½ÃÀ庸°í¼­
»óǰÄÚµå
1604916

¼¼°èÀÇ ÇコÄɾî¿ë ºòµ¥ÀÌÅÍ ½ÃÀå : ±¸¼º ¿ä¼Ò, ¿ëµµ, Àü°³, ÃÖÁ¾ »ç¿ëÀÚº° ¿¹Ãø(2025-2030³â)

Big Data in Healthcare Market by Component (Services, Software), Application (Clinical Data Analytics, Financial Analytics, Operational Analytics), Deployment, End-User - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 191 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

ÇコÄɾî¿ë ºòµ¥ÀÌÅÍ ½ÃÀåÀº 2023³â 362¾ï 7,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2024³â¿¡´Â 403¾ï 7,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 13.53%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 882¾ï 1,000¸¸ ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÇコÄɾî¿ë ºòµ¥ÀÌÅÍ ½ÃÀå¿¡´Â ÀüÀÚ±â¼ú, ÀǷ῵»ó, À¯Àüü ¹è¿­, °³Àΰǰ­±â µî µðÁöÅÐ ±â¼úÀÇ Áøº¸¿¡ ÀÇÇØ »ý¼ºµÈ ¹æ´ëÇÏ°í º¹ÀâÇÑ µ¥ÀÌÅͼ¼Æ®°¡ Æ÷ÇԵǸç, ÀÌ ¸ðµç °ÍµéÀº ´õ ¸¹Àº Á¤º¸¸¦ ¿¡ µû¶ó °Ç°­ °ü¸® ÀÇ»ç °áÁ¤¿¡ ±â¿©ÇÕ´Ï´Ù. °¨¼Ò ¹× ¾÷¹« È¿À²¼ºÀ» ÃÖÀûÈ­ÇÏ¿© °Ç°­ °ü¸®¸¦ º¯È­½Ãų °¡´É¼ºÀ¸·Î ÀÎÇØ ¹ß»ýÇÕ´Ï´Ù. »ç¿ëÀÚ´Â º´¿ø, Á¦¾à ȸ»ç, º¸Çè ȸ»ç, Á¤ºÎÀÇ °Ç°­ ºÎ¼­ µîÀÌ ÀÖ½À´Ï´Ù. ¸£ °Ç°­±â±âÀÇ º¸±Þ, °¡Ä¡¿¡ ±Ù°ÅÇÑ Äɾî¿Í µ¥ÀÌÅÍ ÁÖµµÀÇ ÀÇ»ç °áÁ¤ÀÇ Áß½ÃÀÇ °íÁ¶¿¡ ÀÇÇØ ÃËÁøµË´Ï´Ù.ÀÇ ÀÎÅͳÝ(IoT) µð¹ÙÀ̽º¸¦ ÅëÇÕÇÏ¿© ½Ç½Ã°£ °Ç°­ ¸ð´ÏÅ͸µÀ» ½Ç½ÃÇÏ´Â µîÀ» µé ¼ö ÀÖ½À´Ï´Ù. ÇʵåÀÇ ¼ºÀåÀ» ¹æÇØÇÏ´Â °úÁ¦´Â µ¥ÀÌÅÍÀÇ ÇÁ¶óÀ̹ö½Ã¿Í º¸¾È¿¡ ´ëÇÑ ¿ì·Á, µµÀÔ¿¡ °É¸®´Â Ãʱ⠺ñ¿ëÀÇ ³ôÀÌ, Ç¥ÁØÈ­µÈ µ¥ÀÌÅÍ Çü½Ä°ú ´Ù¸¥ ½Ã½ºÅÛ °£ÀÇ »óÈ£ ¿î¿ë¼ºÀÇ Çʿ伺 µîÀ» µé ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ º¹ÀâÇÑ µ¥ÀÌÅÍ ¼¼Æ®¸¦ È¿°úÀûÀ¸·Î ºÐ¼®, ÇØ¼®ÇÒ ¼ö ÀÖ´Â ¼÷·ÃµÈ µ¥ÀÌÅÍ Àü¹®°¡ÀÇ ºÎÁ·µµ Á¦ÇÑ ¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù.¾ÈÀüÇÑ µ¥ÀÌÅÍ °Å·¡¸¦ À§ÇÑ ºí·ÏüÀÎ, ºñ±¸Á¶È­µÈ µ¥ÀÌÅÍ ºÐ¼®À» À§ÇÑ ÀÚ¿¬ ¾ð¾î ó¸®, º¸´Ù Á¾ÇÕÀûÀÎ µ¥ÀÌÅÍ ºÐ¼® Ç÷§ÆûÀÇ °³¹ß·Î Çõ½ÅÀÌ ÃßÁøµÇ°í ÀÖ½À´Ï´Ù. ±â¾÷Àº AI ´É·ÂÀ» °­È­Çϱâ À§ÇØ ÇÏÀÌÅ×Å© ±â¾÷°úÀÇ Á¦ÈÞ¸¦ È®´ëÇϰųª Á¾ÇÕÀûÀÎ µ¥ÀÌÅÍ °ü¸®¸¦ À§ÇÑ ÅëÇÕ Ç÷§Æû °³¹ß¿¡ ÅõÀÚÇÏ´Â °Í¿¡ ÁÖ·ÂÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ½ÃÀåÀÇ ¼º°ÝÀº ¿ªµ¿ÀûÀÌ¸ç ±Þ¼ÓÇÑ ±â¼ú ÁøÈ­¿Í ±ÔÁ¦ º¯È­¸¦ Ư¡À¸·Î ÇϹǷΠÀÌÇØ°ü°èÀÚµéÀº ¹ÎøÇÏ°Ô ÇൿÇϰí Áö¼ÓÀûÀ¸·Î Çõ½ÅÀ» ÇØ¾ß ÇÕ´Ï´Ù. AI¸¦ Ȱ¿ëÇÑ Áø´Ü ¹× µ¥ÀÌÅÍ º¸¾È ¼Ö·ç¼Ç µîÀÇ ºÐ¾ß¿¡¼­ Á¶»ç¸¦ ÁøÇàÇÏ´Â °ÍÀº ȯÀÚ¿ÍÀÇ °ü°è¿Í ÇコÄɾî Á¦°ø ¸ðµ¨À» À籸ÃàÇÒ ¼ö ÀÖ¾î Å« ºñÁî´Ï½º ¼ºÀå °¡´É¼ºÀ» Á¦°øÇÕ´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ(2023) 362¾ï 7,000¸¸ ´Þ·¯
¿¹Ãø³â(2024) 403¾ï 7,000¸¸ ´Þ·¯
¿¹Ãø³â(2030) 882¾ï 1,000¸¸ ´Þ·¯
º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)(%) 13.53%

½ÃÀå ¿ªÇÐ : ºü¸£°Ô ÁøÈ­ÇÏ´Â °Ç°­ °ü¸®¿¡¼­ ºò µ¥ÀÌÅÍ ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

ÇコÄɾî¿ë ºòµ¥ÀÌÅÍ ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ë¿¡ ÀÇÇØ º¯¸ð¸¦ ÀÌ·ç°í ÀÖ½À´Ï´Ù. °áÁ¤, »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ ȹµæ ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ °æ°¨ÇÒ ¼ö ÀÖÀ½°ú µ¿½Ã¿¡ ¼ÒºñÀÚ Çൿ°ú ±×°Í Á¦Á¶ ºñ¿ë°ú ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ»º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ´ë·®ÀÇ µ¥ÀÌÅ͸¦ »ý¼ºÇÏ´Â ÀÓ»ó, ¿¬±¸Á¶»ç Áõ°¡
    • °ß°íÇÑ ÀüÀÚ Â÷Æ®(EHR)ÀÇ Á¤ºñ¿Í ¿þ¾î·¯ºí ±â¼úÀÇ È°¿ë
    • ´Ù¾çÇÑ ÁúȯÀÇ Ä¡·á¿¡ À־ÀÇ ¸ÂÃãÇü ÀÇ·áÀÇ Ã¤¿ë
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ¼÷·ÃµÈ ÀÎÀçÀÇ ºÎÁ·°ú ÀûÀýÇÑ ÀÎÇÁ¶óÀÇ ºÎÁ·
  • ½ÃÀå ±âȸ
    • ÇコÄÉ¾î ¼­ºñ½º¿¡ À־ÀÇ IoT, ML, AI ±â¼úÀÇ ÅëÇÕ
    • Áúº´ ¿¹ÃøÀ» À§ÇÑ °íµµÀÇ ¾Ë°í¸®ÁòÀÇ È°¿ë°ú ºò µ¥ÀÌÅÍ ¿ªÇÐÀÇ Áøº¸
  • ½ÃÀåÀÇ °úÁ¦
    • ÇÁ¶óÀ̹ö½Ã¿¡ °üÇÑ ¿ì·Á¿Í °Ç°­ µ¥ÀÌÅÍÀÇ À¯Ãâ¿¡ °üÇÑ ¹®Á¦

Porter's Five Forces : °Ç°­ °ü¸®¿¡¼­ ºò µ¥ÀÌÅÍ ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Porter's Five Forces Framework´Â ½ÃÀå »óȲ°æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Porter's Five Forces Framework´Â ±â¾÷ÀÇ °æÀï·ÂÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ ޱ¸ÇÏ´Â ¸íÈ®ÇÑ ±â¼úÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÀλçÀÌÆ®À» ÅëÇØ ±â¾÷Àº ÀÚ»çÀÇ °­Á¡À» Ȱ¿ëÇÏ°í ¾àÁ¡À» ÇØ°áÇϰí ÀáÀçÀûÀÎ °úÁ¦¸¦ ÇÇÇÔÀ¸·Î½á º¸´Ù °­ÀÎÇÑ ½ÃÀå¿¡¼­ÀÇ Æ÷Áö¼Å´×À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : °Ç°­ °ü¸®¿¡¼­ ºò µ¥ÀÌÅÍ ½ÃÀåÀÇ ¿ÜºÎ ¿µÇâÀ» ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº °Ç°­ °ü¸®¿¡¼­ ºò µ¥ÀÌÅÍ ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ»ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀÎ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¾ÕÀ¸·Î ¿¹»óµÇ´Â Àû±ØÀûÀÎ ÀÇ»ç °áÁ¤À» ÇÒ Áغñ°¡ °¡´ÉÇÕ´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® °Ç°­ °ü¸®ÀÇ ºò µ¥ÀÌÅÍ ½ÃÀå¿¡¼­ °æÀï ±¸µµ ÆÄ¾Ç

ÇコÄɾ¼­ ºòµ¥ÀÌÅÍ ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¼öÀÍ, °í°´ ±â¹Ý, ¼ºÀå·ü µî ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀï Æ÷Áö¼Å´×À» ¹àÈú ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ½ÃÀå ÁýÁß, ´ÜÆíÈ­, ÅëÇÕ µ¿ÇâÀ» ¹àÇô³»°í º¥´õµéÀº °æÀïÀÌ Ä¡¿­ÇØÁö´Â °¡¿îµ¥ ÀÚ»çÀÇ ÁöÀ§¸¦ ³ôÀÌ´Â Àü·«Àû ÀÇ»ç °áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ Áö½ÄÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º : °Ç°­ °ü¸®ÀÇ ºò µ¥ÀÌÅÍ ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â ÇコÄɾî¿ë ºòµ¥ÀÌÅÍ ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ Çà·ÄÀ» ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº °ø±Þ¾÷üÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±âÁØÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ¸Â´Â ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ³× °¡Áö »çºÐ¸éÀ» ÅëÇØ °ø±Þ¾÷ü¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ¼¼ºÐÈ­ÇÏ¿© Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê ¹× ¼Ö·ç¼ÇÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× Ãßõ °Ç°­ °ü¸®¿¡¼­ ºòµ¥ÀÌÅÍ ½ÃÀå¿¡¼­ ¼º°øÀ» À§ÇÑ ±æÀ» ±×¸®±â

ÇコÄɾ¼­ ºòµ¥ÀÌÅÍ ½ÃÀåÀÇ Àü·« ºÐ¼®Àº ½ÃÀå¿¡¼­ÀÇ ÇÁ·¹Á𽺠°­È­¸¦ ¸ñÇ¥·Î ÇÏ´Â ±â¾÷¿¡ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ ¹æ¹ýÀ» »ç¿ëÇÏ¸é °æÀï ±¸µµ¿¡¼­ ¾î·Á¿òÀ» ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀåÀÇ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ : ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·Â Æò°¡.

2. ½ÃÀå °³Ã´µµ : ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡ÇÏ¸ç ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, R&D Ȱµ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¾ò°í ÀÇ»ç°áÁ¤À» ÇÒ ¼ö ÀÖµµ·Ï Áß¿äÇÑ Áú¹®¿¡ ´ë´äÇϰí ÀÖ½À´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹® ¹× Áö¿ªÀº ¾îµðÀԴϱî?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ, ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • ´ë·®ÀÇ µ¥ÀÌÅ͸¦ »ý¼ºÇÏ´Â ÀÓ»ó ¿¬±¸ ¹× Á¶»ç Áõ°¡
      • °ß°íÇÑ ÀüÀڰǰ­±â·Ï(EHR)ÀÇ À¯Áö¿Í ¿þ¾î·¯ºí ±â¼úÀÇ È°¿ë
      • ´Ù¾çÇÑ ÁúȯÀÇ Ä¡·á¿¡ À־ÀÇ ¸ÂÃãÇü ÀÇ·áÀÇ µµÀÔ
    • ¾ïÁ¦¿äÀÎ
      • ¼÷·ÃµÈ ÀÎÀçÀÇ Àü¹®Áö½ÄÀÇ ºÎÁ·°ú ÀûÀýÇÑ ÀÎÇÁ¶óÀÇ ºÎÁ·
    • ±âȸ
      • ÇコÄÉ¾î ¼­ºñ½º¿¡ À־ÀÇ IoT, ML, AI ±â¼úÀÇ ÅëÇÕ
      • Áúº´ ¿¹ÃøÀ» À§ÇÑ °íµµÀÇ ¾Ë°í¸®ÁòÀÇ È°¿ë°ú ºò µ¥ÀÌÅÍ ¿ªÇÐÀÇ Áøº¸
    • °úÁ¦
      • ÇÁ¶óÀ̹ö½Ã¿¡ °üÇÑ ¿ì·Á¿Í °Ç°­ µ¥ÀÌÅÍÀÇ À¯Ãâ¿¡ °üÇÑ ¹®Á¦
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡Àû
    • °æÁ¦
    • »ç±³
    • ±â¼úÀû
    • ¹ý·ü»ó
    • ȯ°æ

Á¦6Àå ÇコÄɾî¿ë ºòµ¥ÀÌÅÍ ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • ¼­ºñ½º
  • ¼ÒÇÁÆ®¿þ¾î

Á¦7Àå ÇコÄɾî¿ë ºòµ¥ÀÌÅÍ ½ÃÀå : ¿ëµµº°

  • ÀÓ»ó µ¥ÀÌÅÍ ºÐ¼®
  • À繫 ºÐ¼®
  • ¿î¿ë ºÐ¼®
  • Àα¸°Ç°­ºÐ¼®

Á¦8Àå ÇコÄɾî¿ë ºòµ¥ÀÌÅÍ ½ÃÀå : Àü°³º°

  • Ŭ¶ó¿ìµå ±â¹Ý
  • ¿ÂÇÁ·¹¹Ì½º

Á¦9Àå ÇコÄɾî¿ë ºòµ¥ÀÌÅÍ ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • Ŭ¸®´Ð
  • ±ÝÀ¶ ¹× º¸Çè ´ë¸®Á¡
  • º´¿ø
  • ¿¬±¸±â°ü

Á¦10Àå ¾Æ¸Þ¸®Ä«ÀÇ ÇコÄɾî¿ë ºòµ¥ÀÌÅÍ ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦11Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ÇコÄɾî¿ë ºòµ¥ÀÌÅÍ ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦12Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ÇコÄɾî¿ë ºòµ¥ÀÌÅÍ ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦13Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®(2023³â)
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º(2023³â)
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
  • Àü·« ºÐ¼®°ú Á¦¾È

±â¾÷ ¸ñ·Ï

  • Allscripts Healthcare Solutions Inc.
  • Alteryx, Inc.
  • Apixio by Centene Corporation
  • Athenahealth, Inc.
  • Cerner Corporation by Oracle Corp.
  • Cisco Systems, Inc.
  • CitiusTech Inc.
  • Cotiviti, Inc.
  • Dell EMC
  • Edifecs, Inc.
  • Epic Systems Corporation
  • ExlService Holdings Inc.
  • Flatiron Health, Inc.
  • GE HealthCare Technologies Inc.
  • Innovaccer Inc.
  • International Business Machines Corporation
  • IQVIA Inc.
  • McKesson Corporation
  • MedeAnalytics, Inc.
  • Optum Inc.
  • SAP SE
  • SAS Institute Inc.
  • Wipro Limited
BJH 24.12.16

The Big Data in Healthcare Market was valued at USD 36.27 billion in 2023, expected to reach USD 40.37 billion in 2024, and is projected to grow at a CAGR of 13.53%, to USD 88.21 billion by 2030.

The big data in healthcare market encompasses the vast and complex datasets generated by digital technology advancements, including electronic health records, medical imaging, genomic sequencing, and personal health devices, all of which contribute to more informed healthcare decision-making. The necessity of big data arises from its potential to transform healthcare by improving patient outcomes, reducing costs, and optimizing operational efficiencies. Applications span predictive analytics for disease outbreak forecasting, personalized medicine, electronic health records management, and streamlined administrative processes. Major end-users include hospitals, pharmaceuticals, insurance companies, and government health departments. Market growth is propelled by technological advancements, the proliferation of wearable health devices, and the increasing emphasis on value-based care and data-driven decision-making. Opportunities include leveraging artificial intelligence and machine learning to further refine predictive analytics capabilities and integrating Internet of Things (IoT) devices for real-time health monitoring. Challenges inhibiting market growth are concerns about data privacy and security, high initial costs of implementation, and the need for standardized data formats and interoperability across different systems. Limitations also stem from the shortage of skilled data professionals who can effectively analyze and interpret complex datasets. Innovations are being driven by blockchain for secure data transactions, natural language processing for unstructured data analysis, and the development of more comprehensive data analytics platforms. Companies could focus on expanding partnerships with tech firms to enhance AI capabilities or invest in developing integrated platforms for holistic data management. The market's nature is dynamic, characterized by rapid technological evolution and regulatory changes, requiring stakeholders to stay agile and continuously innovate. Pursuing research in areas like AI-enabled diagnostics and data security solutions offers substantial business growth potential, capable of reshaping patient engagement and healthcare delivery models.

KEY MARKET STATISTICS
Base Year [2023] USD 36.27 billion
Estimated Year [2024] USD 40.37 billion
Forecast Year [2030] USD 88.21 billion
CAGR (%) 13.53%

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Big Data in Healthcare Market

The Big Data in Healthcare Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Growing number of clinical and research studies generating large amounts of data
    • Maintenance of robust electronic health records (EHRs) and utilization of wearable technology
    • Adoption of personalized medicine for the treatment of various diseases
  • Market Restraints
    • Lack of skilled personnel expertise and absence of adequate infrastructure
  • Market Opportunities
    • Integration of IoT, ML, and AI technology in healthcare services
    • Utilization of advanced algorithms for disease prediction and advances in big data epidemiology
  • Market Challenges
    • Privacy concerns and issues related to the leak of health data

Porter's Five Forces: A Strategic Tool for Navigating the Big Data in Healthcare Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Big Data in Healthcare Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Big Data in Healthcare Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Big Data in Healthcare Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Big Data in Healthcare Market

A detailed market share analysis in the Big Data in Healthcare Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Big Data in Healthcare Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Big Data in Healthcare Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Big Data in Healthcare Market

A strategic analysis of the Big Data in Healthcare Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Big Data in Healthcare Market, highlighting leading vendors and their innovative profiles. These include Allscripts Healthcare Solutions Inc., Alteryx, Inc., Apixio by Centene Corporation, Athenahealth, Inc., Cerner Corporation by Oracle Corp., Cisco Systems, Inc., CitiusTech Inc., Cotiviti, Inc., Dell EMC, Edifecs, Inc., Epic Systems Corporation, ExlService Holdings Inc., Flatiron Health, Inc., GE HealthCare Technologies Inc., Innovaccer Inc., International Business Machines Corporation, IQVIA Inc., McKesson Corporation, MedeAnalytics, Inc., Optum Inc., SAP SE, SAS Institute Inc., and Wipro Limited.

Market Segmentation & Coverage

This research report categorizes the Big Data in Healthcare Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Component, market is studied across Services and Software.
  • Based on Application, market is studied across Clinical Data Analytics, Financial Analytics, Operational Analytics, and Population Health Analytics.
  • Based on Deployment, market is studied across Cloud-based and On-Premise.
  • Based on End-User, market is studied across Clinics, Finance & Insurance Agencies, Hospitals, and Research Organizations.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Growing number of clinical and research studies generating large amounts of data
      • 5.1.1.2. Maintenance of robust electronic health records (EHRs) and utilization of wearable technology
      • 5.1.1.3. Adoption of personalized medicine for the treatment of various diseases
    • 5.1.2. Restraints
      • 5.1.2.1. Lack of skilled personnel expertise and absence of adequate infrastructure
    • 5.1.3. Opportunities
      • 5.1.3.1. Integration of IoT, ML, and AI technology in healthcare services
      • 5.1.3.2. Utilization of advanced algorithms for disease prediction and advances in big data epidemiology
    • 5.1.4. Challenges
      • 5.1.4.1. Privacy concerns and issues related to the leak of health data
  • 5.2. Market Segmentation Analysis
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Big Data in Healthcare Market, by Component

  • 6.1. Introduction
  • 6.2. Services
  • 6.3. Software

7. Big Data in Healthcare Market, by Application

  • 7.1. Introduction
  • 7.2. Clinical Data Analytics
  • 7.3. Financial Analytics
  • 7.4. Operational Analytics
  • 7.5. Population Health Analytics

8. Big Data in Healthcare Market, by Deployment

  • 8.1. Introduction
  • 8.2. Cloud-based
  • 8.3. On-Premise

9. Big Data in Healthcare Market, by End-User

  • 9.1. Introduction
  • 9.2. Clinics
  • 9.3. Finance & Insurance Agencies
  • 9.4. Hospitals
  • 9.5. Research Organizations

10. Americas Big Data in Healthcare Market

  • 10.1. Introduction
  • 10.2. Argentina
  • 10.3. Brazil
  • 10.4. Canada
  • 10.5. Mexico
  • 10.6. United States

11. Asia-Pacific Big Data in Healthcare Market

  • 11.1. Introduction
  • 11.2. Australia
  • 11.3. China
  • 11.4. India
  • 11.5. Indonesia
  • 11.6. Japan
  • 11.7. Malaysia
  • 11.8. Philippines
  • 11.9. Singapore
  • 11.10. South Korea
  • 11.11. Taiwan
  • 11.12. Thailand
  • 11.13. Vietnam

12. Europe, Middle East & Africa Big Data in Healthcare Market

  • 12.1. Introduction
  • 12.2. Denmark
  • 12.3. Egypt
  • 12.4. Finland
  • 12.5. France
  • 12.6. Germany
  • 12.7. Israel
  • 12.8. Italy
  • 12.9. Netherlands
  • 12.10. Nigeria
  • 12.11. Norway
  • 12.12. Poland
  • 12.13. Qatar
  • 12.14. Russia
  • 12.15. Saudi Arabia
  • 12.16. South Africa
  • 12.17. Spain
  • 12.18. Sweden
  • 12.19. Switzerland
  • 12.20. Turkey
  • 12.21. United Arab Emirates
  • 12.22. United Kingdom

13. Competitive Landscape

  • 13.1. Market Share Analysis, 2023
  • 13.2. FPNV Positioning Matrix, 2023
  • 13.3. Competitive Scenario Analysis
  • 13.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Allscripts Healthcare Solutions Inc.
  • 2. Alteryx, Inc.
  • 3. Apixio by Centene Corporation
  • 4. Athenahealth, Inc.
  • 5. Cerner Corporation by Oracle Corp.
  • 6. Cisco Systems, Inc.
  • 7. CitiusTech Inc.
  • 8. Cotiviti, Inc.
  • 9. Dell EMC
  • 10. Edifecs, Inc.
  • 11. Epic Systems Corporation
  • 12. ExlService Holdings Inc.
  • 13. Flatiron Health, Inc.
  • 14. GE HealthCare Technologies Inc.
  • 15. Innovaccer Inc.
  • 16. International Business Machines Corporation
  • 17. IQVIA Inc.
  • 18. McKesson Corporation
  • 19. MedeAnalytics, Inc.
  • 20. Optum Inc.
  • 21. SAP SE
  • 22. SAS Institute Inc.
  • 23. Wipro Limited
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦