½ÃÀ庸°í¼­
»óǰÄÚµå
1611865

¼¼°èÀÇ ¼öÁ÷ °øÁø±â ¸é¹ß±¤ ·¹ÀÌÀú ½ÃÀå : À¯Çü,ÀçÁú,ÆÄÀå,´ÙÀÌ »çÀÌÁî,¿ëµµ,ÃÖÁ¾»ç¿ëÀÚº° ¿¹Ãø(2025-2030³â)

Vertical Cavity Surface Emitting Laser Market (VCSEL) by Type (Multi-Mode VCSEL, Single-Mode VCSEL), Material (Gallium Arsenide, Gallium Nitride, Indium Phosphide), Wavelength, Die-Size, Application, End-User - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 197 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

¼öÁ÷ °øÁø±â ¸é¹ß±¤ ·¹ÀÌÀú ½ÃÀåÀº 2023³â¿¡ 27¾ï 9,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2024³â¿¡´Â 32¾ï 3,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 18.20%·Î ¼ºÀåÇÏ¿©, 2030³â¿¡´Â 90¾ï 2,000 ¸¸¹Ì ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼öÁ÷ °øÁø±â ¸é¹ß±¤ ·¹ÀÌÀú(VCSEL)´Â ¹ÝµµÃ¼ ·¹ÀÌÀú ´ÙÀÌ¿ÀµåÀÇ ÀÏÁ¾À¸·Î Ç¥¸é¿¡ ¼öÁ÷À¸·Î ¹ß±¤ÇÕ´Ï´Ù. ±âÁ¸ÀÇ ´Ü¸é ¹ß±¤ ·¹ÀÌÀú¿¡ ºñÇØ ÀåÁ¡À¸·Î ÀÎÇØ ¹ß»ýÇÕ´Ï´Ù. ¼î¿¡¼­ ÁÖ·Î »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ÃÖÁ¾ ¿ëµµ´Â °¡Àü, ÀÚµ¿Â÷, ÇコÄɾî, »ê¾÷ ºÐ¾ß µî ´Ù¹æ¸é¿¡ °ÉĨ´Ï´Ù. 5G ±â¼úÀÇ Áøº¸¿Í IoT µð¹ÙÀ̽ºÀÇ µ¿ÇâÀº VCSEL ½ÃÀåÀÇ È®´ë¿¡ Å« ±âȸ¸¦ °¡Á®¿À°í ÀÖ½À´Ï´Ù. Á¦Á¶ ¹× ±âÁ¸ ½Ã½ºÅÛ ÅëÇÕÀÇ ±â¼úÀû º¹À⼺°ú °°Àº °úÁ¦´Â Ä¡¿­ÇÑ ½ÃÀå °æÀï°ú ÇÔ²² ¼ºÀåÀ» ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. È®Àå, ´Ù¾çÇÑ ¿î¿µ Á¶°Ç¿¡¼­ ½Å·Ú¼º Çâ»ó¿¡ ÁßÁ¡À» µÐ R&D¿¡ ÅõÀÚÇÏ´Â °ÍÀÌ ÁÁ½À´Ï´Ù. ½Åû ÀÌ °úÁ¦¿¡µµ ºÒ±¸Çϰí VCSEL ½ÃÀåÀÇ ¼º°ÝÀº ¿©ÀüÈ÷ ¿ªµ¿ÀûÀÌ¸ç ±Þ¼ÓÇÑ ±â¼ú ¹ßÀü°ú ²÷ÀÓ¾ø´Â Çõ½ÅÀ» Ư¡À¸·ÎÇÕ´Ï´Ù. ±â¼úÀÇ º¸±ÞÀ̶ó´Â ÁøÈ­ÇÏ´Â ¿ä°Ç¿¡ ÀûÀÀÇϱâ À§ÇÑ ³ë·ÂÀº VCSEL »ê¾÷ÀÇ ¹Ì·¡ÀÇ ±Ëµµ¸¦ Çü¼ºÇϴµ¥ À־ ¸Å¿ì Áß¿äÇϸç, °ü·Ã ºÎ¹® °£ÀÇ Àü·«Àû ÆÄÆ®³Ê½Ê°ú Çù¾÷À» ÃËÁøÇÕ´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ(2023) 27¾ï 9,000¸¸ ´Þ·¯
ÃßÁ¤³â(2024) 32¾ï 3,000¸¸ ´Þ·¯
¿¹Ãø³â(2030) 90¾ï 2,000¸¸ ´Þ·¯
º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)(%) 18.20%

½ÃÀå ¿ªÇÐ : ºü¸£°Ô ÁøÈ­ÇÏ´Â ¼öÁ÷ °øÁø±â ¸é¹ß±¤ ·¹ÀÌÀú ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

¼öÁ÷ °øÁø±â ¸é¹ß±¤ ·¹ÀÌÀú ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ ÀÛ¿ë¿¡ ÀÇÇØ º¯¸ð¸¦ ÀÌ·ç°í ÀÖ½À´Ï´Ù. ÀÇ»ç °áÁ¤, »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦ÀûÀÎ ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ °æ°¨ÇÒ ¼ö ÀÖÀ½°ú µ¿½Ã¿¡ ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë°ú ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ»º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ½º¸¶Æ®ÆùÀ̳ª ÅÂºí¸´¿¡ À־ÀÇ 3D¼¾½Ì, ¿ëµµÀÇ Ã¤¿ë Áõ°¡
    • µ¥ÀÌÅÍ Åë½Å¿¡ À־ÀÇ VCSEL ÀÀ¿ëÀÇ È®´ë
    • Ç×°ø¿ìÁÖ ¹× ¹æÀ§ ºÐ¾ß¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ¼öÁ÷ °øÁø±â ¸é¹ß±¤ ·¹ÀÌÀúÀÇ µ¥ÀÌÅÍ Àü¼Û ¹üÀ§ÀÇ Á¼À½
  • ½ÃÀå ±âȸ
    • »ó¾÷ ¹× Á¤ºÎ ºÎ¹®¿¡¼­ IoT ÅõÀÚ Áõ°¡
    • °í¼Ó µ¥ÀÌÅÍ Åë½Å¿ë ¼öÁ÷ °øÁø±â ¸é¹ß±¤ ·¹ÀÌÀúÀÇ ±â¼ú Áøº¸
  • ½ÃÀåÀÇ °úÁ¦
    • VCSEL Á¦Á¶¸¦ À§ÇÑ ¼÷·Ã ³ëµ¿ÀÚ ºÎÁ·

Porter's Five Forces : ¼öÁ÷ °øÁø±â ¸é¹ß±¤ ·¹ÀÌÀú ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Porter's Five Forces Framework´Â ½ÃÀå »óȲ°æÀï ±¸µµ¸¦ ÆÄ¾ÇÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Porter's Five Forces Framework´Â ±â¾÷ÀÇ °æÀï·ÂÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ ޱ¸ÇÏ´Â ¸íÈ®ÇÑ ±â¼úÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÀλçÀÌÆ®À» ÅëÇØ ±â¾÷Àº ÀÚ»çÀÇ °­Á¡À» Ȱ¿ëÇÏ°í ¾àÁ¡À» ÇØ°áÇϰí ÀáÀçÀûÀÎ °úÁ¦¸¦ ÇÇÇÔÀ¸·Î½á º¸´Ù °­ÀÎÇÑ ½ÃÀå¿¡¼­ÀÇ Æ÷Áö¼Å´×À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : ¼öÁ÷ °øÁø±â ¸é¹ß±¤ ·¹ÀÌÀú ½ÃÀå¿¡¼­ ¿ÜºÎ·ÎºÎÅÍÀÇ ¿µÇâ ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº ¼öÁ÷ °øÁø±â ¸é¹ß±¤ ·¹ÀÌÀú ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀÎ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¾ÕÀ¸·Î ¿¹»óµÇ´Â Àû±ØÀûÀÎ ÀÇ»ç °áÁ¤À» ÇÒ Áغñ°¡ °¡´ÉÇÕ´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® ¼öÁ÷ °øÁø±â ¸é¹ß±¤ ·¹ÀÌÀú ½ÃÀå °æÀï ±¸µµ ÆÄ¾Ç

¼öÁ÷ °øÁø±â ¸é¹ß±¤ ·¹ÀÌÀú ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¼öÀÍ, °í°´ ±â¹Ý, ¼ºÀå·ü µî ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀï Æ÷Áö¼Å´×À» ¹àÈú ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ½ÃÀå ÁýÁß, ´ÜÆíÈ­, ÅëÇÕ µ¿ÇâÀ» ¹àÇô³»°í º¥´õµéÀº °æÀïÀÌ Ä¡¿­ÇØÁö´Â °¡¿îµ¥ ÀÚ»çÀÇ ÁöÀ§¸¦ ³ôÀÌ´Â Àü·«Àû ÀÇ»ç °áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ Áö½ÄÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º ¼öÁ÷ °øÁø±â ¸é¹ß±¤ ·¹ÀÌÀú ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â ¼öÁ÷ °øÁø±â ¸é¹ß±¤ ·¹ÀÌÀú ½ÃÀå¿¡¼­ °ø±Þ¾÷ü¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ Çà·ÄÀ» ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº °ø±Þ¾÷üÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±âÁØÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ¸Â´Â ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ³× °¡Áö »çºÐ¸éÀ» ÅëÇØ °ø±Þ¾÷ü¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ¼¼ºÐÈ­ÇÏ¿© Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê ¹× ¼Ö·ç¼ÇÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× ±ÇÀå ¼öÁ÷ °øÁø±â ¸é¹ß±¤ ·¹ÀÌÀú ½ÃÀåÀÇ ¼º°ø¿¡ ´ëÇÑ ±æÀ» ±×¸³´Ï´Ù.

¼öÁ÷ °øÁø±â ¸é¹ß±¤ ·¹ÀÌÀú ½ÃÀåÀÇ Àü·« ºÐ¼®Àº ½ÃÀå¿¡¼­ÀÇ Á¸À縦 °­È­ÇÏ·Á´Â ±â¾÷¿¡ ÇʼöÀûÀÔ´Ï´Ù. ÁÖ¿ä ÀÚ¿ø, ´É·Â ¹× ¼º°ú ÁöÇ¥¸¦ °ËÅäÇÔÀ¸·Î½á ±â¾÷Àº ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í °³¼±À» À§ÇØ ³ë·ÂÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀ» ÅëÇØ °æÀï ±¸µµ¿¡¼­ °úÁ¦¸¦ ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö Àִ üÁ¦¸¦ ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀåÀÇ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ : ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·Â Æò°¡.

2. ½ÃÀå °³Ã´µµ : ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡ÇÏ¸ç ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, R&D Ȱµ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¾ò°í ÀÇ»ç°áÁ¤À» ÇÒ ¼ö ÀÖµµ·Ï Áß¿äÇÑ Áú¹®¿¡ ´ë´äÇϰí ÀÖ½À´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹® ¹× Áö¿ªÀº ¾îµðÀԴϱî?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ, ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • ½º¸¶Æ®ÆùÀ̳ª ÅÂºí¸´¿¡¼­ 3D ¼¾½Ì ¿ëµµ ä¿ë Áõ°¡
      • µ¥ÀÌÅÍ Åë½Å¿¡ À־ÀÇ VCSELÀÇ ÀÀ¿ë È®´ë
      • Ç×°ø¿ìÁÖ ¹× ¹æÀ§ ºÐ¾ß¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡
    • ¾ïÁ¦¿äÀÎ
      • ¼öÁ÷ °øÁø±âÇü¸é ¹ß±¤ ·¹ÀÌÀúÀÇ µ¥ÀÌÅÍ Æ®·£½º¹Ì¼Ç ¹üÀ§ÀÇ ÇѰè
    • ±âȸ
      • »ó¾÷ ºÎ¹®°ú Á¤ºÎ ºÎ¹®¿¡¼­ IoT¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡
      • °í¼Ó µ¥ÀÌÅÍ Åë½Å¿ë ¼öÁ÷ °øÁø±âÇü¸é ¹ß±¤ ·¹ÀÌÀúÀÇ ±â¼ú Áøº¸
    • °úÁ¦
      • VCSEL Á¦Á¶ÀÇ ¼÷·Ã ³ëµ¿ÀÚ ºÎÁ·
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
    • À¯Çü : Å« Ãâ·ÂÀ» ÇÊ¿ä·Î ÇÏ´Â ¿ëµµ¿ë ¸ÖƼ ¸ðµå VCSELÀÇ Ã¤¿ëÀÌ Áõ°¡
    • Àç·á: °¡º¯»ö Ãâ·ÂÀ» ÇÊ¿ä·Î ÇÏ´Â ¿ëµµ¿¡¼­ ÁúÈ­°¥·ý°è VCSELÀÇ »ç¿ë Áõ°¡
    • ÆÄÀå: Àå°Å¸® ±¤Åë½Å ½Ã½ºÅÛ¿ë ±ÙÀû¿Ü¼± ÆÄÀå ±â¹Ý VCSEL ä¿ë Áõ°¡
    • ÃÖÁ¾ »ç¿ëÀÚ : ±¤Åë½Å¿ë ¼ÒºñÀÚ¿ë ÀüÀÚ ±â±â¿¡ À־ÀÇ VCSELÀÇ »õ·Î¿î ÀÀ¿ë
    • ¿ëµµ : °æÀÌÀûÀÎ Àü·Â ¹Ðµµ¿Í Á¤¹ÐÇÑ Á¦¾î·Î VCSELÀÇ »ê¾÷¿ë °¡¿­ °¡´É¼ºÀ» È®´ë
    • ´ÙÀÌ »çÀÌÁî : ±¤ÇÐ ÃßÀû ¹× ¹ÙÀÌ¿À¸ÞµðÄà À̹Ì¡¿ëÀÇ 0.06-0.4 mm2 ´ÙÀÌ »çÀÌÁî VCSELÀÇ Ã¤¿ëÀÌ Áõ°¡
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡Àû
    • °æÁ¦
    • »ç±³
    • ±â¼úÀû
    • ¹ý·ü»ó
    • ȯ°æ

Á¦6Àå ¼öÁ÷ °øÁø±â ¸é¹ß±¤ ·¹ÀÌÀú ½ÃÀå : À¯Çüº°

  • ¸ÖƼ ¸ðµå VCSEL
  • ½Ì±Û ¸ðµå VCSEL

Á¦7Àå ¼öÁ÷ °øÁø±â ¸é¹ß±¤ ·¹ÀÌÀú ½ÃÀå : ¼ÒÀ纰

  • °¥·ýºñ¼Ò
  • ÁúÈ­°¥·ý
  • ÀÎÈ­Àεã

Á¦8Àå ¼öÁ÷ °øÁø±â ¸é¹ß±¤ ·¹ÀÌÀú ½ÃÀå : ÆÄÀ庰

  • ±ÙÀû¿Ü¼±
  • ·¹µå
  • ´ÜÆÄ Àû¿Ü¼±

Á¦9Àå ¼öÁ÷ °øÁø±â ¸é¹ß±¤ ·¹ÀÌÀú ½ÃÀå ´ÙÀÌ »çÀÌÁ

  • 0.02-0.06 mm2
  • 0.06-0.4 mm2
  • 0.4-1.3 mm2
  • 10-75 mm2

Á¦10Àå ¼öÁ÷ °øÁø±â ¸é¹ß±¤ ·¹ÀÌÀú ½ÃÀå : ¿ëµµº°

  • µ¥ÀÌÅÍ Åë½Å
  • »ê¾÷¿ë ³­¹æ
  • ·¹ÀÌÀú Àμâ
  • LIDAR
  • ÆÞ½º ¿Á½Ã¸ÞÆ®¸®
  • ¼¾½Ì
    • 3D ¼¾½Ì
    • °¡½º °¨Áö
    • ±¤ÇÐ½Ä ¸¶¿ì½º

Á¦11Àå ¼öÁ÷ °øÁø±â ¸é¹ß±¤ ·¹ÀÌÀú ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • Ç×°ø¿ìÁÖ ¹× ¹æ¾î
  • ÀÚµ¿Â÷
  • °¡Àü
  • ÇコÄɾî
  • »ê¾÷
  • IT ¹× Åë½Å

Á¦12Àå ¾Æ¸Þ¸®Ä«ÀÇ ¼öÁ÷ °øÁø±â ¸é¹ß±¤ ·¹ÀÌÀú ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦13Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¼öÁ÷ °øÁø±â ¸é¹ß±¤ ·¹ÀÌÀú ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦14Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ¼öÁ÷ °øÁø±â ¸é¹ß±¤ ·¹ÀÌÀú ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦15Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®(2023³â)
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º(2023³â)
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
    • Coherent, ÀÌ¸é ¹ß±¤Çü VCSEL ¾î·¹ÀÌ¿¡ ÀÇÇÑ ÃʼÒÇü ´ÙÀ̳ª¹Í Á¶¸í ¹× ¼¾½Ì¿ë ƯÇã Ãëµæ ¸ðµâ ¾ÆÅ°ÅØÃ³ ¹ßÇ¥
    • Ganvix, Inc.¿Í BluGlass Limited°¡ GaN VCSEL °³¹ß·Î Á¦ÈÞ °è¾àÀ» ü°á
    • VI Systems´Â ¸ÖƼ ¸ðµå ÆÄÀ̹ö¸¦ ÅëÇÑ Extended Reach 800G ÀÌ´õ³ÝÀ» À§ÇÑ Á¼Àº ½ºÆåÆ®·³ ÆøÀ» °®Ãá »õ·Î¿î ¸ÖƼ¾îÆÛó VCSEL°ú ±â·ÏÀûÀÎ ¿¡³ÊÁö È¿À²À» ÀÚ¶ûÇÏ´Â VCSEL ±â¹Ý ¸µÅ©¿¡ ´ëÇØ º¸°íÇÕ´Ï´Ù.
    • AKM°ú LumentumÀÌ dToF ¼¾¼­ ±â¼ú¿¡ À־ÀÇ °íÃâ·Â VCSEL ÃËÁø¿äÀÎ ICÀÇ °³¹ß·Î Á¦ÈÞ
    • ITRI¿Í Ganvix»ç°¡ Çõ½ÅÀûÀÎ ·¹ÀÌÀú ±â¼úÀÇ »ó¾÷È­¸¦ ÇâÇØ ÇÕÀÛ »ç¾÷À» È®´ë
    • IQE, ¾Æ½Ã¾Æ ¼ÒºñÀÚ ±â¾÷°ú VCSEL °è¾à ü°á
    • Semtech°¡ 400G ¹× 800G µ¥ÀÌÅͼ¾ÅÍ¿ë FiberEdge ¼±Çü ¼öÁ÷ °øÁø±â ¸é¹ß±¤ ·¹ÀÌÀú(VCSEL) ÃËÁø¿äÀÎ Ãâ½Ã
    • Áß±¹ÀÇ ·¹ÀÌÀú Ĩ °³¹ß ±â¾÷ Vertilite°¡ »õ·Î¿î ÀÚ±Ý Á¶´ÞÀ» È®º¸
    • TRUMPF, °í±Þ 3D ¼¾½Ì ¿ëµµÀ» À§ÇÑ »õ·Î¿î VCSEL Á¦Ç° Ãâ½Ã
  • Àü·« ºÐ¼®°ú Á¦¾È

±â¾÷ ¸ñ·Ï

  • Agiltron Inc.
  • Alight Technologies ApS
  • Broadcom Inc.
  • FLIR Systems Inc.
  • Hamamatsu Photonics KK
  • II-VI Incorporated by Coherent Corp.
  • Inneos LLC
  • IQE PLC
  • Konica Minolta Sensing Americas Inc.
  • Kyoto Semiconductor Co. Ltd.
  • Laser 2000 SAS
  • Leonardo SpA
  • Lumentum Operations LLC
  • Octlight ApS
  • Ophir Optronics Solutions Ltd.
  • Optilab
  • Ricoh Company, Ltd.
  • Roithner Lasertechnik GmbH
  • RPMC Lasers, Inc.
  • Sacher Lasertechnik GmbH
  • Santec Corporation
  • Shenzhen Optico Communication Co.Ltd.
  • Stanley Electric Co. Ltd.
  • Thorlabs, Inc.
  • TRUMPF SE Co. KG
  • TT Electronics PLC
  • Vertilas GmbH
  • Vertilite Inc.
  • Vixar Inc. by OSRAM Licht AG
  • Wurth Elektronik GmbH & Co. KG
BJH 24.12.24

The Vertical Cavity Surface Emitting Laser Market was valued at USD 2.79 billion in 2023, expected to reach USD 3.23 billion in 2024, and is projected to grow at a CAGR of 18.20%, to USD 9.02 billion by 2030.

Vertical Cavity Surface Emitting Lasers (VCSELs) are a type of semiconductor laser diode that emit light perpendicular to their surface, making them highly efficient and suitable for various applications such as data communication, sensing, and imaging. The necessity of VCSELs arises primarily from their advantages over traditional edge-emitting lasers, including lower manufacturing costs, higher scalability, and superior energy efficiency. They are predominantly used in applications like gesture recognition, 3D sensing for facial recognition in smartphones, LiDAR sensors for autonomous vehicles, and fiber-optic communications. The end-use scope spans industries such as consumer electronics, automotive, healthcare, and industrial sectors. The market for VCSELs is influenced by several growth factors, including the increasing demand for advanced features in smartphones, the rising adoption of autonomous vehicles, and the need for efficient data communication infrastructure. Additionally, the ongoing advancements in 5G technology and the surging trends towards IoT devices present significant opportunities for VCSEL market expansion. However, challenges such as technical complexities in manufacturing and integration within existing systems, along with intense market competition, can hinder growth. To capitalize on potential opportunities, companies are recommended to invest in research and development focused on enhancing the performance of VCSELs, expanding their wavelength ranges, and improving reliability under various operating conditions. Innovations in these areas can allow businesses to capture emerging applications in medical diagnostics, augmented reality, and beyond. Despite these challenges, the nature of the VCSEL market remains dynamic, characterized by rapid technological advancements and continuous innovation. Efforts to adapt to the evolving requirements of connected devices and the proliferation of smart technologies will be pivotal in shaping the future trajectory of the VCSEL industry, encouraging strategic partnerships and collaborations across related sectors.

KEY MARKET STATISTICS
Base Year [2023] USD 2.79 billion
Estimated Year [2024] USD 3.23 billion
Forecast Year [2030] USD 9.02 billion
CAGR (%) 18.20%

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Vertical Cavity Surface Emitting Laser Market

The Vertical Cavity Surface Emitting Laser Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Increasing adoption of 3D sensing applications in smartphones and tablets
    • Growing application of VCSELs in data communication
    • Rising investment in aerospace & defense sectors
  • Market Restraints
    • Limited data transmission range of vertical-cavity surface-emitting laser
  • Market Opportunities
    • Growing investment in IoT across commercial and government sector
    • Technological advancement in vertical-cavity surface-emitting laser for high-speed data communication
  • Market Challenges
    • Lack of skilled workers for manufacturing of VCSEL

Porter's Five Forces: A Strategic Tool for Navigating the Vertical Cavity Surface Emitting Laser Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Vertical Cavity Surface Emitting Laser Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Vertical Cavity Surface Emitting Laser Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Vertical Cavity Surface Emitting Laser Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Vertical Cavity Surface Emitting Laser Market

A detailed market share analysis in the Vertical Cavity Surface Emitting Laser Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Vertical Cavity Surface Emitting Laser Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Vertical Cavity Surface Emitting Laser Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Vertical Cavity Surface Emitting Laser Market

A strategic analysis of the Vertical Cavity Surface Emitting Laser Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Vertical Cavity Surface Emitting Laser Market, highlighting leading vendors and their innovative profiles. These include Agiltron Inc., Alight Technologies ApS, Broadcom Inc., FLIR Systems Inc., Hamamatsu Photonics K.K., II-VI Incorporated by Coherent Corp., Inneos LLC, IQE PLC, Konica Minolta Sensing Americas Inc., Kyoto Semiconductor Co., Ltd., Laser 2000 SAS, Leonardo S.p.A., Lumentum Operations LLC, Octlight ApS, Ophir Optronics Solutions Ltd., Optilab, Ricoh Company, Ltd., Roithner Lasertechnik GmbH, RPMC Lasers, Inc., Sacher Lasertechnik GmbH, Santec Corporation, Shenzhen Optico Communication Co.,Ltd., Stanley Electric Co., Ltd., Thorlabs, Inc., TRUMPF SE + Co. KG, TT Electronics PLC, Vertilas GmbH, Vertilite Inc., Vixar Inc. by OSRAM Licht AG, and Wurth Elektronik GmbH & Co. KG.

Market Segmentation & Coverage

This research report categorizes the Vertical Cavity Surface Emitting Laser Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Type, market is studied across Multi-Mode VCSEL and Single-Mode VCSEL.
  • Based on Material, market is studied across Gallium Arsenide, Gallium Nitride, and Indium Phosphide.
  • Based on Wavelength, market is studied across Near-Infrared, Red, and Shortwave Infrared.
  • Based on Die-Size, market is studied across 0.02 - 0.06 mm2, 0.06 - 0.4 mm2, 0.4 - 1.3 mm2, and 10 - 75 mm2.
  • Based on Application, market is studied across Data Communication, Industrial Heating, Laser Printing, LiDAR, Pulse Oximetry, and Sensing. The Sensing is further studied across 3D Sensing, Gas Sensing, and Optical Mice.
  • Based on End-User, market is studied across Aerospace & Defense, Automotive, Consumer Electronics, Healthcare, Industrial, and IT & Telecom.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Increasing adoption of 3D sensing applications in smartphones and tablets
      • 5.1.1.2. Growing application of VCSELs in data communication
      • 5.1.1.3. Rising investment in aerospace & defense sectors
    • 5.1.2. Restraints
      • 5.1.2.1. Limited data transmission range of vertical-cavity surface-emitting laser
    • 5.1.3. Opportunities
      • 5.1.3.1. Growing investment in IoT across commercial and government sector
      • 5.1.3.2. Technological advancement in vertical-cavity surface-emitting laser for high-speed data communication
    • 5.1.4. Challenges
      • 5.1.4.1. Lack of skilled workers for manufacturing of VCSEL
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Type: Growing adoption of multi-mode VCSEL for applications requiring significant power output
    • 5.2.2. Material: Rising usage of gallium nitride-based VCSELs for applications requiring variable color outputs
    • 5.2.3. Wavelength: Increasing adoption of near-infrared wavelengths based VCSEL for long-distance optical communications systems
    • 5.2.4. End-User: Emerging application of VCSELs in consumer electronics for optical communication
    • 5.2.5. Application: Expanding the potential of VCSEL for industrial heating due to their incredible power density and precise control
    • 5.2.6. Die-Size: Increasing adoption of 0.06 - 0.4 mm2 die-size VCSELs for optical tracking and biomedical imaging
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Vertical Cavity Surface Emitting Laser Market, by Type

  • 6.1. Introduction
  • 6.2. Multi-Mode VCSEL
  • 6.3. Single-Mode VCSEL

7. Vertical Cavity Surface Emitting Laser Market, by Material

  • 7.1. Introduction
  • 7.2. Gallium Arsenide
  • 7.3. Gallium Nitride
  • 7.4. Indium Phosphide

8. Vertical Cavity Surface Emitting Laser Market, by Wavelength

  • 8.1. Introduction
  • 8.2. Near-Infrared
  • 8.3. Red
  • 8.4. Shortwave Infrared

9. Vertical Cavity Surface Emitting Laser Market, by Die-Size

  • 9.1. Introduction
  • 9.2. 0.02 - 0.06 mm2
  • 9.3. 0.06 - 0.4 mm2
  • 9.4. 0.4 - 1.3 mm2
  • 9.5. 10 - 75 mm2

10. Vertical Cavity Surface Emitting Laser Market, by Application

  • 10.1. Introduction
  • 10.2. Data Communication
  • 10.3. Industrial Heating
  • 10.4. Laser Printing
  • 10.5. LiDAR
  • 10.6. Pulse Oximetry
  • 10.7. Sensing
    • 10.7.1. 3D Sensing
    • 10.7.2. Gas Sensing
    • 10.7.3. Optical Mice

11. Vertical Cavity Surface Emitting Laser Market, by End-User

  • 11.1. Introduction
  • 11.2. Aerospace & Defense
  • 11.3. Automotive
  • 11.4. Consumer Electronics
  • 11.5. Healthcare
  • 11.6. Industrial
  • 11.7. IT & Telecom

12. Americas Vertical Cavity Surface Emitting Laser Market

  • 12.1. Introduction
  • 12.2. Argentina
  • 12.3. Brazil
  • 12.4. Canada
  • 12.5. Mexico
  • 12.6. United States

13. Asia-Pacific Vertical Cavity Surface Emitting Laser Market

  • 13.1. Introduction
  • 13.2. Australia
  • 13.3. China
  • 13.4. India
  • 13.5. Indonesia
  • 13.6. Japan
  • 13.7. Malaysia
  • 13.8. Philippines
  • 13.9. Singapore
  • 13.10. South Korea
  • 13.11. Taiwan
  • 13.12. Thailand
  • 13.13. Vietnam

14. Europe, Middle East & Africa Vertical Cavity Surface Emitting Laser Market

  • 14.1. Introduction
  • 14.2. Denmark
  • 14.3. Egypt
  • 14.4. Finland
  • 14.5. France
  • 14.6. Germany
  • 14.7. Israel
  • 14.8. Italy
  • 14.9. Netherlands
  • 14.10. Nigeria
  • 14.11. Norway
  • 14.12. Poland
  • 14.13. Qatar
  • 14.14. Russia
  • 14.15. Saudi Arabia
  • 14.16. South Africa
  • 14.17. Spain
  • 14.18. Sweden
  • 14.19. Switzerland
  • 14.20. Turkey
  • 14.21. United Arab Emirates
  • 14.22. United Kingdom

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2023
  • 15.2. FPNV Positioning Matrix, 2023
  • 15.3. Competitive Scenario Analysis
    • 15.3.1. Coherent Unveils Patented Module Architecture for Ultracompact Dynamic Illumination and Sensing with Backside-emitting VCSEL Arrays
    • 15.3.2. Ganvix, Inc. and BluGlass Limited Sign Collaboration Agreement to Develop GaN VCSELs
    • 15.3.3. VI Systems to report on novel multi-aperture VCSELs with a narrow spectral width for Extended Reach 800G Ethernet over multimode fiber and on record energy-efficient VCSEL-based links.
    • 15.3.4. AKM and Lumentum Collaborate to Develop a High-Power VCSEL Driver IC in dToF Sensor Technology
    • 15.3.5. ITRI and Ganvix, Inc. Extend Their Joint Venture to Commercialize Innovative Laser Technology
    • 15.3.6. IQE signs VCSEL deal with Asian consumer firm
    • 15.3.7. Semtech Releases FiberEdge Linear Vertical-Cavity Surface-Emitting Laser (VCSEL) Driver for 400G and 800G Data Centers
    • 15.3.8. Chinese Laser Chip Developer Vertilite Secures Fresh Funding
    • 15.3.9. TRUMPF announces new VCSEL products for advanced 3D sensing applications
  • 15.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Agiltron Inc.
  • 2. Alight Technologies ApS
  • 3. Broadcom Inc.
  • 4. FLIR Systems Inc.
  • 5. Hamamatsu Photonics K.K.
  • 6. II-VI Incorporated by Coherent Corp.
  • 7. Inneos LLC
  • 8. IQE PLC
  • 9. Konica Minolta Sensing Americas Inc.
  • 10. Kyoto Semiconductor Co., Ltd.
  • 11. Laser 2000 SAS
  • 12. Leonardo S.p.A.
  • 13. Lumentum Operations LLC
  • 14. Octlight ApS
  • 15. Ophir Optronics Solutions Ltd.
  • 16. Optilab
  • 17. Ricoh Company, Ltd.
  • 18. Roithner Lasertechnik GmbH
  • 19. RPMC Lasers, Inc.
  • 20. Sacher Lasertechnik GmbH
  • 21. Santec Corporation
  • 22. Shenzhen Optico Communication Co.,Ltd.
  • 23. Stanley Electric Co., Ltd.
  • 24. Thorlabs, Inc.
  • 25. TRUMPF SE + Co. KG
  • 26. TT Electronics PLC
  • 27. Vertilas GmbH
  • 28. Vertilite Inc.
  • 29. Vixar Inc. by OSRAM Licht AG
  • 30. Wurth Elektronik GmbH & Co. KG
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦