½ÃÀ庸°í¼­
»óǰÄÚµå
1602194

Åõ°úÀüÀÚÇö¹Ì°æ ½ÃÀå : ¸ðµå, À¯Çü, Á¦Ç° À¯Çü, ¿ëµµ, ÃÖÁ¾»ç¿ëÀÚº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Transmission Electron Microscope Market by Mode (Bright Field, Dark Field), Type (Aberration corrected TEM, Cryo-TEM, Environmental/In-situ TEM), Product Type, Application, End Users - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 189 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Åõ°úÀüÀÚÇö¹Ì°æ ½ÃÀåÀÇ 2023³â ½ÃÀå ±Ô¸ð´Â 20¾ï 5,000¸¸ ´Þ·¯·Î, 2024³â¿¡´Â 22¾ï 4,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, CAGR 9.71%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 39¾ï 2,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

Åõ°úÀüÀÚÇö¹Ì°æ(TEM)Àº ¿øÀÚ ¼öÁØ¿¡¼­ Àç·áÀÇ ¹Ì¼¼ ±¸Á¶¸¦ ºÐ¼®ÇÏ´Â °íÇØ»óµµ À̹Ì¡À» Á¦°øÇÏ´Â °úÇÐ ¿¬±¸ ¹× »ê¾÷ ¿ëµµ¿¡ ÇʼöÀûÀÎ Åø·Î, TEM ½ÃÀå ¹üÀ§´Â Àç·á °úÇÐ, ¹ÝµµÃ¼, »ý¸í°úÇÐ, ³ª³ëÅ×Å©³î·¯Áö µîÀÇ ºÐ¾ß¿¡¼­ ±¤¹üÀ§ÇÑ ¿ëµµ¸¦ Æ÷°ýÇϰí ÀÖ½À´Ï´Ù. TEMÀÇ Çʿ伺Àº ´õ ³ªÀº Ư¼ºÀ» °¡Áø ½Å¼ÒÀç °³¹ß, ¼¼Æ÷ ¼öÁØÀÇ »ý¹°ÇÐÀû °úÁ¤ ÀÌÇØ µî ÀÌµé ºÐ¾ßÀÇ Çõ½Å¿¡ ÇʼöÀûÀÎ »ó¼¼ÇÑ ±¸Á¶ ¹× Á¶¼º Á¤º¸¸¦ ¹àÇô³»´Â ´É·Â¿¡¼­ ºñ·ÔµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ[2023] 20¾ï 5,000¸¸ ´Þ·¯
¿¹Ãø³â[2024] 22¾ï 4,000¸¸ ´Þ·¯
¿¹Ãø³â[2030] 39¾ï 2,000¸¸ ´Þ·¯
CAGR(%) 9.71%

TEMÀº Çмú¿¬±¸ ±â°ü, ÀÇ·á, Á¦Á¶ »ê¾÷ µî¿¡¼­ ±¤¹üÀ§ÇÏ°Ô »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ³ª³ëÅ×Å©³î·¯ÁöÀÇ ¹ßÀü, R&D ºñ¿ë Áõ°¡, »ý¸í°úÇÐ ºÐ¾ßÀÇ °íÇØ»óµµ À̹Ì¡¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ¹ÝµµÃ¼ Á¦Á¶ ºÐ¾ßÀÇ ²÷ÀÓ¾ø´Â Çõ½Å µîÀÇ ¿äÀÎÀÌ ½ÃÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. »õ·Î¿î ¼ºÀå ±âȸ´Â Á¤¹Ðµµ¿Í È¿À²¼ºÀ» ³ôÀ̱â À§ÇØ Ã·´Ü À̹Ì¡ ¼ÒÇÁÆ®¿þ¾î ¹× ÀÚµ¿È­ ±â¼ú°ú TEMÀ» ÅëÇÕÇÏ´Â µ¥¼­ µÎµå·¯Áö°Ô ³ªÅ¸³ª¸ç, AI ±â¼ú°úÀÇ Çù¾÷Àº °í±Þ µ¥ÀÌÅÍ ºÐ¼® ¹× ºÐ¼® ±â´ÉÀ» Á¦°øÇÏ¿© ÃÖÁ¾»ç¿ëÀÚ¿¡°Ô Å« °¡Ä¡¸¦ Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼ö ÀÖ½À´Ï´Ù.

±×·¯³ª TEM ÀåºñÀÇ ³ôÀº °¡°Ý, ³ôÀº À¯Áöº¸¼ö ºñ¿ë, º¹ÀâÇÑ Àåºñ¸¦ Á¶ÀÛÇÒ ¼ö ÀÖ´Â ¼÷·ÃµÈ ÀηÂÀÇ Çʿ伺 µîÀº ÀáÀçÀûÀÎ ¼ºÀå À庮À¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÇÐ°è ¹× ¿¬±¸ ÇöÀåÀÇ °æÁ¦Àû Á¦¾à°ú ¿¹»ê Á¦ÇÑÀÌ ½ÃÀå È®´ë¿¡ °É¸²µ¹ÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ±â¼ú Çõ½ÅÀº ±â¼ú ¹ßÀüÀ¸·Î ÀÎÇÑ ºñ¿ë Àý°¨°ú »ç¿ëÀÚ ÀÎÅÍÆäÀ̽º °³¼±¿¡ ÃÊÁ¡À» ¸ÂÃß¾î Á¶ÀÛ¼ºÀ» Çâ»ó½ÃŰ°í ¼÷·Ãµµ À庮À» ³·Ãß´Â µ¥ ÃÊÁ¡À» ¸ÂÃß¾î¾ß Çϸç, TEMÀÇ ¼ÒÇüÈ­ ¹× 󸮷® Çâ»ó¿¡ ´ëÇÑ ¿¬±¸´Â °æÀï ¿ìÀ§¸¦ °¡Á®´Ù ÁÙ ¼ö ÀÖ½À´Ï´Ù.

TEM ½ÃÀåÀº ¿ªµ¿ÀûÀ̸ç, °æÀïÀº ÁÖ·Î ±â¼ú Çõ½Å, Á¦Ç° ¼º´É ¹× ¾ÖÇÁÅÍ ¼­ºñ½º¸¦ ±â¹ÝÀ¸·Î ÇÕ´Ï´Ù. ¿¬±¸°³¹ß¿¡ ÅõÀÚÇÏ¿© À̹ÌÁö ÇØ»óµµ¸¦ ³ôÀ̰í, »ç¿ë ÆíÀǼºÀ» °³¼±Çϰí, ¿î¿µ ºñ¿ëÀ» Àý°¨ÇÏ´Â ±â¾÷ÀÌ ¼º°øÇÒ °¡´É¼ºÀÌ ³ô½À´Ï´Ù. ¶ÇÇÑ ¾ÖÇÁÅÍ ¼­ºñ½º Áö¿ø°ú ±³À°¿¡ ÁßÁ¡À» µÎ¾î »ç¿ëÀÚ ¸¸Á·µµ¸¦ ³ôÀÌ°í ½ÃÀå ¼ºÀå°ú È®ÀåÀ» ÃËÁøÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå ¿ªÇÐ: ºü¸£°Ô ÁøÈ­ÇÏ´Â Åõ°úÀüÀÚÇö¹Ì°æ ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® ÆÄ¾ÇÇϱâ

Æ®·£½º¹Ì¼Ç ÀüÀÚÇö¹Ì°æ ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ë¿¡ ÀÇÇØ º¯È­Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐÀÇ ÁøÈ­¸¦ ÀÌÇØÇÔÀ¸·Î½á ±â¾÷Àº Á¤º¸¿¡ ÀÔ°¢ÇÑ ÅõÀÚ °áÁ¤, Àü·«Àû ÀÇ»ç°áÁ¤, »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Æ÷ÂøÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¿ªÀû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ ¿ÏÈ­Çϰí, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë ¹× ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ¹ÝµµÃ¼ ¼ÒÀÚ »ý»ê ¹× °Ë»ç Áõ°¡
    • ¼¼Æ÷ ¹× ºÐÀÚ ºÐ¼®¿¡ ´ëÇÑ °ü½É Áõ´ë
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • Åõ°úÇü ÀüÀÚÇö¹Ì°æÀÇ Ãʱâ Á¶´Þ ¹× Á¤ºñ ºñ¿ëÀÌ ³ôÀ½
  • ½ÃÀå ±âȸ
    • Åõ°úÇü ÀüÀÚÇö¹Ì°æ ±â¼úÀÇ ¹ßÀü
    • Àç·á°úÇÐ ¹× ³ª³ëÅ×Å©³î·¯Áö °ü·Ã ¿¬±¸°³¹ß È®´ë
  • ½ÃÀå °úÁ¦
    • Åõ°úÇü ÀüÀÚÇö¹Ì°æÀÇ ±â¼úÀû ÇѰè

Porter's Five Forces: Åõ°úÀüÀÚÇö¹Ì°æ ½ÃÀå °ø·«À» À§ÇÑ Àü·«Àû Åø

PorterÀÇ Five Forces Framework´Â Àü¼Û ÀüÀÚÇö¹Ì°æ ½ÃÀå °æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â µ¥ Áß¿äÇÑ ÅøÀÔ´Ï´Ù. PorterÀÇ Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÇ °æÀï·ÂÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ Ž»öÇÒ ¼ö ÀÖ´Â ¸íÈ®ÇÑ ¹æ¹ýÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÀλçÀÌÆ®À» ÅëÇØ ±â¾÷Àº °­Á¡À» Ȱ¿ëÇϰí, ¾àÁ¡À» ÇØ°áÇϰí, ÀáÀçÀûÀÎ µµÀüÀ» ÇÇÇϰí, º¸´Ù °­·ÂÇÑ ½ÃÀå Æ÷Áö¼Å´×À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : Åõ°úÀüÀÚÇö¹Ì°æ ½ÃÀåÀÇ ¿ÜºÎ ¿µÇâ ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº Åõ°úÇü ÀüÀÚÇö¹Ì°æ ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀο¡ ´ëÇÑ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇϸç, PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀû À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£µµ, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¼±Á¦ÀûÀÌ°í ´Éµ¿ÀûÀÎ ÀÇ»ç°áÁ¤À» ³»¸± Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® Åõ°úÀüÀÚÇö¹Ì°æ ½ÃÀå¿¡¼­ °æÀï ±¸µµ ÆÄ¾Ç

Æ®·£½º¹Ì¼Ç ÀüÀÚÇö¹Ì°æ ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¸ÅÃâ, °í°´ ±â¹Ý, ¼ºÀå·ü°ú °°Àº ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀïÀû À§Ä¡¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®Àº ½ÃÀåÀÇ ÁýÁßÈ­, ´ÜÆíÈ­, ÅëÇÕÀÇ Ãß¼¼¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖÀ¸¸ç, °ø±Þ¾÷ü´Â Ä¡¿­ÇÑ °æÀï ¼Ó¿¡¼­ ÀÚ½ÅÀÇ ÀÔÁö¸¦ °­È­ÇÒ ¼ö ÀÖ´Â Àü·«Àû ÀÇ»ç°áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ ÀλçÀÌÆ®À» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º Åõ°úÇü ÀüÀÚÇö¹Ì°æ ½ÃÀå¿¡¼­ÀÇ º¥´õ ¼º°ú Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â Åõ°úÇü ÀüÀÚÇö¹Ì°æ ½ÃÀå¿¡¼­ °ø±Þ¾÷ü¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ ÅøÀÔ´Ï´Ù. ÀÌ ¸ÅÆ®¸¯½º¸¦ ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº º¥´õÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±â¹ÝÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ºÎÇÕÇÏ´Â Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖÀ¸¸ç, 4°³ÀÇ »çºÐ¸éÀº º¥´õ¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ±¸ºÐÇÏ¿© »ç¿ëÀÚ°¡ Àü·«Àû ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê¿Í ¼Ö·ç¼ÇÀ» ½Äº°ÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù. ½Äº°ÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â Á¾ÇÕÀûÀÎ ½ÃÀå ºÐ¼®À» Á¦°øÇÕ´Ï´Ù. :

1. ½ÃÀå ħÅõµµ : ¾÷°è ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅ͸¦ Æ÷ÇÔÇÑ ÇöÀç ½ÃÀå ȯ°æ¿¡ ´ëÇÑ »ó¼¼ÇÑ °ËÅä.

2. ½ÃÀå °³Ã´µµ: ½ÅÈï ½ÃÀå¿¡¼­ÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇϰí, ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡Çϸç, ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù°¢È­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä ¹ßÀü, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú ¹ßÀü µîÀ» °ËÅäÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÷´Ü ±â¼ú, ¿¬±¸°³¹ß Ȱµ¿ ¹× Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

ÀÌÇØ°ü°èÀÚµéÀÌ ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï ´ÙÀ½°ú °°Àº Áß¿äÇÑ Áú¹®¿¡ ´ëÇÑ ´äº¯µµ Á¦°øÇÕ´Ï´Ù. :

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå Àü¸ÁÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹®, Áö¿ªÀº?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5.º¥´õ ½ÃÀå ÁøÀÔ ¹× ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÔ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå °³¿ä

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
    • ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ±âȸ
    • °úÁ¦
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡
    • °æÁ¦
    • »çȸ
    • ±â¼ú
    • ¹ý·ü
    • ȯ°æ

Á¦6Àå Åõ°úÀüÀÚÇö¹Ì°æ ½ÃÀå : ¸ðµåº°

  • ¸í½Ã¾ß
  • ´ÙÅ© Çʵå

Á¦7Àå Åõ°úÀüÀÚÇö¹Ì°æ ½ÃÀå : À¯Çüº°

  • ¼öÂ÷ º¸Á¤ TEM
  • Å©¶óÀÌ¿À TEM
  • ȯ°æ/Àå¼Ò TEM
    • °í¿Â Àå¼Ò TEM
    • In Situ ±â°è TEM
  • ÀúÀü¾Ð ÀüÀÚÇö¹Ì°æ
  • ÁÖ»çÇü ÀüÀÚÇö¹Ì°æ
  • Ãʰí¼Ó ´ÙÀ̳ª¹Í TEM

Á¦8Àå Åõ°úÀüÀÚÇö¹Ì°æ ½ÃÀå : Á¦Ç° À¯Çüº°

  • º¥Ä¡Å¾
  • µ¥½ºÅ©Åé
  • ÈÞ´ë¿ë

Á¦9Àå Åõ°úÀüÀÚÇö¹Ì°æ ½ÃÀå : ¿ëµµº°

  • ÀÚµ¿Â÷
  • ÀÏ·ºÆ®·Î´Ð½º ¹× ¹ÝµµÃ¼
  • ȯ°æ
  • »ý¸í°úÇÐ
  • Àç·á °úÇÐ
  • ³ª³ëÅ×Å©³î·¯Áö
  • ¼®À¯ ¹× °¡½º
  • ¼öÄ¡·á

Á¦10Àå Åõ°úÀüÀÚÇö¹Ì°æ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • Ç÷¾×ÀºÇà
  • Áø´Ü ¼¾ÅÍ
  • ¹ýÀÇÇÐ ¿¬±¸¼Ò
  • º´¿ø
  • »ê¾÷
  • Á¶»ç±â°ü

Á¦11Àå ¾Æ¸Þ¸®Ä«ÀÇ Åõ°úÀüÀÚÇö¹Ì°æ ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦12Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Åõ°úÀüÀÚÇö¹Ì°æ ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦13Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ Åõ°úÀüÀÚÇö¹Ì°æ ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®
  • ¿µ±¹

Á¦14Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼® 2023
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2023
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®

±â¾÷ ¸®½ºÆ®

  • AMETEK, Inc
  • Beike Nano Technology Co., Ltd.
  • Bruker Corporation
  • Carl Zeiss AG
  • Cordouan Technologies
  • Corrected Electron Optical Systems GmbH
  • Delong Instruments a. s.
  • DENSsolutions
  • Hitachi Ltd.
  • Hummingbird Scientific
  • JEOL Ltd.
  • Keyence Corporation
  • Kitano Seiki Co., Ltd.
  • NanoScience Instruments, Inc.
  • Nikon Corporation
  • Nion Co.
  • Norcada Inc.
  • Opto-Edu(Beijing) Co., Ltd.
  • Oxford Instruments PLC
  • Protochips Incorporated
  • TESCAN Group, a.s.
  • Thermo Fisher Scientific Inc.
  • TVIPS-Tietz Video and Image Processing Systems GmbH
KSA 24.12.10

The Transmission Electron Microscope Market was valued at USD 2.05 billion in 2023, expected to reach USD 2.24 billion in 2024, and is projected to grow at a CAGR of 9.71%, to USD 3.92 billion by 2030.

Transmission Electron Microscopes (TEMs) are indispensable tools in scientific research and industrial applications, providing high-resolution imaging to analyze the microstructure of materials at the atomic level. The market scope for TEMs encompasses a broad range of applications in fields such as materials science, semiconductors, life sciences, and nanotechnology. The necessity of TEMs arises from their ability to reveal detailed structural and compositional information that is crucial for innovations in these areas, such as developing new materials with enhanced properties or understanding biological processes at the cellular level.

KEY MARKET STATISTICS
Base Year [2023] USD 2.05 billion
Estimated Year [2024] USD 2.24 billion
Forecast Year [2030] USD 3.92 billion
CAGR (%) 9.71%

TEMs are used extensively in academic and research institutions, healthcare, and manufacturing industries. The market is driven by factors such as advancing nanotechnologies, increasing R&D expenditure, rising demand for high-resolution imaging in life sciences, and the continual innovation in semiconductor manufacturing. Emerging opportunities are notable in the integration of TEMs with advanced imaging software and automation technologies to enhance precision and efficiency, presenting lucrative growth avenues. Collaboration with AI technology can also provide advanced data interpretation and analysis capabilities, adding significant value to the end-users.

However, challenges such as the high cost of TEM equipment, significant maintenance requirements, and the need for skilled personnel to operate these complex instruments are potential barriers to growth. Furthermore, economic constraints and budget limitations in academic and research settings might hinder market expansion. Innovations should focus on reducing costs through technological advancements and improving user interfaces to enhance operability and reduce the skill barrier. Research into miniaturization and increasing the throughput of TEMs could provide competitive advantages.

The TEM market is dynamic, with competition primarily based on technological innovation, product performance, and after-sales service. Companies that invest in R&D to enhance image resolution, increase usability, and reduce operational costs will likely succeed. Emphasizing after-sales support and training can also enhance user satisfaction, fostering market growth and expansion.

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Transmission Electron Microscope Market

The Transmission Electron Microscope Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Increasing production and inspection of semiconductor devices
    • Rising emphasis on cellular and molecular analysis
  • Market Restraints
    • High cost of initial procurement and maintenance of transmission electron microscope
  • Market Opportunities
    • Advancements in transmission electron microscope technologies
    • Expanding R&D on material sciences and nanotechnology
  • Market Challenges
    • Technical limitations of transmission electron microscope

Porter's Five Forces: A Strategic Tool for Navigating the Transmission Electron Microscope Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Transmission Electron Microscope Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Transmission Electron Microscope Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Transmission Electron Microscope Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Transmission Electron Microscope Market

A detailed market share analysis in the Transmission Electron Microscope Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Transmission Electron Microscope Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Transmission Electron Microscope Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Key Company Profiles

The report delves into recent significant developments in the Transmission Electron Microscope Market, highlighting leading vendors and their innovative profiles. These include AMETEK, Inc, Beike Nano Technology Co., Ltd., Bruker Corporation, Carl Zeiss AG, Cordouan Technologies, Corrected Electron Optical Systems GmbH, Delong Instruments a. s., DENSsolutions, Hitachi Ltd., Hummingbird Scientific, JEOL Ltd., Keyence Corporation, Kitano Seiki Co., Ltd., NanoScience Instruments, Inc., Nikon Corporation, Nion Co., Norcada Inc., Opto-Edu (Beijing) Co., Ltd., Oxford Instruments PLC, Protochips Incorporated, TESCAN Group, a.s., Thermo Fisher Scientific Inc., and TVIPS - Tietz Video and Image Processing Systems GmbH.

Market Segmentation & Coverage

This research report categorizes the Transmission Electron Microscope Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Mode, market is studied across Bright Field and Dark Field.
  • Based on Type, market is studied across Aberration corrected TEM, Cryo-TEM, Environmental/In-situ TEM, Low-Voltage Electron Microscope, Scanning TEM, and Ultrafast & Dynamic TEM. The Environmental/In-situ TEM is further studied across High Temperature In-Situ TEM and In Situ Mechanical TEM.
  • Based on Product Type, market is studied across Benchtop, Desktop, and Portable.
  • Based on Application, market is studied across Automotive, Electronics & Semiconductors, Environmental, Life Sciences, Material Sciences, Nanotechnology, Oil & Gas, and Water Treatment.
  • Based on End Users, market is studied across Blood Banks, Diagnostic Centers, Forensic Labs, Hospitals, Industrial, and Research Institutes.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Increasing production and inspection of semiconductor devices
      • 5.1.1.2. Rising emphasis on cellular and molecular analysis
    • 5.1.2. Restraints
      • 5.1.2.1. High cost of initial procurement and maintenance of transmission electron microscope
    • 5.1.3. Opportunities
      • 5.1.3.1. Advancements in transmission electron microscope technologies
      • 5.1.3.2. Expanding R&D on material sciences and nanotechnology
    • 5.1.4. Challenges
      • 5.1.4.1. Technical limitations of transmission electron microscope
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Mode: Adoption of dark field TEM for revealing the intricate internal structure and defects of materials
    • 5.2.2. Type: Advancements to improve the performance and capabilities of scanning TEM
    • 5.2.3. Product Type: Preference for benchtop TEM to attain enhanced image resolution capabilities
    • 5.2.4. Application: Critical role of TEM in the development of material structures in material science industry
    • 5.2.5. End Users: Expansion of research institutes across the world fuelling the need for highly precise and accurate TEMs
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Transmission Electron Microscope Market, by Mode

  • 6.1. Introduction
  • 6.2. Bright Field
  • 6.3. Dark Field

7. Transmission Electron Microscope Market, by Type

  • 7.1. Introduction
  • 7.2. Aberration corrected TEM
  • 7.3. Cryo-TEM
  • 7.4. Environmental/In-situ TEM
    • 7.4.1. High Temperature In-Situ TEM
    • 7.4.2. In Situ Mechanical TEM
  • 7.5. Low-Voltage Electron Microscope
  • 7.6. Scanning TEM
  • 7.7. Ultrafast & Dynamic TEM

8. Transmission Electron Microscope Market, by Product Type

  • 8.1. Introduction
  • 8.2. Benchtop
  • 8.3. Desktop
  • 8.4. Portable

9. Transmission Electron Microscope Market, by Application

  • 9.1. Introduction
  • 9.2. Automotive
  • 9.3. Electronics & Semiconductors
  • 9.4. Environmental
  • 9.5. Life Sciences
  • 9.6. Material Sciences
  • 9.7. Nanotechnology
  • 9.8. Oil & Gas
  • 9.9. Water Treatment

10. Transmission Electron Microscope Market, by End Users

  • 10.1. Introduction
  • 10.2. Blood Banks
  • 10.3. Diagnostic Centers
  • 10.4. Forensic Labs
  • 10.5. Hospitals
  • 10.6. Industrial
  • 10.7. Research Institutes

11. Americas Transmission Electron Microscope Market

  • 11.1. Introduction
  • 11.2. Argentina
  • 11.3. Brazil
  • 11.4. Canada
  • 11.5. Mexico
  • 11.6. United States

12. Asia-Pacific Transmission Electron Microscope Market

  • 12.1. Introduction
  • 12.2. Australia
  • 12.3. China
  • 12.4. India
  • 12.5. Indonesia
  • 12.6. Japan
  • 12.7. Malaysia
  • 12.8. Philippines
  • 12.9. Singapore
  • 12.10. South Korea
  • 12.11. Taiwan
  • 12.12. Thailand
  • 12.13. Vietnam

13. Europe, Middle East & Africa Transmission Electron Microscope Market

  • 13.1. Introduction
  • 13.2. Denmark
  • 13.3. Egypt
  • 13.4. Finland
  • 13.5. France
  • 13.6. Germany
  • 13.7. Israel
  • 13.8. Italy
  • 13.9. Netherlands
  • 13.10. Nigeria
  • 13.11. Norway
  • 13.12. Poland
  • 13.13. Qatar
  • 13.14. Russia
  • 13.15. Saudi Arabia
  • 13.16. South Africa
  • 13.17. Spain
  • 13.18. Sweden
  • 13.19. Switzerland
  • 13.20. Turkey
  • 13.21. United Arab Emirates
  • 13.22. United Kingdom

14. Competitive Landscape

  • 14.1. Market Share Analysis, 2023
  • 14.2. FPNV Positioning Matrix, 2023
  • 14.3. Competitive Scenario Analysis
    • 14.3.1. Huangpu Launches TH-F120, China's Commercial Electron Microscope
    • 14.3.2. Bruker Acquires Electron Microscopy Company Nion
    • 14.3.3. Pronexos Collaborates on TEM Technology for ThermoFisher Scientific
    • 14.3.4. Automated Metrology Becomes a Reality With New Scanning Transmission Electron Microscope
    • 14.3.5. Gatan Introduces the Monarc Pro T System for Cathodoluminescence Imaging
    • 14.3.6. New state-of-the-art Transmission Electron Microscope (TEM) at Radboudumc
    • 14.3.7. EDAX and Gatan Merge to Offer the Ultimate Suite of Microscopy Tools
    • 14.3.8. Launch of the FIB-SEM System JIB-PS500i with High Precision and High Resolution
    • 14.3.9. TESCAN Unveils New TENSOR Scanning Transmission Electron Microscope
    • 14.3.10. Thermo Fisher Scientific Announces New Cryo-TEM With Expansive Automation Features To Help Accelerate Drug Discovery Research

Companies Mentioned

  • 1. AMETEK, Inc
  • 2. Beike Nano Technology Co., Ltd.
  • 3. Bruker Corporation
  • 4. Carl Zeiss AG
  • 5. Cordouan Technologies
  • 6. Corrected Electron Optical Systems GmbH
  • 7. Delong Instruments a. s.
  • 8. DENSsolutions
  • 9. Hitachi Ltd.
  • 10. Hummingbird Scientific
  • 11. JEOL Ltd.
  • 12. Keyence Corporation
  • 13. Kitano Seiki Co., Ltd.
  • 14. NanoScience Instruments, Inc.
  • 15. Nikon Corporation
  • 16. Nion Co.
  • 17. Norcada Inc.
  • 18. Opto-Edu (Beijing) Co., Ltd.
  • 19. Oxford Instruments PLC
  • 20. Protochips Incorporated
  • 21. TESCAN Group, a.s.
  • 22. Thermo Fisher Scientific Inc.
  • 23. TVIPS - Tietz Video and Image Processing Systems GmbH
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦