½ÃÀ庸°í¼­
»óǰÄÚµå
1606670

¼¼°èÀÇ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå : ÄÄÆ÷³ÍÆ®, ºñÁî´Ï½º ±â´É, Àü°³ À¯Çü, Á¶Á÷ ±Ô¸ð, ÃÖÁ¾ »ç¿ëÀÚº° ¿¹Ãø(2025-2030³â)

Data Mining Tools Market by Component (Services, Software), Business Function (Finance, Marketing, Operations), Deployment Type, Organization Size, End-User - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 194 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀåÀÇ 2023³â ½ÃÀå ±Ô¸ð´Â 9¾ï 2,535¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2024³â¿¡´Â 10¾ï 1,973¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, CAGR 10.74%·Î ¼ºÀåÇϰí, 2030³â¿¡´Â 18¾ï 9,070¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

µ¥ÀÌÅÍ ¸¶ÀÌ´× µµ±¸´Â ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ ¼¼Æ®¿¡¼­ ±ÍÁßÇÑ Áö½ÄÀ» ÃßÃâÇÏ°í ´Ù¾çÇÑ ¾÷°è¿¡¼­ Á¤º¸¸¦ ±â¹ÝÀ¸·Î ÀÇ»ç °áÁ¤À» ÃËÁøÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ µµ±¸´Â ¾Ë°í¸®Áò°ú Åë°è ±â¼úÀ» Àû¿ëÇÏ¿© µ¥ÀÌÅÍÀÇ ÆÐÅÏ, ÀÌ»ó, °ü°è¸¦ °¨ÁöÇÏ°í ¼ÒºñÀÚ Çൿ, ºñÁî´Ï½º È¿À²¼º, ½ÃÀå µ¿Çâ¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ÀÌÇØ¸¦ Á¦°øÇÕ´Ï´Ù. µ¥ÀÌÅÍ ¸¶ÀÌ´× µµ±¸ÀÇ Çʿ伺Àº µ¥ÀÌÅÍ ¾çÀÇ ±Þ°ÝÇÑ Áõ°¡¿Í ½Ç¿ëÀûÀÎ °í·Á »çÇ×À¸·Î ¾òÀº °æÀï ¿ìÀ§¿¡ ÀÇÇØ ¾ß±âµË´Ï´Ù. ±× ¿ëµµ´Â ¼Ò¸Å, ±ÝÀ¶, ÇコÄɾî, Åë½Å µîÀÇ ºÐ¾ß ¹× °í°´ ¼¼ºÐÈ­, ºÎÁ¤ °ËÁö, ¸®½ºÅ© °ü¸®, °³ÀÎÈ­µÈ ¸¶ÄÉÆÃ µî¿¡ ÀÌ¿ëµÇ°í ÀÖ½À´Ï´Ù. ÃÖÁ¾ »ç¿ëÀÚ ±â¾÷Àº ÀÌ·¯ÇÑ ÅøÀ» Ȱ¿ëÇÏ¿© »ý»ê¼º Çâ»ó, È¿°úÀûÀÎ Àü·« ÀÔ¾È ¹× ¼öÀÍ¿ø È®´ë¸¦ ½ÇÇöÇϰí ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ(2023) 9¾ï 2,535¸¸ ´Þ·¯
ÃßÁ¤³â(2024) 10¾ï 1,973¸¸ ´Þ·¯
¿¹Ãø³â(2030) 18¾ï 9,070¸¸ ´Þ·¯
CAGR(%) 10.74%

½ÃÀå ¼ºÀåÀº AI ¹× ¸Ó½Å·¯´×°ú °°Àº ±â¼úÀû Áøº¸¿¡ ÀÇÇØ ÃßÁøµÇ¾î µ¥ÀÌÅÍ ¸¶ÀÌ´× ÅøÀÇ ¿¹Ãø ´É·Â°ú Á¤È®¼ºÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡ µîÀÌ ÀÖ½À´Ï´Ù. ƯÁ¤ ¾÷°èÀÇ ¿ä±¸¸¦ ÃæÁ·½Ã۱â À§ÇØ µµ±¸¸¦ »ç¿ëÀÚ Á¤ÀÇÇϰí Á¶Á÷ ³» µ¥ÀÌÅÍ ºÐ¼® ´É·ÂÀ» ¹ÎÁÖÈ­ÇÏ´Â »ç¿ëÀÚ Ä£È­Àû ÀÎ ÀÎÅÍÆäÀ̽º¸¦ °³¹ßÇÒ ¼öÀÖ´Â ±âȸ°¡ °¡µæÇÕ´Ï´Ù. ±×·¯³ª µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¿¡ ´ëÇÑ ¿ì·Á, µµÀÔ ºñ¿ëÀÇ ³ôÀÌ, ¼÷·Ã ÀηÂÀÇ ºÎÁ· µîÀÇ °úÁ¦°¡ ½ÃÀå È®´ëÀÇ Á¦¾àÀÌ µÇ°í ÀÖ½À´Ï´Ù.

¿¬±¸°¡ Àͼ÷ÇÑ Çõ½ÅÀûÀÎ ºÐ¾ß¿¡´Â ºñ±¸Á¶È­ µ¥ÀÌÅ͸¦ ºÐ¼®Çϱâ À§ÇÑ µö·¯´×À̳ª ÀÚ¿¬¾ð¾î 󸮸¦ Æ÷ÇÔÇÑ ÅøÀÇ °³¹ß, ¼ø°£¿¡ ÅëÂûÀ» Á¦°øÇÏ´Â ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸® ±â´É µîÀÌ ÀÖ½À´Ï´Ù. Çõ½ÅÀº ÀÇ·á ±â·Ï ¹× À̹ÌÁö µ¥ÀÌÅÍ ºÐ¼®À» ÅëÇØ Áø´Ü ¹× Ä¡·á È¿°ú¸¦ Çâ»ó½Ãų ¼öÀÖ´Â °Ç°­ °ü¸®¿Í °°Àº ºÐ¾ß¿¡ ÀÖ½À´Ï´Ù. º¸´Ù ³ôÀº Á¤È®¼º°ú ±¤¹üÀ§ÇÑ Àû¿ë °¡´É¼ºÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. µµ±¸ÀÇ ÀáÀç·ÂÀ» ÃÖ´ëÇÑ È°¿ëÇÏ·Á¸é ±â¼ú °³¹ß ÅõÀÚ, Çù·Â °ü°è È«º¸, µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ±âÁØ Áؼö¸¦ ¿ì¼±ÇÏ´Â °ÍÀÌ ÁÁ½À´Ï´Ù.

½ÃÀå ¿ªÇÐ: ºü¸£°Ô ÁøÈ­ÇÏ´Â µ¥ÀÌÅÍ ¸¶ÀÌ´× µµ±¸ ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® ÇØ¸í

µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ë¿¡ ÀÇÇØ º¯¸ð¸¦ ÀÌ·ç°í ÀÖ½À´Ï´Ù. È­¿Í »õ·Î¿î ºñÁî´Ï½º ±âȸ ȹµæ¿¡ ´ëºñÇÏ´Â °Í ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦ÀûÀÎ ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ °æ°¨ÇÒ ¼ö ÀÖÀ½°ú µ¿½Ã¿¡ ¼ÒºñÀÚ Çൿ°ú ÀÌ´Â Á¦Á¶ ºñ¿ë°ú ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ´õ¿í ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ±â¾÷ Àüü¿¡¼­ »ý¼ºµÇ´Â µ¥ÀÌÅÍ·® Áõ°¡
    • Á¶Á÷ Àüü¿¡¼­ÀÇ µ¥ÀÌÅÍ ÁÖµµÀÇ ÀÇ»ç °áÁ¤ Àü·«ÀÇ ´ëµÎ
    • Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ ¼­ºñ½º È®´ë ¹× ¿¹Ãø ºÐ¼®¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø°ú °ü·ÃµÈ Á¤È®¼º°ú °íºñ¿ë ¹®Á¦
  • ½ÃÀå ±âȸ
    • Â÷¼¼´ë µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø °íµµ ºÐ¼® ¼Ö·ç¼ÇÀÇ ÃâÇö
    • ºòµ¥ÀÌÅÍ ºÐ¼®°ú ÀΰøÁö´É ä¿ë È®´ë
  • ½ÃÀåÀÇ °úÁ¦
    • µ¥ÀÌÅÍ º¸¾È ¹× °³ÀÎÁ¤º¸ º¸È£¿¡ ´ëÇÑ ¿ì·Á

Porter's Five Force : µ¥ÀÌÅÍ ¸¶ÀÌ´× µµ±¸ ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Porter's Five Force Framework´Â ½ÃÀå »óȲ°æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. º¸´Ù °­ÀÎÇÑ ½ÃÀå¿¡¼­ÀÇ Æ÷Áö¼Å´×À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå¿¡¼­ ¿ÜºÎ·ÎºÎÅÍÀÇ ¿µÇâ ÆÄ¾Ç

¿ÜºÎ °Å½ÃÀû ȯ°æ ¿äÀÎÀº µ¥ÀÌÅÍ ¸¶ÀÌ´× µµ±¸ ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ»ÇÕ´Ï´Ù. PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ¾ÕÀ» ³»´Ùº» Àû±ØÀûÀÎ ÀÇ»ç°áÁ¤À» ÇÒ Áغñ°¡ µÇ¾î ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® : µ¥ÀÌÅÍ ¸¶ÀÌ´× µµ±¸ ½ÃÀå °æÀï ±¸µµ ÆÄ¾Ç

µ¥ÀÌÅÍ ¸¶ÀÌ´× µµ±¸ ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®Àº ½ÃÀå ÁýÁß, ´ÜÆíÈ­ ¹× ÅëÇÕ µ¿ÇâÀ» ¹àÇô³»°í °ø±Þ¾÷ü´Â °æÀïÀÌ Ä¡¿­ ÇØÁü¿¡ µû¶ó ÀÚ»çÀÇ ÁöÀ§¸¦ ³ôÀÌ´Â Àü·«Àû ÀÇ»ç °áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÕ´Ï´Ù. Áö½ÄÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º : µ¥ÀÌÅÍ ¸¶ÀÌ´× µµ±¸ ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡Çϱâ À§ÇÑ Áß¿äÇÑ ÅøÀÔ´Ï´Ù. ³× °¡Áö »çºÐ¸éÀ» ÅëÇØ º¥´õ¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ºÐÇÒÇϰí Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê ¹× ¼Ö·ç¼ÇÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× ±ÇÀå : µ¥ÀÌÅÍ ¸¶ÀÌ´× µµ±¸ ½ÃÀå¿¡¼­ ¼º°øÀ» À§ÇÑ ±æÀ» ±×¸®±â

µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀåÀÇ Àü·« ºÐ¼®Àº ¼¼°è ½ÃÀå¿¡¼­ÀÇ ÇÁ·¹Á𽺠°­È­¸¦ ¸ñÇ¥·Î ÇÏ´Â ±â¾÷¿¡ ÇʼöÀûÀÎ ¿ä¼ÒÀÔ´Ï´Ù. ÀÌ Á¢±Ù¹ýÀ» ÅëÇØ °æÀï ±¸µµ¿¡¼­ °úÁ¦¸¦ ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö Àִ üÁ¦¸¦ ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀåÀÇ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ: ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·Â Æò°¡.

2. ½ÃÀå °³Ã´µµ: ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡ÇÏ¸ç ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­: ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, R&D Ȱµ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¾ò°í ÀÇ»ç°áÁ¤À» ÇÒ ¼ö ÀÖµµ·Ï Áß¿äÇÑ Áú¹®¿¡ ´ë´äÇϰí ÀÖ½À´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹® ¹× Áö¿ªÀº ¾îµðÀԴϱî?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ¡¤Ã¶¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • ±â¾÷ Àüü¿¡¼­ »ý¼ºµÇ´Â µ¥ÀÌÅÍ·® Áõ°¡
      • Á¶Á÷ Àüü¿¡¼­ µ¥ÀÌÅÍ ÁÖµµÀÇ ÀÇ»ç°áÁ¤ Àü·«ÀÌ Áõ°¡
      • Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ ¼­ºñ½º È®´ë ¹× ¿¹Ãø ºÐ¼® ¼ö¿ä Áõ°¡
    • ¾ïÁ¦¿äÀÎ
      • µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø°ú °ü·ÃµÈ Á¤È®¼º°ú °íºñ¿ë ¹®Á¦
    • ±âȸ
      • Â÷¼¼´ë µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø °í±Þ ºÐ¼® ¼Ö·ç¼Ç ÃâÇö
      • ºòµ¥ÀÌÅÍ ºÐ¼®°ú ÀΰøÁö´É µµÀÔ È®´ë
    • °úÁ¦
      • µ¥ÀÌÅÍ º¸¾È ¹× °³ÀÎÁ¤º¸ º¸È£¿¡ ´ëÇÑ ¿ì·Á
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡Àû
    • °æÁ¦
    • »ç±³
    • ±â¼úÀû
    • ¹ý·ü»ó
    • ȯ°æ

Á¦6Àå µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • ¼­ºñ½º
    • ¸Å´ÏÁöµå ¼­ºñ½º
    • Àü¹® ¼­ºñ½º
  • ¼ÒÇÁÆ®¿þ¾î

Á¦7Àå µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå :¾÷¹« ±â´Éº°

  • ±ÝÀ¶
  • ¸¶ÄÉÆÃ
  • ¿ÀÆÛ·¹À̼Ç
  • °ø±Þ¸Á°ú ¹°·ù

Á¦8Àå µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå : Àü°³ À¯Çüº°

  • Ŭ¶ó¿ìµå
  • ¿ÂÇÁ·¹¹Ì½º

Á¦9Àå µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå : Á¶Á÷ ±Ô¸ðº°

  • ´ë±â¾÷
  • Áß¼Ò±â¾÷

Á¦10Àå µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • BFSI
  • ¿¡³ÊÁö¡¤À¯Æ¿¸®Æ¼
  • Á¤ºÎ ¹× ¹æÀ§
  • ÇコÄÉ¾î ¹× »ý¸í°úÇÐ
  • Á¦Á¶¾÷
  • ¼Ò¸Å
  • Åë½Å ¹× IT

Á¦11Àå ¾Æ¸Þ¸®Ä« µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦12Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦13Àå À¯·´¡¤Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦14Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼® 2023
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2023
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
  • Àü·« ºÐ¼®°ú Á¦¾È

±â¾÷ ¸ñ·Ï

  • Aimleap Private Limited
  • Altair Engineering Inc
  • Alteryx, Inc.
  • ChapsVision Group
  • Crawlbase
  • H2O.ai, Inc.
  • IBM Corporation
  • Indigo DQM
  • KNIME GmbH
  • mindzie, inc.
  • Mozenda, Inc.
  • NCR Corporation
  • Octopus Data Inc.
  • Oracle Corporation
  • Orange SA
  • QlikTech International AB
  • SAS Institute Inc.
  • Sisense Ltd.
  • TIBCO by Cloud Software Group, Inc.
  • Togaware Pty Ltd.
  • vPhrase Analytics Solutions Private Limited
  • Weka.io, Inc.
  • Wolfram Research, Inc.
JHS 24.12.16

The Data Mining Tools Market was valued at USD 925.35 million in 2023, expected to reach USD 1,019.73 million in 2024, and is projected to grow at a CAGR of 10.74%, to USD 1,890.70 million by 2030.

Data mining tools are pivotal in extracting valuable insights from vast datasets, facilitating informed decision-making across various industries. These tools apply algorithms and statistical techniques to detect patterns, anomalies, and relationships within data, providing a comprehensive understanding of consumer behavior, operational efficiencies, and market trends. The necessity for data mining tools is driven by the exponential growth of data volumes and the competitive advantage gained through actionable insights. Their application spans sectors such as retail, finance, healthcare, and telecommunications, where they are used for customer segmentation, fraud detection, risk management, and personalized marketing. End-use businesses leverage these tools to enhance productivity, strategize effectively, and increase revenue streams.

KEY MARKET STATISTICS
Base Year [2023] USD 925.35 million
Estimated Year [2024] USD 1,019.73 million
Forecast Year [2030] USD 1,890.70 million
CAGR (%) 10.74%

Market growth is propelled by technological advancements like AI and machine learning, which enhance the predictive capability and accuracy of data mining tools. The integration of big data technologies and cloud computing offers scalable and cost-effective solutions, further driving adoption. Key influencing factors include the rising importance of data-driven decision-making and increased demand for business intelligence solutions. Opportunities abound in the customization of tools to cater to specific industry needs and the development of user-friendly interfaces that democratize data analysis capabilities within organizations. However, challenges such as data privacy concerns, high costs of implementation, and a scarcity of skilled personnel pose limitations to market expansion.

Innovative areas ripe for research include the development of tools that incorporate deep learning and natural language processing to analyze unstructured data, as well as real-time data processing capabilities to provide instant insights. These innovations could lead to greater precision and broader applicability in sectors like healthcare, where the analysis of medical records and imaging data can enhance diagnostic and treatment efficacy. The market continues to evolve with a nature characterized by rapid technological change, growing competition, and increasing regulatory concerns. Firms are advised to invest in skill development, foster collaborations, and prioritize compliance with governing data privacy standards to leverage the full potential of data mining tools.

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Data Mining Tools Market

The Data Mining Tools Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Increasing volume of data generated across enterprises
    • Rise in data-driven decision making strategies across organizations
    • Expanion of cloud computing services and increasing demand for predictive analytics
  • Market Restraints
    • Issues of accuracy and high costs associated with data mining tools
  • Market Opportunities
    • Emergence of next-generation data mining tools advanced analytics solutions
    • Growing adoption of big data analytics and artificial intelligence
  • Market Challenges
    • Concerns associated with data security and privacy

Porter's Five Forces: A Strategic Tool for Navigating the Data Mining Tools Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Data Mining Tools Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Data Mining Tools Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Data Mining Tools Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Data Mining Tools Market

A detailed market share analysis in the Data Mining Tools Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Data Mining Tools Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Data Mining Tools Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Data Mining Tools Market

A strategic analysis of the Data Mining Tools Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Data Mining Tools Market, highlighting leading vendors and their innovative profiles. These include Aimleap Private Limited, Altair Engineering Inc, Alteryx, Inc., ChapsVision Group, Crawlbase, H2O.ai, Inc., IBM Corporation, Indigo DQM, KNIME GmbH, mindzie, inc., Mozenda, Inc., NCR Corporation, Octopus Data Inc., Oracle Corporation, Orange S.A., QlikTech International AB, SAS Institute Inc., Sisense Ltd., TIBCO by Cloud Software Group, Inc., Togaware Pty Ltd., vPhrase Analytics Solutions Private Limited, Weka.io, Inc., and Wolfram Research, Inc..

Market Segmentation & Coverage

This research report categorizes the Data Mining Tools Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Component, market is studied across Services and Software. The Services is further studied across Managed Services and Professional Services.
  • Based on Business Function, market is studied across Finance, Marketing, Operations, and Supply Chain & Logistics.
  • Based on Deployment Type, market is studied across Cloud and On-Premises.
  • Based on Organization Size, market is studied across Large Enterprises and Small & Medium-Sized Enterprises.
  • Based on End-User, market is studied across BFSI, Energy & Utilities, Government & Defense, Healthcare & Life Sciences, Manufacturing, Retail, and Telecommunication & IT.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Increasing volume of data generated across enterprises
      • 5.1.1.2. Rise in data-driven decision making strategies across organizations
      • 5.1.1.3. Expanion of cloud computing services and increasing demand for predictive analytics
    • 5.1.2. Restraints
      • 5.1.2.1. Issues of accuracy and high costs associated with data mining tools
    • 5.1.3. Opportunities
      • 5.1.3.1. Emergence of next-generation data mining tools advanced analytics solutions
      • 5.1.3.2. Growing adoption of big data analytics and artificial intelligence
    • 5.1.4. Challenges
      • 5.1.4.1. Concerns associated with data security and privacy
  • 5.2. Market Segmentation Analysis
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Data Mining Tools Market, by Component

  • 6.1. Introduction
  • 6.2. Services
    • 6.2.1. Managed Services
    • 6.2.2. Professional Services
  • 6.3. Software

7. Data Mining Tools Market, by Business Function

  • 7.1. Introduction
  • 7.2. Finance
  • 7.3. Marketing
  • 7.4. Operations
  • 7.5. Supply Chain & Logistics

8. Data Mining Tools Market, by Deployment Type

  • 8.1. Introduction
  • 8.2. Cloud
  • 8.3. On-Premises

9. Data Mining Tools Market, by Organization Size

  • 9.1. Introduction
  • 9.2. Large Enterprises
  • 9.3. Small & Medium-Sized Enterprises

10. Data Mining Tools Market, by End-User

  • 10.1. Introduction
  • 10.2. BFSI
  • 10.3. Energy & Utilities
  • 10.4. Government & Defense
  • 10.5. Healthcare & Life Sciences
  • 10.6. Manufacturing
  • 10.7. Retail
  • 10.8. Telecommunication & IT

11. Americas Data Mining Tools Market

  • 11.1. Introduction
  • 11.2. Argentina
  • 11.3. Brazil
  • 11.4. Canada
  • 11.5. Mexico
  • 11.6. United States

12. Asia-Pacific Data Mining Tools Market

  • 12.1. Introduction
  • 12.2. Australia
  • 12.3. China
  • 12.4. India
  • 12.5. Indonesia
  • 12.6. Japan
  • 12.7. Malaysia
  • 12.8. Philippines
  • 12.9. Singapore
  • 12.10. South Korea
  • 12.11. Taiwan
  • 12.12. Thailand
  • 12.13. Vietnam

13. Europe, Middle East & Africa Data Mining Tools Market

  • 13.1. Introduction
  • 13.2. Denmark
  • 13.3. Egypt
  • 13.4. Finland
  • 13.5. France
  • 13.6. Germany
  • 13.7. Israel
  • 13.8. Italy
  • 13.9. Netherlands
  • 13.10. Nigeria
  • 13.11. Norway
  • 13.12. Poland
  • 13.13. Qatar
  • 13.14. Russia
  • 13.15. Saudi Arabia
  • 13.16. South Africa
  • 13.17. Spain
  • 13.18. Sweden
  • 13.19. Switzerland
  • 13.20. Turkey
  • 13.21. United Arab Emirates
  • 13.22. United Kingdom

14. Competitive Landscape

  • 14.1. Market Share Analysis, 2023
  • 14.2. FPNV Positioning Matrix, 2023
  • 14.3. Competitive Scenario Analysis
  • 14.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Aimleap Private Limited
  • 2. Altair Engineering Inc
  • 3. Alteryx, Inc.
  • 4. ChapsVision Group
  • 5. Crawlbase
  • 6. H2O.ai, Inc.
  • 7. IBM Corporation
  • 8. Indigo DQM
  • 9. KNIME GmbH
  • 10. mindzie, inc.
  • 11. Mozenda, Inc.
  • 12. NCR Corporation
  • 13. Octopus Data Inc.
  • 14. Oracle Corporation
  • 15. Orange S.A.
  • 16. QlikTech International AB
  • 17. SAS Institute Inc.
  • 18. Sisense Ltd.
  • 19. TIBCO by Cloud Software Group, Inc.
  • 20. Togaware Pty Ltd.
  • 21. vPhrase Analytics Solutions Private Limited
  • 22. Weka.io, Inc.
  • 23. Wolfram Research, Inc.
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦