½ÃÀ庸°í¼­
»óǰÄÚµå
1604726

¼¼°èÀÇ ¿øÀÚ°£·Â Çö¹Ì°æ ½ÃÀå : À¯Çü, ¸ðµå, ¿ëµµº° ¿¹Ãø(2025-2030³â)

Atomic Force Microscopy Market (AFM) by Type (Industrial Grade AFM, Research Grade AFM), Mode (Contact Mode, Non-Contact Mode, Tapping Mode), Application - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 187 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

¿øÀÚ°£·Â Çö¹Ì°æ ½ÃÀåÀº 2023³â¿¡ 6¾ï 7,376¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2024³â¿¡´Â 7¾ï 1,706¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 6.52%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 10¾ï 4,841¸¸ ´Þ·¯°¡ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¿øÀÚ°£·Â Çö¹Ì°æ AFMÀº ´Ù¾çÇÑ Àç·á¿¡ °íºÐÇØ´ÉÀÇ ÅäÆ÷±×·¡ÇÇ µ¥ÀÌÅ͸¦ Á¦°øÇÒ ¼ö Àֱ⠶§¹®¿¡ ³ª³ë½ºÄÉÀÏÀÇ ¿¬±¸°³¹ß¿¡ ÀÖ¾î ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ³ª³ëÅ× °øÇаú °°Àº ¼ö¸¹Àº »ê¾÷¿¡ °ÉÃÄ ÀÖÀ¸¸ç, ¿øÀÚ ¼öÁØ¿¡¼­ÀÇ »ó¼¼ÇÑ Ç¥¸é ºÐ¼®¿¡ ÇʼöÀûÀÔ´Ï´Ù. ¿À¸®, À̵éÀº °í±Þ Àç·á Ư¼ºÈ­¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í ÀÏÄ¡Çϰí ÀÖ½À´Ï´Ù. ¹ÝµµÃ¼³ª »ý¸í°úÇÐ¿Í °°Àº »ê¾÷ÀÌ Áøº¸ÇÔ¿¡ µû¶ó Á¤¹ÐÇÑ Ç¥¸é ºÐ¼®ÀÇ Çʿ伺ÀÌ ³ô¾ÆÁö°í AFM¿¡ÀÇ ÀÇÁ¸ÀÌ °è¼ÓµÇ°í ÀÖ½À´Ï´Ù. ÇØ»óµµ¿Í ÃøÁ¤ ¼Óµµ¸¦ Çâ»ó½ÃŰ´Â ±â¼ú ±â¼úÀû Áøº¸, ´õ ³ªÀº µ¥ÀÌÅÍ ºÐ¼®À» À§ÇÑ AI ÅëÇÕ, ´ÜÀÏ ¼¼Æ÷ ºÐ¼®À» À§ÇÑ »ý¸í°øÇп¡¼­ÀÇ »ç¿ë È®´ë°¡ Å©°Ô ¿µÇâÀ» ¹Þ°í ÀÖ½À´Ï´Ù. À̳ª ½Å¼ÒÀç ½ÃÀå °³Ã´µµ ÇÏÁö¸¸ ½ÃÀå Àü¸ÁÀ» ´õ¿í °­È­Çϰí ÀÖ½À´Ï´Ù. ±âȸ´Â ¿¹»ê¿¡ Á¦¾àÀÌ ÀÖ½À´Ï´Ù. ¼Ò±Ô¸ð ¿¬±¸±â°ü°ú »ê¾÷¿¡ ´ëÀÀÇÏ´Â º¸´Ù Àú·ÅÇÑ °¡°ÝÀ¸·Î »ç¿ëÇϱ⠽¬¿î AFM ½Ã½ºÅÛÀÇ °³¹ß¿¡ ÀÖ½À´Ï´Ù. ¿¬±¸ ºÐ¾ß·Î¼­´Â ÷´Ü »ý¹°ÇÐÀû, È­ÇÐÀû ¿¬±¸¸¦ ÃËÁøÇϱâ À§ÇÑ ¾×ü ȯ°æ¿¡ À־ÀÇ AFMÀÇ ±â´É È®Àå µîÀÌ »ý°¢µË´Ï´Ù. Çмú¿¬±¸¿Í »ê¾÷¿¬±¸ È®´ë¿¡ ÁßÁ¡À» µÐ ½ÅÈï ±¹°¡¿¡¼­ Å« ¼ºÀåÀÌ ±â´ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±âȸ¸¦ Ȱ¿ëÇϱâ À§ÇØ ±â¾÷Àº ºñ¿ë È¿À²ÀûÀÌ°í »ç¿ëÇϱ⠽¬¿î AFM ½Ã½ºÅÛ °³¹ß¿¡ ÅõÀÚÇÏ°í ¹Ì°³Ã´ ºÐ¾ß·ÎÀÇ ¿ëµµ Æ÷Æ®Æú¸®¿À È®´ë¿¡ ÁÖ·ÂÇØ¾ß ÇÕ´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ(2023) 6¾ï 7,376¸¸ ´Þ·¯
ÃßÁ¤³â(2024) 7¾ï 1,706¸¸ ´Þ·¯
¿¹Ãø³â(2030) 10¾ï 4,841¸¸ ´Þ·¯
º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)(%) 6.52%

½ÃÀå ¿ªÇÐ : ±Þ¼ÓÈ÷ ÁøÈ­ÇÏ´Â ¿øÀÚ°£·Â Çö¹Ì°æ ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

¿øÀÚ°£·Â Çö¹Ì°æ ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ë¿¡ ÀÇÇØ º¯¸ð¸¦ ÀÌ·ç°í ÀÖ½À´Ï´Ù. ¼¼·ÃµÇ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ ¾ò´Â µ¥ µµ¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ À§ÇèÀ» ¿ÏÈ­ÇÒ ¼ö ÀÖÀ¸¸ç, ¼ÒºñÀÚ Çൿ°ú ÀÌ´Â Á¦Á¶ ºñ¿ë°ú ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ´õ¿í ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ¼ÒÇü Æ®·£Áö½ºÅÍ Ä¨, ¾çÀÚÁ¡, ³ª³ë ÀÏ·ºÆ®·Î´Ð½º, ±¤ÀüÀÚ¿¡ ´ëÇÑ ¼ö¿ä
    • ¹ÝµµÃ¼ ¹× ÀÏ·ºÆ®·Î´Ð½º ºÐ¾ß¿¡¼­ÀÇ 3D IC ¼ö¿ä Áõ°¡
    • ³ª³ë±â¼ú°ú ¹ÙÀÌ¿À»çÀ̾ð½ºÀÇ ¿¬±¸È°µ¿À» ÃËÁøÇÏ´Â Á¤ºÎÀÇ Áö¿ø
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ÀåÄ¡ÀÇ ºñ¿ëÀÌ ³ô´Ù
    • Á¢ÃËÇü AFM ¶§¹®¿¡ ½Ã·á¿¡ µ¥¹ÌÁö¸¦ Áֱ⠽±½À´Ï´Ù.
  • ½ÃÀå ±âȸ
    • OLED »ý»ê ÅõÀÚ È®´ë
    • °í¼Ó Áø´Ü¿¡ ´ëÇÑ ¿ä±¸ Áõ°¡
  • ½ÃÀåÀÇ °úÁ¦
    • AFM ÅøÀ» ´Ù·ç´Â ¼÷·ÃµÈ Àü¹®°¡ÀÇ ºÎÁ·

Porter's Five Forces : ¿øÀÚ°£·Â Çö¹Ì°æ ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Porter's Five Forces Framework´Â ½ÃÀå »óȲ°æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Porter's Five Forces Framework´Â ±â¾÷ÀÇ °æÀï·ÂÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ ޱ¸ÇÏ´Â ¸íÈ®ÇÑ ±â¼úÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÀλçÀÌÆ®À» ÅëÇØ ±â¾÷Àº ÀÚ»çÀÇ °­Á¡À» Ȱ¿ëÇÏ°í ¾àÁ¡À» ÇØ°áÇϰí ÀáÀçÀûÀÎ °úÁ¦¸¦ ÇÇÇÔÀ¸·Î½á º¸´Ù °­ÀÎÇÑ ½ÃÀå¿¡¼­ÀÇ Æ÷Áö¼Å´×À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : ¿øÀÚ°£·Â Çö¹Ì°æ ½ÃÀå¿¡¼­ ¿ÜºÎ·ÎºÎÅÍÀÇ ¿µÇâ ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº ¿øÀÚ°£·Â Çö¹Ì°æ ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ»ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀÎ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¾ÕÀ¸·Î ¿¹»óµÇ´Â Àû±ØÀûÀÎ ÀÇ»ç °áÁ¤À» ÇÒ Áغñ°¡ °¡´ÉÇÕ´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® ¿øÀÚ°£·Â Çö¹Ì°æ ½ÃÀå¿¡¼­ °æÀï ±¸µµ ÆÄ¾Ç

¿øÀÚ°£·Â Çö¹Ì°æ ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¼öÀÍ, °í°´ ±â¹Ý, ¼ºÀå·ü µî ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀï Æ÷Áö¼Å´×À» ¹àÈú ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ½ÃÀå ÁýÁß, ´ÜÆíÈ­, ÅëÇÕ µ¿ÇâÀ» ¹àÇô³»°í º¥´õµéÀº °æÀïÀÌ Ä¡¿­ÇØÁö´Â °¡¿îµ¥ ÀÚ»çÀÇ ÁöÀ§¸¦ ³ôÀÌ´Â Àü·«Àû ÀÇ»ç °áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ Áö½ÄÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º : ¿øÀÚ °£·Â Çö¹Ì°æ ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º´É Æò°¡

FPNV Positioning Matrix´Â ¿øÀÚ°£·Â Çö¹Ì°æ ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ Çà·ÄÀ» ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº °ø±Þ¾÷üÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±âÁØÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ¸Â´Â ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ³× °¡Áö »çºÐ¸éÀ» ÅëÇØ °ø±Þ¾÷ü¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ¼¼ºÐÈ­ÇÏ¿© Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê ¹× ¼Ö·ç¼ÇÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× ±ÇÀå ¿øÀÚ°£·Â Çö¹Ì°æ ½ÃÀå¿¡¼­ ¼º°ø¿¡ ´ëÇÑ ±æÀ» ±×¸³´Ï´Ù.

¿øÀÚ°£·Â Çö¹Ì°æ ½ÃÀåÀÇ Àü·« ºÐ¼®Àº ½ÃÀå¿¡¼­ÀÇ ÇÁ·¹Á𽺠°­È­¸¦ ¸ñÇ¥·Î ÇÏ´Â ±â¾÷¿¡ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ ¹æ¹ýÀ» »ç¿ëÇÏ¸é °æÀï ±¸µµ¿¡¼­ ¾î·Á¿òÀ» ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀåÀÇ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ : ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·Â Æò°¡.

2. ½ÃÀå °³Ã´µµ : ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡ÇÏ¸ç ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, R&D Ȱµ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¾ò°í ÀÇ»ç°áÁ¤À» ÇÒ ¼ö ÀÖµµ·Ï Áß¿äÇÑ Áú¹®¿¡ ´ë´äÇϰí ÀÖ½À´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹® ¹× Áö¿ªÀº ¾îµðÀԴϱî?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ, ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • ¼ÒÇü Æ®·£Áö½ºÅÍ Ä¨, ¾çÀÚÁ¡, ³ª³ë ÀÏ·ºÆ®·Î´Ð½º, ±¤ÀüÀÚ ¼ö¿ä
      • ¹ÝµµÃ¼ ¹× ÀÏ·ºÆ®·Î´Ð½º ºÐ¾ß¿¡¼­ 3D IC ¼ö¿ä°¡ Áõ°¡
      • ³ª³ë±â¼ú°ú ¹ÙÀÌ¿À»çÀ̾ð½ºÀÇ Á¶»çȰµ¿À» ÃËÁøÇϱâ À§ÇÑ Á¤ºÎÀÇ Áö¿ø
    • ¾ïÁ¦¿äÀÎ
      • ±â±âÀÇ ºñ¿ëÀÌ ³ô´Ù
      • Á¢ÃË ¸ðµå AFM¿¡ ÀÇÇÑ »ùÇÿ¡ÀÇ µ¥¹ÌÁö°¡ °£´Ü
    • ±âȸ
      • OLED »ý»ê ÅõÀÚ È®´ë
      • °í¼Ó Áø´ÜÀÇ ¿ä±¸ Áõ°¡
    • °úÁ¦
      • AFM ÅøÀ» Ãë±ÞÇÏ´Â ¼÷·ÃµÈ Àü¹®°¡ÀÇ ºÎÁ·
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡Àû
    • °æÁ¦
    • »ç±³
    • ±â¼úÀû
    • ¹ý·ü»ó
    • ȯ°æ

Á¦6Àå ¿øÀÚ°£·Â Çö¹Ì°æ ½ÃÀå : À¯Çüº°

  • »ê¾÷ Çгâ AFM
  • Á¶»ç µî±Þ AFM

Á¦7Àå ¿øÀÚ°£·Â Çö¹Ì°æ ½ÃÀå ¸ðµåº°

  • Á¢ÃË ¸ðµå
  • ºñÁ¢ÃË ¸ðµå
  • ÅÂÇÎ ¸ðµå

Á¦8Àå ¿øÀÚ°£·Â Çö¹Ì°æ ½ÃÀå : ¿ëµµº°

  • »ý¸í°úÇаú »ý¹°ÇÐ
  • ³ª³ë Àç·á °úÇÐ
  • ¹ÝµµÃ¼ ¹× ÀÏ·ºÆ®·Î´Ð½º

Á¦9Àå ¾Æ¸Þ¸®Ä«ÀÇ ¿øÀÚ°£·Â Çö¹Ì°æ ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦10Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¿øÀÚ°£·Â Çö¹Ì°æ ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦11Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ¿øÀÚ°£·Â Çö¹Ì°æ ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦12Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®(2023³â)
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º(2023³â)
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
  • Àü·« ºÐ¼®°ú Á¦¾È

±â¾÷ ¸ñ·Ï

  • APE Research Srl
  • AFM Workshop
  • Agilent Technologies, Inc.
  • Angstrom Advanced Inc.
  • Anton Paar GmbH
  • Attocube Systems AG
  • Bruker Corporation
  • CSInstruments
  • Hitachi High-Tech Corporation
  • HORIBA, Ltd.
  • Keysight Technologies, Inc.
  • NanoScience Instruments, Inc.
  • Nanosurf AG
  • NT-MDT Spectrum Instruments LLC
  • Oxford Instruments PLC
  • Park Systems Corporation
  • Quantum Design Inc.
BJH 24.12.16

The Atomic Force Microscopy Market was valued at USD 673.76 million in 2023, expected to reach USD 717.06 million in 2024, and is projected to grow at a CAGR of 6.52%, to USD 1,048.41 million by 2030.

Atomic Force Microscopy (AFM) plays a pivotal role in nanoscale research and development due to its ability to provide high-resolution topographical data across diverse materials. AFM's application scope spans numerous industries, including materials science, biology, semiconductor manufacturing, and nanotechnology, making it indispensable for in-depth surface analysis at the atomic level. The necessity of AFM is underscored by its non-destructive analysis capabilities, high precision, and versatility in various environmental conditions, which align with the increasing demand for sophisticated materials characterization. As industries like semiconductors and life sciences advance, the need for precise surface analysis ensures continued reliance on AFM. Market growth is significantly influenced by technological advancements that improve AFM's resolution and measurement speed, integration of AI for better data analytics, and expanding use in biotechnology for single-cell analysis. Additionally, the proliferation of nanotechnology and development of novel materials in industries such as aerospace and automotive further bolster its market prospects. However, market growth does face challenges such as the high cost of AFM equipment, the complexity of operation requiring skilled personnel, and limitations in analyzing softer samples without damage. Opportunities lie in the development of lower-cost, user-friendly AFM systems catering to smaller research institutions and industries with budget constraints. Innovations such as integrating real-time data processing and multifunctional probes can enhance AFM applications. Potential areas for research include expanding AFM's functionality in liquid environments to facilitate advanced biological and chemical studies. The market is characterized by being competitive and innovation-driven, with significant growth prospects in emerging economies focusing on academic and industrial research expansion. To capitalize on these opportunities, businesses should invest in developing cost-effective and easy-to-use AFM systems while focusing on expanding their application portfolio to untapped sectors.

KEY MARKET STATISTICS
Base Year [2023] USD 673.76 million
Estimated Year [2024] USD 717.06 million
Forecast Year [2030] USD 1,048.41 million
CAGR (%) 6.52%

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Atomic Force Microscopy Market

The Atomic Force Microscopy Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Demand for miniature transistor chips, quantum dots, nanoelectronics, and optoelectronics
    • Growing demand for 3D ICs in the semiconductor and electronics sectors
    • Government support to promote nanotechnology and bioscience research activities
  • Market Restraints
    • High cost of the equipment
    • Easy damage due to contact-mode AFM to the samples
  • Market Opportunities
    • Expanding investment in Organic Light-Emitting Diodes (OLED) production
    • Increasing needs for high-speed diagnostics
  • Market Challenges
    • Lack of skilled professionals to handle the AFM tools

Porter's Five Forces: A Strategic Tool for Navigating the Atomic Force Microscopy Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Atomic Force Microscopy Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Atomic Force Microscopy Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Atomic Force Microscopy Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Atomic Force Microscopy Market

A detailed market share analysis in the Atomic Force Microscopy Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Atomic Force Microscopy Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Atomic Force Microscopy Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Atomic Force Microscopy Market

A strategic analysis of the Atomic Force Microscopy Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Atomic Force Microscopy Market, highlighting leading vendors and their innovative profiles. These include A.P.E. Research S.r.l., AFM Workshop, Agilent Technologies, Inc., Angstrom Advanced Inc., Anton Paar GmbH, Attocube Systems AG, Bruker Corporation, CSInstruments, Hitachi High-Tech Corporation, HORIBA, Ltd., Keysight Technologies, Inc., NanoScience Instruments, Inc., Nanosurf AG, NT-MDT Spectrum Instruments LLC, Oxford Instruments PLC, Park Systems Corporation, and Quantum Design Inc..

Market Segmentation & Coverage

This research report categorizes the Atomic Force Microscopy Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Type, market is studied across Industrial Grade AFM and Research Grade AFM.
  • Based on Mode, market is studied across Contact Mode, Non-Contact Mode, and Tapping Mode.
  • Based on Application, market is studied across Life Sciences & Biology, Nanomaterials Science, and Semiconductors & Electronics.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Demand for miniature transistor chips, quantum dots, nanoelectronics, and optoelectronics
      • 5.1.1.2. Growing demand for 3D ICs in the semiconductor and electronics sectors
      • 5.1.1.3. Government support to promote nanotechnology and bioscience research activities
    • 5.1.2. Restraints
      • 5.1.2.1. High cost of the equipment
      • 5.1.2.2. Easy damage due to contact-mode AFM to the samples
    • 5.1.3. Opportunities
      • 5.1.3.1. Expanding investment in Organic Light-Emitting Diodes (OLED) production
      • 5.1.3.2. Increasing needs for high-speed diagnostics
    • 5.1.4. Challenges
      • 5.1.4.1. Lack of skilled professionals to handle the AFM tools
  • 5.2. Market Segmentation Analysis
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Atomic Force Microscopy Market, by Type

  • 6.1. Introduction
  • 6.2. Industrial Grade AFM
  • 6.3. Research Grade AFM

7. Atomic Force Microscopy Market, by Mode

  • 7.1. Introduction
  • 7.2. Contact Mode
  • 7.3. Non-Contact Mode
  • 7.4. Tapping Mode

8. Atomic Force Microscopy Market, by Application

  • 8.1. Introduction
  • 8.2. Life Sciences & Biology
  • 8.3. Nanomaterials Science
  • 8.4. Semiconductors & Electronics

9. Americas Atomic Force Microscopy Market

  • 9.1. Introduction
  • 9.2. Argentina
  • 9.3. Brazil
  • 9.4. Canada
  • 9.5. Mexico
  • 9.6. United States

10. Asia-Pacific Atomic Force Microscopy Market

  • 10.1. Introduction
  • 10.2. Australia
  • 10.3. China
  • 10.4. India
  • 10.5. Indonesia
  • 10.6. Japan
  • 10.7. Malaysia
  • 10.8. Philippines
  • 10.9. Singapore
  • 10.10. South Korea
  • 10.11. Taiwan
  • 10.12. Thailand
  • 10.13. Vietnam

11. Europe, Middle East & Africa Atomic Force Microscopy Market

  • 11.1. Introduction
  • 11.2. Denmark
  • 11.3. Egypt
  • 11.4. Finland
  • 11.5. France
  • 11.6. Germany
  • 11.7. Israel
  • 11.8. Italy
  • 11.9. Netherlands
  • 11.10. Nigeria
  • 11.11. Norway
  • 11.12. Poland
  • 11.13. Qatar
  • 11.14. Russia
  • 11.15. Saudi Arabia
  • 11.16. South Africa
  • 11.17. Spain
  • 11.18. Sweden
  • 11.19. Switzerland
  • 11.20. Turkey
  • 11.21. United Arab Emirates
  • 11.22. United Kingdom

12. Competitive Landscape

  • 12.1. Market Share Analysis, 2023
  • 12.2. FPNV Positioning Matrix, 2023
  • 12.3. Competitive Scenario Analysis
  • 12.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. A.P.E. Research S.r.l.
  • 2. AFM Workshop
  • 3. Agilent Technologies, Inc.
  • 4. Angstrom Advanced Inc.
  • 5. Anton Paar GmbH
  • 6. Attocube Systems AG
  • 7. Bruker Corporation
  • 8. CSInstruments
  • 9. Hitachi High-Tech Corporation
  • 10. HORIBA, Ltd.
  • 11. Keysight Technologies, Inc.
  • 12. NanoScience Instruments, Inc.
  • 13. Nanosurf AG
  • 14. NT-MDT Spectrum Instruments LLC
  • 15. Oxford Instruments PLC
  • 16. Park Systems Corporation
  • 17. Quantum Design Inc.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦