½ÃÀ庸°í¼­
»óǰÄÚµå
1611296

¼¼°èÀÇ Ãßõ ¿£Áø ½ÃÀå : ºÎ¹®º° ¿¹Ãø(2025-2030³â)

Recommendation Engines Market by Types (Collaborative Filtering, Content-Based Filtering, Hybrid Recommendation), Technology (Context-Aware, Geospatial Aware), Deployment, End-User, Organizations - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 189 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Ãßõ ¿£Áø(Recommendation Engines) ½ÃÀåÀÇ 2023³â ½ÃÀå ±Ô¸ð´Â 24¾ï 4,000¸¸ ´Þ·¯¿´À¸¸ç, 2024³â¿¡´Â 28¾ï 1,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ÃßÁ¤µÇ¸ç, CAGR 13.00%·Î ¼ºÀåÇϸç 2030³â¿¡´Â 57¾ï 5,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

Ãßõ ¿£ÁøÀº »ç¿ëÀÚÀÇ ¼±È£µµ¿Í Çൿ¿¡ ´ëÇÑ µ¥ÀÌÅ͸¦ ±â¹ÝÀ¸·Î »ç¿ëÀÚ¿¡°Ô Á¦Ç°, ¼­ºñ½º ¶Ç´Â ÄÜÅÙÃ÷¸¦ Á¦¾ÈÇϵµ·Ï ¼³°èµÈ ¾Ë°í¸®ÁòÀÔ´Ï´Ù. Ãßõ ¿£ÁøÀº ÀÌÄ¿¸Ó½º, ¿£ÅÍÅ×ÀÎ¸ÕÆ®, ¼Ò¼È ¹Ìµð¾î µî ´Ù¾çÇÑ ºÐ¾ßÀÇ ºñÁî´Ï½º¿¡¼­ °³ÀÎÈ­¸¦ À§ÇÑ ³ë·Â¿¡ ÇʼöÀûÀÎ ¿ä¼ÒÀÔ´Ï´Ù. Ãßõ ¿£ÁøÀÇ Çʿ伺Àº °³ÀÎÈ­µÈ Á¦¾ÈÀ» ÅëÇØ »ç¿ëÀÚ °æÇèÀ» Çâ»ó½ÃÄÑ Âü¿©µµ¿Í ÀüȯÀ²À» ³ôÀÌ°í ±Ã±ØÀûÀ¸·Î °í°´ Ãæ¼ºµµ¸¦ ³ôÀÏ ¼ö ÀÖ´Â ´É·Â¿¡¼­ ºñ·ÔµË´Ï´Ù. Ãßõ ¿£ÁøÀº °ú°Å ±¸¸Å ³»¿ªÀ» ±â¹ÝÀ¸·Î »óǰÀ» ÃßõÇÏ´Â ¿Â¶óÀÎ ¸®Å×ÀϺÎÅÍ ¸ÂÃãÇü ÄÜÅÙÃ÷¸¦ ÃßõÇÏ´Â ½ºÆ®¸®¹Ö ¼­ºñ½º¿¡ À̸£±â±îÁö ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡ Àû¿ëµË´Ï´Ù. ÃÖÁ¾ »ç¿ë ¹üÀ§´Â ±ÝÀ¶ ¼­ºñ½º, ´º½º ¹× ¹Ìµð¾î, °³ÀÎÈ­µÈ ÄÜÅÙÃ÷ ¹× ¼­ºñ½º Á¦¾ÈÀ» À§ÇÑ ÇコÄÉ¾î µîÀÇ ºÐ¾ß¸¦ Æ÷ÇÔÇÏ¿© ±¤¹üÀ§ÇÕ´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ¿¬µµ(2023³â) 24¾ï 4,000¸¸ ´Þ·¯
ÃßÁ¤¿¬µµ(2024³â) 28¾ï 1,000¸¸ ´Þ·¯
¿¹Ãø¿¬µµ(2030³â) 57¾ï 5,000¸¸ ´Þ·¯
CAGR(%) 13.00%

Ãßõ ¿£Áø ½ÃÀåÀº °í°´ °³ÀÎÈ­¿¡ ´ëÇÑ Á߿伺 Áõ°¡, AI ¹× ¸Ó½Å ·¯´×ÀÇ ¹ßÀü, µðÁöÅÐ Ç÷§ÆûÀÇ È®»ê µîÀÇ ¿äÀο¡ ÀÇÇØ °­È­µÇ°í ÀÖ½À´Ï´Ù. ±â¾÷µéÀº °æÀïÀÌ Ä¡¿­ÇÑ ½ÃÀå¿¡¼­ Â÷º°È­Çϱâ À§ÇØ ÀÌ ±â¼ú¿¡ Á¡Á¡ ´õ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ÃÖ±ÙÀÇ ±âȸ´Â ºòµ¥ÀÌÅÍ ºÐ¼®À» Ȱ¿ëÇÏ°í ¾Ë°í¸®ÁòÀ» °³¼±ÇÏ¿© º¸´Ù Á¤È®ÇÑ ÃßõÀ» Á¦°øÇÏ´Â µ¥ ÀÖ½À´Ï´Ù. ±â¾÷Àº ¸ôÀÔÇü °æÇèÀ» Á¦°øÇϱâ À§ÇØ Ãßõ ¿£ÁøÀ» Áõ°­ Çö½Ç(AR) ¹× °¡»ó Çö½Ç(VR)°ú °°Àº »õ·Î¿î ±â¼ú°ú ÅëÇÕÇÏ´Â µ¥ ÁýÁßÇØ¾ß ÇÕ´Ï´Ù.

±×·¯³ª µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹®Á¦, ¾Ë°í¸®ÁòÀÇ ÆíÇ⼺, ¸·´ëÇÑ ¿¬»ê ´É·ÂÀÇ Çʿ伺 µîÀÇ °úÁ¦°¡ ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ »ç¿ëÀ» µÑ·¯½Ñ ±ÔÁ¦ ¹®Á¦¸¦ ÇØ°áÇϰí À±¸®Àû AI °üÇàÀ» º¸ÀåÇÏ´Â °ÍÀº ½ÃÀå ¼ºÀå¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â Áß¿äÇÑ ÇѰèÀÔ´Ï´Ù. À̸¦ ±Øº¹Çϱâ À§ÇØ Çõ½ÅÀº µ¥ÀÌÅÍ º¸¾È°ú »ç¿ëÀÚ ÇÁ¶óÀ̹ö½Ã¸¦ º¸ÀåÇÏ´Â Á¤±³ÇÑ ¾Ë°í¸®ÁòÀ» °³¹ßÇÏ°í ¾Ë°í¸®ÁòÀÇ Æí°ßÀ» ÁÙÀÌ´Â µ¥ ÃÊÁ¡À» ¸ÂÃç¾ß ÇÕ´Ï´Ù.

ÃÖ°íÀÇ ºñÁî´Ï½º ¼ºÀå ºÐ¾ß´Â »ç¿ëÀÚÀÇ ¿ä±¸¸¦ ½Ç½Ã°£À¸·Î ¿¹ÃøÇÒ ¼ö ÀÖ´Â ÀûÀÀÇü ¹× »óȲ ÀÎ½Ä Ãßõ ½Ã½ºÅÛ¿¡ ÅõÀÚÇÏ´Â °ÍÀÔ´Ï´Ù. ÀÌ ½ÃÀåÀÇ Æ¯¼ºÀº Áö¼ÓÀûÀÎ ±â¼ú ¹ßÀü°ú º¯È­ÇÏ´Â ¼ÒºñÀÚ ±â´ëÄ¡·Î ÀÎÇØ ¿ªµ¿ÀûÀÔ´Ï´Ù. Ãßõ ¿£ÁøÀÇ »ç¿ëÀÚ Á᫐ ¼³°è¿Í Åõ¸í¼ºÀ» ¿ì¼±½ÃÇÏ´Â ºñÁî´Ï½º´Â ÀÌ·¯ÇÑ º¯È­Çϴ ȯ°æ¿¡¼­ ¼º°øÇÒ °¡´É¼ºÀÌ ³ô½À´Ï´Ù.

½ÃÀå ¿ªÇÐ : ºü¸£°Ô ÁøÈ­ÇÏ´Â Ãßõ ¿£Áø ½ÃÀå ÁÖ¿ä ÀλçÀÌÆ® °ø°³

Ãßõ ¿£Áø ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ ÀÛ¿ë¿¡ ÀÇÇØ º¯È­¸¦ °Þ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È­ÇÏ´Â ½ÃÀå ¿ªÇÐÀ» ÀÌÇØÇÏ¸é ºñÁî´Ï½º Á¶Á÷Àº Á¤º¸¿¡ ÀÔ°¢ÇÑ ÅõÀÚ °áÁ¤À» ³»¸®°í, Àü·«Àû ÀÇ»ç °áÁ¤À» °³¼±Çϸç, »õ·Î¿î ±âȸ¸¦ Æ÷ÂøÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Æ®·»µå¸¦ Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ºñÁî´Ï½º Á¶Á÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª¿¡¼­ ´Ù¾çÇÑ À§ÇèÀ» ¿ÏÈ­ÇÏ´Â µ¿½Ã¿¡ ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë ¹× ±¸¸Å Æ®·»µå¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ´õ ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ÀüÀÚ»ó°Å·¡ ¹× ¿Â¶óÀÎ ¼Ò¸Å Ȱµ¿ÀÇ È°¼ºÈ­
    • ¿Â¶óÀÎ ¹Ìµð¾î ½ºÆ®¸®¹Ö Ç÷§Æû ±ÞÁõ
    • ±â¾÷ ÀüüÀÇ µ¥ÀÌÅÍ ÁÖµµÇü ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • º¹ÀâÇÑ µµÀÔ ÀýÂ÷
  • ½ÃÀå ±âȸ
    • ºòµ¥ÀÌÅÍ¿Í °³ÀÎÈ­µÈ ÃßõÀÇ ÃâÇö
    • AI³ª MLµî ÃÖ÷´Ü ±â¼ú Áøº¸
  • ½ÃÀå °úÁ¦
    • µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¿Í µ¥ÀÌÅÍ º¸¾È¿¡ ´ëÇÑ ¿ì·Á

Porter's Five Force : Ãßõ ¿£Áø ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Porter's Five Force ÇÁ·¹ÀÓ¿öÅ©´Â Ãßõ ¿£Áø ½ÃÀå °æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ºñÁî´Ï½º Á¶Á÷ÀÌ °æÀïÀû À§Ä¡¸¦ Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ Ž»öÇÒ ¼ö ÀÖ´Â ¸íÈ®ÇÑ ¹æ¹ý·ÐÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ÈûÀÇ ¿ªÇÐ °ü°è¸¦ Æò°¡ÇÏ°í »õ·Î¿î º¥Ã³ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÀλçÀÌÆ®¸¦ ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº °­Á¡À» Ȱ¿ëÇÏ°í ¾àÁ¡À» ÇØ°áÇϸç ÀáÀçÀûÀÎ ¹®Á¦¸¦ ¹æÁöÇÏ¿© º¸´Ù ź·ÂÀûÀÎ ½ÃÀå Æ÷Áö¼Å´×À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : Ãßõ ¿£Áø ½ÃÀåÀÇ ¿ÜºÎ ¿µÇâÀ» ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº Ãßõ ¿£Áø ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì ÁßÃßÀûÀÎ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¤Ä¡, °æÁ¦, »çȸ, ±â¼ú, ¹ý·ü ¹× ȯ°æ ¿äÀÎ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. PESTLE ¿äÀÎÀ» °ËÅäÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¼®À» ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£µµ, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ¿© ¼±Á¦ÀûÀÌ°í ¹Ì·¡ ÁöÇâÀûÀÎ ÀÇ»ç °áÁ¤À» ³»¸± Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® : Ãßõ ¿£Áø ½ÃÀå °æÀï ±¸µµ ÆÄ¾Ç

Ãßõ ¿£Áø ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¸ÅÃâ, °í°´ ±â¹Ý, ¼ºÀå·ü µîÀÇ ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀï ¿ìÀ§¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®Àº ½ÃÀå ÁýÁßµµ, ¼¼ºÐÈ­, ÅëÇÕ Ãß¼¼¸¦ °­Á¶ÇÏ¿© º¥´õ°¡ °æÀïÀÌ Ä¡¿­ÇØÁö´Â ȯ°æ¿¡¼­ ÀÔÁö¸¦ °­È­ÇÏ´Â Àü·«Àû °áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ ÀλçÀÌÆ®¸¦ Á¦°øÇÕ´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º : Ãßõ ¿£Áø ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º°ú Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â Ãßõ ¿£Áø ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ ¸ÅÆ®¸¯½º¸¦ ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±â¹ÝÀ¸·Î °ø±Þ¾÷ü¸¦ Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ºÎÇÕÇÏ´Â Á¤È®ÇÑ Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. 4°³ÀÇ »çºÐ¸éÀº °ø±Þ¾÷ü¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ¼¼ºÐÈ­ÇÏ¿© »ç¿ëÀÚ°¡ Àü·«Àû ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê¿Í ¼Ö·ç¼ÇÀ» ½Äº°ÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù.

Àü·« ºÐ¼® ¹× Á¦¾È : Ãßõ ¿£Áø ½ÃÀå¿¡¼­ ¼º°ø¿¡ ´ëÇÑ ±æÀ» ±×¸®±â

Ãßõ ¿£Áø ½ÃÀåÀÇ Àü·« ºÐ¼®Àº Àü ¼¼°è ½ÃÀå¿¡¼­ ÀÔÁö °­È­¸¦ ¸ñÇ¥·Î ÇÏ´Â ±â¾÷¿¡ ÇʼöÀûÀÎ ¿ä¼ÒÀÔ´Ï´Ù. ÀÌ Á¢±Ù¹ýÀ» ÅëÇØ °æÀï ±¸µµ¿¡¼­ °úÁ¦¸¦ ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö Àִ üÁ¦¸¦ ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀåÀÇ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ : ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·ÂÀ» Æò°¡Çß½À´Ï´Ù.

2. ½ÃÀå °³Ã´µµ : ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡ÇÏ¸ç ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, »ê¾÷ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ÇâÈÄ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, R&D Ȱµ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¾ò°í ÀÇ»ç°áÁ¤À» ÇÒ ¼ö ÀÖµµ·Ï Áß¿äÇÑ Áú¹®¿¡ ´ë´äÇϰí ÀÖ½À´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð ¹× ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹® ¹× Áö¿ªÀº?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ¡¤Ã¶¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø ¹× Àü·«Àû ±âȸ´Â?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • ÀüÀÚ»ó°Å·¡¿Í ¿Â¶óÀÎ ¼Ò¸Å Ȱµ¿ Áõ°¡
      • ¿Â¶óÀÎ ¹Ìµð¾î ½ºÆ®¸®¹Ö Ç÷§Æû ±ÞÁõ
      • ±â¾÷ Àüü¿¡¼­ µ¥ÀÌÅÍ ±¸µ¿Çü ¼Ö·ç¼Ç ¼ö¿ä°¡ Áõ°¡
    • ¾ïÁ¦¿äÀÎ
      • º¹ÀâÇÑ ±¸Çö ÀýÂ÷
    • ±âȸ
      • ºòµ¥ÀÌÅÍ¿Í °³ÀÎÈ­µÈ Ãßõ»çÇ×ÀÇ ÃâÇö
      • AI³ª MLµî ÃÖ÷´Ü ±â¼ú Áøº¸
    • °úÁ¦
      • µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹× µ¥ÀÌÅÍ º¸¾È¿¡ ´ëÇÑ ¿ì·Á
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡Àû
    • °æÁ¦Àû
    • »çȸÀû
    • ±â¼úÀû
    • ¹ýÀû
    • ȯ°æÀû

Á¦6Àå Ãßõ ¿£Áø ½ÃÀå : À¯Çüº°

  • Çù·Â ÇÊÅ͸µ
  • ÄÁÅÙÃ÷ ±â¹Ý ÇÊÅ͸µ
  • ÇÏÀ̺긮µå Ãßõ

Á¦7Àå Ãßõ ¿£Áø ½ÃÀå : ±â¼úº°

  • ÄÁÅØ½ºÆ® ÀνÄ
  • Áö¸®°ø°£ ÀνÄ

Á¦8Àå Ãßõ ¿£Áø ½ÃÀå : Àü°³º°

  • Ŭ¶ó¿ìµå
  • ¿ÂÇÁ·¹¹Ì½º

Á¦9Àå Ãßõ ¿£Áø ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • ÀÀ¿ë
  • BFSI
  • ÇコÄɾî
  • Á¤º¸±â¼ú
  • Á¦Á¶¾÷
  • ¹Ìµð¾î ¹× ¿£ÅÍÅ×ÀÎ¸ÕÆ®
  • ¸ÂÃãÇü Ä·ÆäÀÎ ¹× °í°´ Àü´Þ
  • »çÀü ¿¹¹æÀû ÀÚ»ê °ü¸®
  • Á¦Ç° ±âȹ
  • ¼Ò¸Å
  • Àü·« ¿î¿µ ¹× °èȹ
  • ¿î¼Û

Á¦10Àå Ãßõ ¿£Áø ½ÃÀå : Á¶Á÷º°

  • ´ë±â¾÷
  • Áß¼Ò±â¾÷

Á¦11Àå ¾Æ¸Þ¸®Ä«ÀÇ Ãßõ ¿£Áø ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦12Àå ¾Æ½Ã¾Æ ÅÂÆò¾çÀÇ Ãßõ ¿£Áø ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦13Àå À¯·´¡¤Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« Ãßõ ¿£Áø ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦14Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®(2023³â)
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º(2023³â)
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
  • Àü·« ºÐ¼® ¹× Á¦¾È

±â¾÷ ¸ñ·Ï

  • Adobe Inc.
  • Amazon Web Services, Inc.
  • Automattic Inc.
  • Coveo Solutions Inc.
  • Criteo
  • Datrics, Inc.
  • Dynamic Yield Ltd.
  • Google LLC by Alphabet Inc.
  • Hewlett Packard Enterprise Development LP
  • Intel Corporation
  • International Business Machine Corporation
  • Macrometa Corporation
  • Mad Street Den Inc.
  • Memgraph Ltd.
  • Microsoft Corporation
  • Monetate, Inc.
  • Neo4j, Inc.
  • Netflix, Inc.
  • Nosto Solutions Oy
  • NVIDIA Corporation
  • Optimizely, Inc
  • Oracle Corporation
  • Recombee, sro
  • Salesforce, Inc.
  • SAP SE
LYJ

The Recommendation Engines Market was valued at USD 2.44 billion in 2023, expected to reach USD 2.81 billion in 2024, and is projected to grow at a CAGR of 13.00%, to USD 5.75 billion by 2030.

Recommendation engines are algorithms designed to suggest products, services, or content to users, based on data about their preferences and behaviors. They are integral to the personalization efforts of businesses across various sectors such as e-commerce, entertainment, and social media. The necessity of recommendation engines stems from their ability to enhance user experience through personalized suggestions, thereby increasing engagement, conversion rates, and ultimately, customer loyalty. Their application ranges across industries from online retail, where they suggest products based on past purchases, to streaming services that tailor content recommendations. End-use scope is broad, including sectors like financial services, news and media, and healthcare for personalized content and services suggestions.

KEY MARKET STATISTICS
Base Year [2023] USD 2.44 billion
Estimated Year [2024] USD 2.81 billion
Forecast Year [2030] USD 5.75 billion
CAGR (%) 13.00%

The market for recommendation engines is bolstered by factors such as the growing emphasis on customer personalization, advancements in AI and machine learning, and the proliferation of digital platforms. Businesses are increasingly investing in this technology to differentiate themselves in a crowded marketplace. The latest opportunities lie in leveraging big data analytics and enhancing algorithms to offer more precise recommendations. Companies should focus on integrating recommendation engines with emerging technologies such as augmented reality (AR) and virtual reality (VR) to provide immersive experiences.

However, challenges include data privacy concerns, algorithmic biases, and the need for massive computational power. Navigating regulatory challenges surrounding data use and ensuring ethical AI practices are critical limitations affecting market growth. To overcome these, innovation should focus on developing sophisticated algorithms that ensure data security and user privacy, as well as reducing algorithmic biases.

The best business growth areas involve investing in adaptive and context-aware recommendation systems, which can predict user needs in real-time. The nature of the market is dynamic, driven by continuous technological advancements and shifting consumer expectations. Businesses that prioritize user-centric design and transparency in their recommendation engines are likely to thrive in this evolving landscape.

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Recommendation Engines Market

The Recommendation Engines Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Rising e-commerce and online retail activities
    • Surge in online media streaming platforms
    • Increasing demand for data-driven solutions across businesses
  • Market Restraints
    • Complex implementation procedure
  • Market Opportunities
    • Emergence of big data and personalized recommendations
    • Advancements in cutting-edge technologies such as AI and ML
  • Market Challenges
    • Data privacy and data security concerns

Porter's Five Forces: A Strategic Tool for Navigating the Recommendation Engines Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Recommendation Engines Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Recommendation Engines Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Recommendation Engines Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Recommendation Engines Market

A detailed market share analysis in the Recommendation Engines Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Recommendation Engines Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Recommendation Engines Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Recommendation Engines Market

A strategic analysis of the Recommendation Engines Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Recommendation Engines Market, highlighting leading vendors and their innovative profiles. These include Adobe Inc., Amazon Web Services, Inc., Automattic Inc., Coveo Solutions Inc., Criteo, Datrics, Inc., Dynamic Yield Ltd., Google LLC by Alphabet Inc., Hewlett Packard Enterprise Development LP, Intel Corporation, International Business Machine Corporation, Macrometa Corporation, Mad Street Den Inc., Memgraph Ltd., Microsoft Corporation, Monetate, Inc., Neo4j, Inc., Netflix, Inc., Nosto Solutions Oy, NVIDIA Corporation, Optimizely, Inc, Oracle Corporation, Recombee, s.r.o., Salesforce, Inc., and SAP SE.

Market Segmentation & Coverage

This research report categorizes the Recommendation Engines Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Types, market is studied across Collaborative Filtering, Content-Based Filtering, and Hybrid Recommendation.
  • Based on Technology, market is studied across Context-Aware and Geospatial Aware.
  • Based on Deployment, market is studied across On-Cloud and On-Premise.
  • Based on End-User, market is studied across Application, BFSI, Healthcare, Information Technology, Manufacturing, Media & Entertainment, Personalized Campaigns & Customer Delivery, Proactive Asset Management, Product Planning, Retail, Strategy Operations & Planning, and Transportation.
  • Based on Organizations, market is studied across Large Enterprises and Small & Medium Enterprises.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Rising e-commerce and online retail activities
      • 5.1.1.2. Surge in online media streaming platforms
      • 5.1.1.3. Increasing demand for data-driven solutions across businesses
    • 5.1.2. Restraints
      • 5.1.2.1. Complex implementation procedure
    • 5.1.3. Opportunities
      • 5.1.3.1. Emergence of big data and personalized recommendations
      • 5.1.3.2. Advancements in cutting-edge technologies such as AI and ML
    • 5.1.4. Challenges
      • 5.1.4.1. Data privacy and data security concerns
  • 5.2. Market Segmentation Analysis
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Recommendation Engines Market, by Types

  • 6.1. Introduction
  • 6.2. Collaborative Filtering
  • 6.3. Content-Based Filtering
  • 6.4. Hybrid Recommendation

7. Recommendation Engines Market, by Technology

  • 7.1. Introduction
  • 7.2. Context-Aware
  • 7.3. Geospatial Aware

8. Recommendation Engines Market, by Deployment

  • 8.1. Introduction
  • 8.2. On-Cloud
  • 8.3. On-Premise

9. Recommendation Engines Market, by End-User

  • 9.1. Introduction
  • 9.2. Application
  • 9.3. BFSI
  • 9.4. Healthcare
  • 9.5. Information Technology
  • 9.6. Manufacturing
  • 9.7. Media & Entertainment
  • 9.8. Personalized Campaigns & Customer Delivery
  • 9.9. Proactive Asset Management
  • 9.10. Product Planning
  • 9.11. Retail
  • 9.12. Strategy Operations & Planning
  • 9.13. Transportation

10. Recommendation Engines Market, by Organizations

  • 10.1. Introduction
  • 10.2. Large Enterprises
  • 10.3. Small & Medium Enterprises

11. Americas Recommendation Engines Market

  • 11.1. Introduction
  • 11.2. Argentina
  • 11.3. Brazil
  • 11.4. Canada
  • 11.5. Mexico
  • 11.6. United States

12. Asia-Pacific Recommendation Engines Market

  • 12.1. Introduction
  • 12.2. Australia
  • 12.3. China
  • 12.4. India
  • 12.5. Indonesia
  • 12.6. Japan
  • 12.7. Malaysia
  • 12.8. Philippines
  • 12.9. Singapore
  • 12.10. South Korea
  • 12.11. Taiwan
  • 12.12. Thailand
  • 12.13. Vietnam

13. Europe, Middle East & Africa Recommendation Engines Market

  • 13.1. Introduction
  • 13.2. Denmark
  • 13.3. Egypt
  • 13.4. Finland
  • 13.5. France
  • 13.6. Germany
  • 13.7. Israel
  • 13.8. Italy
  • 13.9. Netherlands
  • 13.10. Nigeria
  • 13.11. Norway
  • 13.12. Poland
  • 13.13. Qatar
  • 13.14. Russia
  • 13.15. Saudi Arabia
  • 13.16. South Africa
  • 13.17. Spain
  • 13.18. Sweden
  • 13.19. Switzerland
  • 13.20. Turkey
  • 13.21. United Arab Emirates
  • 13.22. United Kingdom

14. Competitive Landscape

  • 14.1. Market Share Analysis, 2023
  • 14.2. FPNV Positioning Matrix, 2023
  • 14.3. Competitive Scenario Analysis
  • 14.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Adobe Inc.
  • 2. Amazon Web Services, Inc.
  • 3. Automattic Inc.
  • 4. Coveo Solutions Inc.
  • 5. Criteo
  • 6. Datrics, Inc.
  • 7. Dynamic Yield Ltd.
  • 8. Google LLC by Alphabet Inc.
  • 9. Hewlett Packard Enterprise Development LP
  • 10. Intel Corporation
  • 11. International Business Machine Corporation
  • 12. Macrometa Corporation
  • 13. Mad Street Den Inc.
  • 14. Memgraph Ltd.
  • 15. Microsoft Corporation
  • 16. Monetate, Inc.
  • 17. Neo4j, Inc.
  • 18. Netflix, Inc.
  • 19. Nosto Solutions Oy
  • 20. NVIDIA Corporation
  • 21. Optimizely, Inc
  • 22. Oracle Corporation
  • 23. Recombee, s.r.o.
  • 24. Salesforce, Inc.
  • 25. SAP SE
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦