½ÃÀ庸°í¼­
»óǰÄÚµå
1606264

¼¼°èÀÇ º¿³Ý ŽÁö ½ÃÀå : ±¸¼º ¿ä¼Òº°, Á¶Á÷ ±Ô¸ðº°, ¿ëµµº°, Àü°³º°, ¾÷Á¾º° ¿¹Ãø(2025-2030³â)

Botnet Detection Market by Component (Services, Solution), Organization Size (Large Enterprise, SMEs), Application, Deployment, Vertical - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 189 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

º¿³Ý ŽÁö ½ÃÀåÀº 2023³â¿¡ 13¾ï 9,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2024³â¿¡´Â 16¾ï 1,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 17.84%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 43¾ï 9,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

º¿³Ý ŽÁö´Â º¿³Ý(½ºÆÔ Àü¼Û, ºÐ»ê ¼­ºñ½º °ÅºÎ(DDoS) °ø°Ý ½ÃÀÛ, µ¥ÀÌÅÍ ÀýÃë µî ¾ÇÀÇÀûÀÎ ¸ñÀûÀ¸·Î »çÀ̹ö ¹üÁËÀÚ¿¡ ÀÇÇØ Á¦¾îµÇ´Â Ä§ÇØµÈ ÄÄÇ»ÅÍ ³×Æ®¿öÅ©)ÀÇ ½Äº°°ú ¿ÏÈ­¿¡ ´ëÇØ ¾ð±ÞÇÕ´Ï´Ù. »çÀ̹ö À§ÇùÀÇ ¾ç°ú °Ý·ÄÇÔÀÌ Áõ°¡ÇÔ¿¡ µû¶ó µðÁöÅÐ ÀÎÇÁ¶ó¸¦ º¸È£ÇÏ°í ±â¹Ð Á¤º¸¸¦ º¸È£ÇؾßÇÕ´Ï´Ù. ¼ºÀ¸·ÎºÎÅÍ °ß°íÇÑ º¿³Ý ŽÁö ±â¼úÀÇ Çʿ伺ÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÃÖÁ¾ »ç¿ëÀÚ´Â º¸¾È ¼­ºñ½º Á¦°ø¾÷ü, IT ±â¾÷, ±ÝÀ¶±â°ü µîÀ» Æ÷ÇÔÇϸç, ¸ðµÎ °í±Þ »çÀ̹ö À§ÇùÀ¸·ÎºÎÅÍ ½Ã½ºÅÛ À̸¦ º¸È£ÇÏ´Â °ÍÀ» ¸ñÇ¥·Î ÇÕ´Ï´Ù. ÁÖ¿ä ¼ºÀå ¿äÀÎÀ¸·Î´Â µðÁöÅÐ ÀüȯÀÇ º¸±Þ, º¿³Ý °ø°Ý¿¡ Ãë¾àÇÑ IoT µð¹ÙÀ̽ºÀÇ µµÀÔ È®´ë, »çÀ̹ö º¸¾È¿¡ °üÇÑ ±ÔÁ¦ ¿ä°ÇÀÇ °­È­ µîÀÌ ÀÖ½À´Ï´Ù. ¸ÞÄ¿´ÏÁò¿¡¼­ ÀΰøÁö´É(AI)°ú ¸Ó½Å·¯´×(ML)ÀÇ ÅëÇÕÀº À§ÇùÀÌ ³ªÅ¸³ª±â Àü¿¡ ±×°ÍÀ» ¿¹ÃøÇÏ°í ¹«·ÂÈ­ ÀáÀç·ÂÀ» ³ôÀ̰í ÀáÀç·ÂÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. ±×·³¿¡µµ ºÒ±¸Çϰí, ƯÈ÷ ÀÚµ¿ À§Çù ÀÎÅÚ¸®Àü½º ¼Ö·ç¼ÇÀÇ °³¹ß°ú Ŭ¶ó¿ìµå ±â¹Ý º¸¾È ¸ðµ¨ÀÇ È®´ë¿Í °°Àº »õ·Î¿î ±âȸ°¡ ź»ýÇϰí ÀÖ½À´Ï´Ù.AI ÁÖµµ ºÐ¼® ¹× À§Çù ÀÎÅÚ¸®Àü½º Ç÷§ÆûÀÇ Çõ½ÅÀº ÁÖ¸ñÇÒ ¸¸ÇÏ°í ¼±Á¦ÀûÀÎ º¸¾È ´ëÃ¥À» À§ÇÑ °í±Þ ÀλçÀÌÆ®À» Á¦°øÇÕ´Ï´Ù. ±â¾÷Àº ¾Ë°í¸®ÁòÀÇ Á¤È®¼º°ú ÀûÀÀ¼ºÀ» Çâ»ó½ÃŰ°í ½Ç½Ã°£ ºÐ¼® ´ëÀÀÀ» °¡´ÉÇÏ°Ô ÇÏ´Â ¿¬±¸¿¡ ÅõÀÚÇØ¾ß ÇÕ´Ï´Ù. ¿¹, ±Þ¼ÓÇÑ ±â¼ú Áøº¸¿Í »çÀ̹ö ¹üÁËÀÚÀÇ ´É·ÂÀ» ¾Õ´ç±â´Â ²÷ÀÓ¾ø´Â °æÀïÀ» Ư¡À¸·Î Çϰí ÀÖ½À´Ï´Ù. ÀÚ»êÀ» º¸È£Çϱâ À§ÇØ Àû±ØÀûÀÎ »çÀ̹ö º¸¾È ÀÚ¼¼¸¦ äÅÃÇØ¾ßÇÕ´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ(2023) 13¾ï 9,000¸¸ ´Þ·¯
ÃßÁ¤³â(2024) 16¾ï 1,000¸¸ ´Þ·¯
¿¹Ãø³â(2030) 43¾ï 9,000¸¸ ´Þ·¯
º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)(%) 17.84%

½ÃÀå ¿ªÇÐ : ºü¸£°Ô ÁøÈ­ÇÏ´Â º¿³Ý ŽÁö ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

º¿³Ý ŽÁö ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ ÀÛ¿ë¿¡ ÀÇÇØ º¯¸ð¸¦ ÀÌ·ç°í ÀÖ½À´Ï´Ù. »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ ¾ò´Â µ¥ µµ¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ À§ÇèÀ» ¿ÏÈ­ÇÒ ¼ö ÀÖÀ¸¸ç, ¼ÒºñÀÚ Çൿ°ú ÀÌ´Â Á¦Á¶ ºñ¿ë°ú ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ´õ¿í ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ½º¸¶Æ®ÆùÀ̳ª Ä¿³ØÆ¼µå µð¹ÙÀ̽ºÀÇ º¸±Þ È®´ë
    • µ¥ÀÌÅÍ º¸È£ ¹× º¸¾È¿¡ ´ëÇÑ ¾ö°ÝÇÑ ±ÔÁ¤
    • ÃֽŠ»çÀ̹ö °ø°Ý°ú °í±Þ ÇØÅ·ÀÇ º¹ÀâÈ­
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • º¿³Ý °ø°Ý Áõ°¡¿¡ ´ëÇÑ ÀÎ½Ä ºÎÁ·
  • ½ÃÀå ±âȸ
    • º¿ °¨Áö ±â¼úÀÇ ¿¬±¸ °³¹ßºñ Áõ°¡
    • Áß¼Ò±â¾÷¿¡¼­ÀÇ Á¢¼Ó ¼­ºñ½º¸¦ À§ÇÑ º¿³Ý ä¿ë Áõ°¡
  • ½ÃÀåÀÇ °úÁ¦
    • ¸Ö¿þ¾î ¿À°¨Áö °¡´É¼º

Porter's Five Forces : º¿³Ý ŽÁö ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Porter's Five Forces´Â ½ÃÀå »óȲ°æÀï ±¸µµ¸¦ ÆÄ¾ÇÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ¸íÈ®ÇÑ ±â¼úÀ» Á¦°øÇÕ´Ï´Ù. Porter's Five Forces Framework´Â ±â¾÷ÀÇ °æÀï·ÂÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ ޱ¸ÇÏ´Â ¸íÈ®ÇÑ ±â¼úÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÀλçÀÌÆ®À» ÅëÇØ ±â¾÷Àº ÀÚ»çÀÇ °­Á¡À» Ȱ¿ëÇÏ°í ¾àÁ¡À» ÇØ°áÇϰí ÀáÀçÀûÀÎ °úÁ¦¸¦ ÇÇÇÔÀ¸·Î½á º¸´Ù °­ÀÎÇÑ ½ÃÀå¿¡¼­ÀÇ Æ÷Áö¼Å´×À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : º¿³Ý ŽÁö ½ÃÀå¿¡¼­ ¿ÜºÎ ¿µÇâÀ» ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº º¿³Ý ŽÁö ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ»ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀÎ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¾ÕÀ¸·Î ¿¹»óµÇ´Â Àû±ØÀûÀÎ ÀÇ»ç °áÁ¤À» ÇÒ Áغñ°¡ °¡´ÉÇÕ´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® º¿³Ý ŽÁö ½ÃÀå °æÀï ±¸µµ ÆÄ¾Ç

º¿³Ý ŽÁö ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¼öÀÍ, °í°´ ±â¹Ý, ¼ºÀå·ü µî ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀï Æ÷Áö¼Å´×À» ¹àÈú ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ½ÃÀå ÁýÁß, ´ÜÆíÈ­, ÅëÇÕ µ¿ÇâÀ» ¹àÇô³»°í º¥´õµéÀº °æÀïÀÌ Ä¡¿­ÇØÁö´Â °¡¿îµ¥ ÀÚ»çÀÇ ÁöÀ§¸¦ ³ôÀÌ´Â Àü·«Àû ÀÇ»ç °áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ Áö½ÄÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º : º¿³Ý ŽÁö ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â º¿³Ý ŽÁö ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ Çà·ÄÀ» ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº °ø±Þ¾÷üÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±âÁØÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ¸Â´Â ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ³× °¡Áö »çºÐ¸éÀ» ÅëÇØ °ø±Þ¾÷ü¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ¼¼ºÐÈ­ÇÏ¿© Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê ¹× ¼Ö·ç¼ÇÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× Ãßõ º¿³Ý ŽÁö ½ÃÀå¿¡¼­ ¼º°øÀ» À§ÇÑ ±æÀ» ±×¸®±â

º¿³Ý ŽÁö ½ÃÀåÀÇ Àü·« ºÐ¼®Àº ½ÃÀå¿¡¼­ÀÇ ÇÁ·¹Á𽺠°­È­¸¦ ¸ñÇ¥·Î ÇÏ´Â ±â¾÷¿¡ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ Á¢±Ù¹ýÀ» ÅëÇØ °æÀï ±¸µµ¿¡¼­ °úÁ¦¸¦ ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö Àִ üÁ¦¸¦ ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀåÀÇ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ : ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·Â Æò°¡.

2. ½ÃÀå °³Ã´µµ : ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡ÇÏ¸ç ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, R&D Ȱµ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸®´Â µ¥ µµ¿òÀÌ µÇ´Â Áß¿äÇÑ Áú¹®¿¡ ÀÀ´äÇÕ´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹® ¹× Áö¿ªÀº ¾îµðÀԴϱî?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ, ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • ½º¸¶Æ®ÆùÀ̳ª Á¢¼Ó µð¹ÙÀ̽ºÀÇ º¸±Þ È®´ë
      • µ¥ÀÌÅÍ º¸È£ ¹× º¸¾È¿¡ °üÇÑ ¾ö°ÝÇÑ ±ÔÁ¦
      • Çö´ë »çÀ̹ö °ø°Ý°ú °íµµÀÇ ÇØÅ·ÀÇ º¹À⼺ÀÌ Áõ°¡
    • ¾ïÁ¦¿äÀÎ
      • º¿³Ý °ø°Ý Áõ°¡¿¡ ´ëÇÑ ÀÎ½Ä ºÎÁ·
    • ±âȸ
      • º¿ °ËÃâ ±â¼úÀÇ ¿¬±¸ °³¹ß¿¡ ´ëÇÑ ÁöÃâ Áõ°¡
      • Áß¼Ò±â¾÷¿¡¼­ Ä¿³ØÆ¼µå ¼­ºñ½º¿¡ º¿³Ý µµÀÔ Áõ°¡
    • °úÁ¦
      • ¸Ö¿þ¾î ¿À°¨Áö °¡´É¼º
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡Àû
    • °æÁ¦
    • »ç±³
    • ±â¼úÀû
    • ¹ý·ü»ó
    • ȯ°æ

Á¦6Àå º¿³Ý ŽÁö ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • ¼­ºñ½º
  • ¼Ö·ç¼Ç

Á¦7Àå º¿³Ý ŽÁö ½ÃÀå : Á¶Á÷ ±Ô¸ðº°

  • ´ë±â¾÷
  • Áß¼Ò±â¾÷

Á¦8Àå º¿³Ý ŽÁö ½ÃÀå : ¿ëµµº°

  • ¸ð¹ÙÀÏ ±â¹Ý
  • À¥ ±â¹Ý

Á¦9Àå º¿³Ý ŽÁö ½ÃÀå : Àü°³º°

  • Ŭ¶ó¿ìµå»ó
  • ¿ÂÇÁ·¹¹Ì½º

Á¦10Àå º¿³Ý ŽÁö ½ÃÀå : ¾÷°èº°

  • Á¤ºÎ ¹× ¹æÀ§
  • IT ¹× Åë½Å

Á¦11Àå ¾Æ¸Þ¸®Ä«ÀÇ º¿³Ý ŽÁö ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦12Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ º¿³Ý ŽÁö ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦13Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ º¿³Ý ŽÁö ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦14Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®(2023³â)
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º(2023³â)
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
  • Àü·« ºÐ¼®°ú Á¦¾È

±â¾÷ ¸ñ·Ï

  • Akamai Technologies, Inc.
  • Anura Solutions, LLC
  • AppsFlyer
  • Cloudflare
  • DataDome
  • Human Security, Inc.
  • Imperva, Inc.
  • Instart Logic
  • Intechnica
  • Integral Ad Science, Inc.
  • Kasada
  • mFilterIt
  • Oracle Corporation
  • PerimeterX
  • Perimeterx, Inc.
  • Pixalate Europe Limited
  • Queue-Fair
  • racxn Technologies Private Limited
  • Radware
  • Reblaze Technologies Ltd.
  • Signal Sciences by Fastly, Inc.
  • SolarWinds Worldwide, LLC
  • Sophos Ltd.
  • White Ops
BJH 24.12.16

The Botnet Detection Market was valued at USD 1.39 billion in 2023, expected to reach USD 1.61 billion in 2024, and is projected to grow at a CAGR of 17.84%, to USD 4.39 billion by 2030.

Botnet detection refers to the identification and mitigation of botnets-networks of compromised computers controlled by cybercriminals for malicious purposes such as sending spam, launching Distributed Denial of Service (DDoS) attacks, stealing data, and more. As the volume and intensity of cyber threats rise, the necessity for robust botnet detection technologies intensifies, driven by the need to secure digital infrastructures and safeguard sensitive information. Application areas extend across sectors like financial services, healthcare, e-commerce, and government, where protecting data integrity is paramount. End-users include security service providers, IT enterprises, and financial institutions, all aiming to shield their systems from increasingly sophisticated cyber threats. Key growth factors include widespread digital transformation, increased adoption of IoT devices, which are often vulnerable to botnet attacks, and enhanced regulatory requirements for cybersecurity. The integration of Artificial Intelligence (AI) and Machine Learning (ML) in detection mechanisms offers vast potential, improving the ability to predict and neutralize threats before they materialize. Challenges constraining market expansion include high implementation costs, evolving nature of threats, and frequent false positives that can undermine trust in detection systems. Despite these challenges, new opportunities are surfacing, particularly in developing automated threat intelligence solutions and expanding cloud-based security models. Innovations in AI-driven analytics and threat intelligence platforms are notable, providing advanced insights for preemptive security measures. Companies should invest in research that improves algorithm accuracy and adaptability, allowing for real-time analysis and response. The market is dynamic, characterized by rapid technological advancements and a constant race to stay ahead of cybercriminal capabilities. Businesses aiming to capitalize on the opportunities within this segment should prioritize continual innovation and adopt a proactive cybersecurity stance to remain competitive and protect their assets.

KEY MARKET STATISTICS
Base Year [2023] USD 1.39 billion
Estimated Year [2024] USD 1.61 billion
Forecast Year [2030] USD 4.39 billion
CAGR (%) 17.84%

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Botnet Detection Market

The Botnet Detection Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Growing adoption of smartphone and connected devices
    • Stringent regulations for the data protection and security
    • Growing complexity of modern cyber attacks and advanced hacking
  • Market Restraints
    • Lack of awareness regarding growing botnet attacks
  • Market Opportunities
    • Increased spending on research and development of bot detection techniques
    • Increased adoption of botnets for connected services in small and medium sized businesses
  • Market Challenges
    • Potential for false positive malware detection

Porter's Five Forces: A Strategic Tool for Navigating the Botnet Detection Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Botnet Detection Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Botnet Detection Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Botnet Detection Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Botnet Detection Market

A detailed market share analysis in the Botnet Detection Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Botnet Detection Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Botnet Detection Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Botnet Detection Market

A strategic analysis of the Botnet Detection Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Botnet Detection Market, highlighting leading vendors and their innovative profiles. These include Akamai Technologies, Inc., Anura Solutions, LLC, AppsFlyer, Cloudflare, DataDome, Human Security, Inc., Imperva, Inc., Instart Logic, Intechnica, Integral Ad Science, Inc., Kasada, mFilterIt, Oracle Corporation, PerimeterX, Perimeterx, Inc., Pixalate Europe Limited, Queue-Fair, racxn Technologies Private Limited, Radware, Reblaze Technologies Ltd., Signal Sciences by Fastly, Inc., SolarWinds Worldwide, LLC, Sophos Ltd., and White Ops.

Market Segmentation & Coverage

This research report categorizes the Botnet Detection Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Component, market is studied across Services and Solution.
  • Based on Organization Size, market is studied across Large Enterprise and SMEs.
  • Based on Application, market is studied across Mobile-based and Web-based.
  • Based on Deployment, market is studied across On-Cloud and On-premise.
  • Based on Vertical, market is studied across Government & Defense and IT & Telecommunication.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Growing adoption of smartphone and connected devices
      • 5.1.1.2. Stringent regulations for the data protection and security
      • 5.1.1.3. Growing complexity of modern cyber attacks and advanced hacking
    • 5.1.2. Restraints
      • 5.1.2.1. Lack of awareness regarding growing botnet attacks
    • 5.1.3. Opportunities
      • 5.1.3.1. Increased spending on research and development of bot detection techniques
      • 5.1.3.2. Increased adoption of botnets for connected services in small and medium sized businesses
    • 5.1.4. Challenges
      • 5.1.4.1. Potential for false positive malware detection
  • 5.2. Market Segmentation Analysis
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Botnet Detection Market, by Component

  • 6.1. Introduction
  • 6.2. Services
  • 6.3. Solution

7. Botnet Detection Market, by Organization Size

  • 7.1. Introduction
  • 7.2. Large Enterprise
  • 7.3. SMEs

8. Botnet Detection Market, by Application

  • 8.1. Introduction
  • 8.2. Mobile-based
  • 8.3. Web-based

9. Botnet Detection Market, by Deployment

  • 9.1. Introduction
  • 9.2. On-Cloud
  • 9.3. On-premise

10. Botnet Detection Market, by Vertical

  • 10.1. Introduction
  • 10.2. Government & Defense
  • 10.3. IT & Telecommunication

11. Americas Botnet Detection Market

  • 11.1. Introduction
  • 11.2. Argentina
  • 11.3. Brazil
  • 11.4. Canada
  • 11.5. Mexico
  • 11.6. United States

12. Asia-Pacific Botnet Detection Market

  • 12.1. Introduction
  • 12.2. Australia
  • 12.3. China
  • 12.4. India
  • 12.5. Indonesia
  • 12.6. Japan
  • 12.7. Malaysia
  • 12.8. Philippines
  • 12.9. Singapore
  • 12.10. South Korea
  • 12.11. Taiwan
  • 12.12. Thailand
  • 12.13. Vietnam

13. Europe, Middle East & Africa Botnet Detection Market

  • 13.1. Introduction
  • 13.2. Denmark
  • 13.3. Egypt
  • 13.4. Finland
  • 13.5. France
  • 13.6. Germany
  • 13.7. Israel
  • 13.8. Italy
  • 13.9. Netherlands
  • 13.10. Nigeria
  • 13.11. Norway
  • 13.12. Poland
  • 13.13. Qatar
  • 13.14. Russia
  • 13.15. Saudi Arabia
  • 13.16. South Africa
  • 13.17. Spain
  • 13.18. Sweden
  • 13.19. Switzerland
  • 13.20. Turkey
  • 13.21. United Arab Emirates
  • 13.22. United Kingdom

14. Competitive Landscape

  • 14.1. Market Share Analysis, 2023
  • 14.2. FPNV Positioning Matrix, 2023
  • 14.3. Competitive Scenario Analysis
  • 14.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Akamai Technologies, Inc.
  • 2. Anura Solutions, LLC
  • 3. AppsFlyer
  • 4. Cloudflare
  • 5. DataDome
  • 6. Human Security, Inc.
  • 7. Imperva, Inc.
  • 8. Instart Logic
  • 9. Intechnica
  • 10. Integral Ad Science, Inc.
  • 11. Kasada
  • 12. mFilterIt
  • 13. Oracle Corporation
  • 14. PerimeterX
  • 15. Perimeterx, Inc.
  • 16. Pixalate Europe Limited
  • 17. Queue-Fair
  • 18. racxn Technologies Private Limited
  • 19. Radware
  • 20. Reblaze Technologies Ltd.
  • 21. Signal Sciences by Fastly, Inc.
  • 22. SolarWinds Worldwide, LLC
  • 23. Sophos Ltd.
  • 24. White Ops
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦