

  • Çü±¤±¤ Ȱ¼ºÈ­ ±¹¼Ò Çö¹Ì°æ¹ý
  • ±¤È°¼ºÈ­ ±¹¼ÒÇö¹Ì°æ¹ý
  • À¯µµ ¹æÃâ ¾ïÁ¦ Çö¹Ì°æ
  • È®·üÀû ±¤ÇÐ À籸¼º Çö¹Ì°æ
  • ±¸Á¶È­µÈ Á¶¸í Çö¹Ì°æ

Á¦7Àå ÃÊÇØ»ó Çö¹Ì°æ ½ÃÀå : ¿ëµµº°

  • »ý¸í°úÇÐ
  • Àç·á°úÇÐ
  • ³ª³ë±â¼ú
  • ¹ÝµµÃ¼

Á¦8Àå ¾Æ¸Þ¸®Ä«ÀÇ ÃÊÇØ»ó Çö¹Ì°æ ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦9Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ÃÊÇØ»ó Çö¹Ì°æ ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦10Àå À¯·´¡¤Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ÃÊÇØ»ó Çö¹Ì°æ ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦11Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2023³â
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2023³â
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
    • 3D ºÐÀÚ ±¸Á¶¸¦ º¸´Ù °í¼ÓÀ¸·Î È­»óÈ­ÇÏ´Â ÃÊÇØ»ó Çö¹Ì°æ¹ý
    • Mines°ú CSUÀÇ ¿¬±¸ÀÚ°¡ °íÀü ±¤Çаú ¾çÀÚ ±¤ÇÐÀ» Á¶ÇÕÇÏ¿© ÃÊÇØ»ó À̹Ì¡À» ½ÇÇö
    • °øÃÊÁ¡ Çö¹Ì°æ AX ½Ã¸®ÁîÀÇ ±â´ÉÀ» È®ÃæÇØ, °íÇØ»óµµÀÇ ½ÉºÎ Á¶Á÷ À̹Ì¡À» °¡´ÉÇÏ°Ô ÇÏ´Â NSPARC ÃÊÇØ»ó À¯´ÖÀ» ¹ß¸Å
    • Bruker°¡ ACQUIFER Imaging GmbH Àμö ¹ßÇ¥
    • »õ·Î¿î ÃÊÇØ»ó Çö¹Ì°æÀÌ ´Ü¹éÁú º¹ÇÕü¿¡ »õ·Î¿î ºûÀ» ºñÃá´Ù
    • Bruker, ½Å°æ°úÇÐ ¿¬±¸¸¦ À§ÇÑ ÀνºÄÚÇȽº Àμö ¹ßÇ¥
    • Edinburgh Super-Resolution Imaging ConsortiumÀÌ ¿µ±¹ÀÇ À¯·Î¹ÙÀÌ¿À À̹Ì¡ ³ëµå¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» ÇÑ´Ù
    • CrestOpticsÀÇ DeepSIM ÃÊÇØ»ó °øÃÊÁ¡ Çö¹Ì°æ ¸ðµâÀÌ Microscopy Today ÀâÁö¿¡ ÀÇÇØ 2016³âÀÇ Åé 10 Çö¹Ì°æ Çõ½Å¿¡ ¼±ÃâµÇ¾ú½À´Ï´Ù.
    • LiveCodimÀº ÃÊÇØ»ó Çü±¤ À̹Ì¡À¸·Î 90 nmÀÇ ÇØ»óµµ¸¦ ´Þ¼º
    • ZEISS Microscopy°¡ LabCentral°ú Á¦ÈÞÇÏ¿© ¹Ì±¹ º¸½ºÅÏ Áö¿ªÀÇ ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö Á¶»ç ½ºÅ¸Æ®¾÷À» Áö¿ø
    • ÃÊÇØ»ó Çö¹Ì°æ Á¦Á¶¾÷üÀÇ Oni°¡ ¹Ì±¹ ÁøÃâÀ» À§ÇØ 7,500¸¸ ´Þ·¯¸¦ ȹµæ
    • ÃÊÇØ»ó Çö¹Ì°æÀÇ ½ºÅ¸Æ®¾÷ EikonÀÌ ¡¸drug-hunting biofactory¡¹¿¡ 5¾ï 1,800¸¸ ´Þ·¯¸¦ Á¶´Þ

±â¾÷ ¸ñ·Ï

  • Oxford Instruments PLC
  • Cairn Research Ltd.
  • PicoQuant GmbH
  • Abberior Instruments GmbH
  • Keyence Corporation
  • Active Motif, Inc.
  • Thermo Fisher Scientific, Inc.
  • Abbelight
  • Olympus Corporation
  • Oxford Nanoimaging Limited
  • Vitrolife Sweden AB
  • LIG Nanowise Ltd.
  • Gattaquant GmbH
  • IBIDI GmbH
  • Axiom Optics
  • Danaher Corporation
  • Telight Brno, sro
  • Eikon Therapeutics, Inc.
  • GE HealthCare Technologies Inc.
  • Bruker Corporation
  • Imagine Optic
  • Sysmex Corporation
  • Carl Zeiss AG
  • Nikon Corporation
  • Merck KGaA
  • DSS Imagetech Pvt. Ltd.
  • CrestOptics SpA
  • Teledyne Photometrics
  • Newport Corporation
  • Prior Scientific Instruments Ltd.
JHS 24.12.12

The Super-resolution Microscopes Market was valued at USD 3.77 billion in 2023, expected to reach USD 4.16 billion in 2024, and is projected to grow at a CAGR of 10.30%, to USD 7.50 billion by 2030.

Super-resolution microscopes have revolutionized the field of microscopy by enabling scientists to visualize biological structures at a scale beyond the diffraction limit of light, providing clarity at the molecular and even atomic levels. These advanced microscopes are crucial for research in cell biology, neurobiology, and material sciences, where detailed imaging is essential for breakthroughs in understanding complex structures. The application scope for super-resolution microscopes is broad, including academic research, pharmaceuticals, diagnostics, and nanotechnology, effectively catering to leading-edge technology companies and biomedical fields. Key growth factors in this market include the increasing demand for enhanced imaging techniques, rising investment in biological research, and technological advancements leading to more user-friendly and efficient microscopes with improved imaging resolution and speed. Opportunities abound in developing affordable and versatile super-resolution tools capable of integration with existing imaging technologies, which would attract a wider range of academic and industrial users. Companies should also explore cross-disciplinary collaborations to spur innovation and broaden application potential. However, the market faces limitations such as high costs, complexity of use, and the necessity for specialized training, which can impede broader adoption. Furthermore, regulatory hurdles can also slow the deployment of new technologies. Overcoming these challenges requires streamlining user interfaces, reducing costs through improved manufacturing processes, and emphasizing training programs for potential users. Research areas ripe for innovation include developing hybrid microscopy techniques, enhancing real-time data processing capabilities, and miniaturizing equipment for portable diagnostics. The market is characterized by rapid advancements and a competitive landscape; staying ahead requires continuous innovation and strategic partnerships. Understanding and addressing these dynamics is crucial for businesses aiming to lead in the super-resolution microscopy market, ensuring they capitalize on emerging trends and customer needs effectively.

KEY MARKET STATISTICS
Base Year [2023] USD 3.77 billion
Estimated Year [2024] USD 4.16 billion
Forecast Year [2030] USD 7.50 billion
CAGR (%) 10.30%

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Super-resolution Microscopes Market

The Super-resolution Microscopes Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Rising focus on biomedical research and nanotechnology studies
    • Government-funded projects initiating awareness and development of SRM
    • Increasing use of SRM for semiconductor and wafer inspection
  • Market Restraints
    • High capital investment required for the production of SRM
  • Market Opportunities
    • Advancements in super-resolution microscopy with adequate R&D activities
    • The potential of super-resolution microscopy in spatial genomics
  • Market Challenges
    • Technical and operational limitations of super-resolution microscopy

Porter's Five Forces: A Strategic Tool for Navigating the Super-resolution Microscopes Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Super-resolution Microscopes Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Super-resolution Microscopes Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Super-resolution Microscopes Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Super-resolution Microscopes Market

A detailed market share analysis in the Super-resolution Microscopes Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Super-resolution Microscopes Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Super-resolution Microscopes Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Key Company Profiles

The report delves into recent significant developments in the Super-resolution Microscopes Market, highlighting leading vendors and their innovative profiles. These include Oxford Instruments PLC, Cairn Research Ltd., PicoQuant GmbH, Abberior Instruments GmbH, Keyence Corporation, Active Motif, Inc., Thermo Fisher Scientific, Inc., Abbelight, Olympus Corporation, Oxford Nanoimaging Limited, Vitrolife Sweden AB, LIG Nanowise Ltd., Gattaquant GmbH, IBIDI GmbH, Axiom Optics, Danaher Corporation, Telight Brno, s.r.o., Eikon Therapeutics, Inc., GE HealthCare Technologies Inc., Bruker Corporation, Imagine Optic, Sysmex Corporation, Carl Zeiss AG, Nikon Corporation, Merck KGaA, DSS Imagetech Pvt. Ltd., CrestOptics S.p.A., Teledyne Photometrics, Newport Corporation, and Prior Scientific Instruments Ltd..

Market Segmentation & Coverage

This research report categorizes the Super-resolution Microscopes Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Technology, market is studied across Fluorescence Photoactivated Localization Microscopy, Photoactivated Localization Microscopy, Stimulated Emission Depletion Microscopy, Stochastic Optical Reconstruction Microscopy, and Structured-Illumination Microscopy.
  • Based on Application, market is studied across Life Science, Material Science, Nanotechnology, and Semiconductor.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Rising focus on biomedical research and nanotechnology studies
      • 5.1.1.2. Government-funded projects initiating awareness and development of SRM
      • 5.1.1.3. Increasing use of SRM for semiconductor and wafer inspection
    • 5.1.2. Restraints
      • 5.1.2.1. High capital investment required for the production of SRM
    • 5.1.3. Opportunities
      • 5.1.3.1. Advancements in super-resolution microscopy with adequate R&D activities
      • 5.1.3.2. The potential of super-resolution microscopy in spatial genomics
    • 5.1.4. Challenges
      • 5.1.4.1. Technical and operational limitations of super-resolution microscopy
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Technology: Utilization of advanced technologies in super-resolution microscopes offering unprecedented insights
    • 5.2.2. Application: Increasing usage of super-resolution microscopes in life and material sciences to understand complex biological systems and processes
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental
  • 5.5. Client Customization

6. Super-resolution Microscopes Market, by Technology

  • 6.1. Introduction
  • 6.2. Fluorescence Photoactivated Localization Microscopy
  • 6.3. Photoactivated Localization Microscopy
  • 6.4. Stimulated Emission Depletion Microscopy
  • 6.5. Stochastic Optical Reconstruction Microscopy
  • 6.6. Structured-Illumination Microscopy

7. Super-resolution Microscopes Market, by Application

  • 7.1. Introduction
  • 7.2. Life Science
  • 7.3. Material Science
  • 7.4. Nanotechnology
  • 7.5. Semiconductor

8. Americas Super-resolution Microscopes Market

  • 8.1. Introduction
  • 8.2. Argentina
  • 8.3. Brazil
  • 8.4. Canada
  • 8.5. Mexico
  • 8.6. United States

9. Asia-Pacific Super-resolution Microscopes Market

  • 9.1. Introduction
  • 9.2. Australia
  • 9.3. China
  • 9.4. India
  • 9.5. Indonesia
  • 9.6. Japan
  • 9.7. Malaysia
  • 9.8. Philippines
  • 9.9. Singapore
  • 9.10. South Korea
  • 9.11. Taiwan
  • 9.12. Thailand
  • 9.13. Vietnam

10. Europe, Middle East & Africa Super-resolution Microscopes Market

  • 10.1. Introduction
  • 10.2. Denmark
  • 10.3. Egypt
  • 10.4. Finland
  • 10.5. France
  • 10.6. Germany
  • 10.7. Israel
  • 10.8. Italy
  • 10.9. Netherlands
  • 10.10. Nigeria
  • 10.11. Norway
  • 10.12. Poland
  • 10.13. Qatar
  • 10.14. Russia
  • 10.15. Saudi Arabia
  • 10.16. South Africa
  • 10.17. Spain
  • 10.18. Sweden
  • 10.19. Switzerland
  • 10.20. Turkey
  • 10.21. United Arab Emirates
  • 10.22. United Kingdom

11. Competitive Landscape

  • 11.1. Market Share Analysis, 2023
  • 11.2. FPNV Positioning Matrix, 2023
  • 11.3. Competitive Scenario Analysis
    • 11.3.1. Super-resolution microscopy method for faster imaging of molecular structures in 3D
    • 11.3.2. Mines, CSU researchers combine classical, quantum optics for super-resolution imaging
    • 11.3.3. Expansion of AX series confocal microscope functions, and release of NSPARC super-resolution unit, which enables high-resolution deep tissue imaging
    • 11.3.4. Bruker announced acquisition of ACQUIFER Imaging GmbH
    • 11.3.5. Novel super-resolution microscopy sheds new light on protein complexes
    • 11.3.6. Bruker Announced acquisition of Inscopix for neuroscience research
    • 11.3.7. Edinburgh Super-Resolution Imaging Consortium play key role in UK Euro-BioImaging node
    • 11.3.8. CrestOptics' DeepSIM super resolution confocal microscope module named by Microscopy Today as a top 10 best microscopy innovation of 2022
    • 11.3.9. LiveCodim achieves 90 nm resolution for super-resolution fluorescence imaging
    • 11.3.10. ZEISS Microscopy Partners with LabCentral to Support Biotech Research Start-ups in the Boston, USA area
    • 11.3.11. Super-resolution microscope maker Oni nabs USD 75 million for U.S. expansion
    • 11.3.12. Super-resolution microscopy startup Eikon raises USD 518 million for 'drug-hunting biofactory

Companies Mentioned

  • 1. Oxford Instruments PLC
  • 2. Cairn Research Ltd.
  • 3. PicoQuant GmbH
  • 4. Abberior Instruments GmbH
  • 5. Keyence Corporation
  • 6. Active Motif, Inc.
  • 7. Thermo Fisher Scientific, Inc.
  • 8. Abbelight
  • 9. Olympus Corporation
  • 10. Oxford Nanoimaging Limited
  • 11. Vitrolife Sweden AB
  • 12. LIG Nanowise Ltd.
  • 13. Gattaquant GmbH
  • 14. IBIDI GmbH
  • 15. Axiom Optics
  • 16. Danaher Corporation
  • 17. Telight Brno, s.r.o.
  • 18. Eikon Therapeutics, Inc.
  • 19. GE HealthCare Technologies Inc.
  • 20. Bruker Corporation
  • 21. Imagine Optic
  • 22. Sysmex Corporation
  • 23. Carl Zeiss AG
  • 24. Nikon Corporation
  • 25. Merck KGaA
  • 26. DSS Imagetech Pvt. Ltd.
  • 27. CrestOptics S.p.A.
  • 28. Teledyne Photometrics
  • 29. Newport Corporation
  • 30. Prior Scientific Instruments Ltd.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦