½ÃÀ庸°í¼­
»óǰÄÚµå
1611937

¼¼°èÀÇ AI µ¥ÀÌÅÍ °ü¸® ½ÃÀå : Á¦°ø Á¦Ç°, µ¥ÀÌÅÍ À¯Çü, ±â¼ú, ¹èÆ÷, ¿ëµµ, ÃÖÁ¾ ¿ëµµº° ¿¹Ãø(2025-2030³â)

AI Data Management Market by Offering (Services, Software), Data Type (Audio, Image, Speech & Voice), Technology, Deployment, Application, End-Use - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 192 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

AI µ¥ÀÌÅÍ °ü¸® ½ÃÀåÀÇ 2023³â ½ÃÀå ±Ô¸ð´Â 299¾ï 9,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2024³â¿¡´Â 364¾ï 9,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 22.21%·Î ¼ºÀåÇÏ¿©, 2030³â¿¡´Â 1,222¾ï ´Þ·¯¿¡ ´ÞÇÑ´Ù°í ¿¹ÃøµË´Ï´Ù.

AI µ¥ÀÌÅÍ °ü¸®´Â ÀΰøÁö´É ¿ëµµ¿¡¼­ µ¥ÀÌÅ͸¦ ó¸®, ÀúÀå ¹× È°¿ëÇϱâ À§ÇÑ ½Ã½ºÅÛ°ú ÇÁ·Î¼¼½º¸¦ Æ÷ÇÔÇϸç, ½Ç¿ëÀûÀÎ ÀλçÀÌÆ®À» µµÃâÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. µ¥ÀÌÅÍ ¼öÁý, ó¸®, ÀúÀå, ºÐ¼® ¹× °³ÀÎ Á¤º¸ º¸È£ °ü¸®°¡ Æ÷ÇԵ˴ϴÙ. ÀÌ ºÐ¾ß´Â ÀΰøÁö´ÉÀÌ ÇнÀÇϰí ÀÇ»ç °áÁ¤À» ³»¸®´Â ´É·ÂÀ» Áö¿øÇÏ´Â µ¥ ÇʼöÀûÀ̸ç ÀÇ·á, ±ÝÀ¶, ¼Ò¸Å µîÀÇ ºÐ¾ß¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. AI µ¥ÀÌÅÍ °ü¸®ÀÇ Çʿ伺Àº µ¥ÀÌÅÍÀÇ ±Þ°ÝÇÑ Áõ°¡¿Í Á¤º¸ ó¸® ¹× ºÐ¼®À» À§ÇÑ È¿À²ÀûÀ̰í È®Àå °¡´ÉÇÑ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¿¡ ÀÇÇØ °­Á¶µÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ¿ëµµ·Î´Â ¿¹Ãø ºÐ¼®, °í°´ °æÇè Çâ»ó, ¾÷¹« È¿À² °³¼± µîÀÌ ÀÖ½À´Ï´Ù. ÃÖÁ¾ ¿ëµµÀÇ ¹üÀ§´Â AI°¡ ȯÀÚÀÇ Áø´Ü¿¡ »ç¿ëµÇ´Â ÇコÄɾ¼­ ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®°¡ ÇʼöÀûÀÎ ÀÚÀ²ÁÖÇà µîÀÇ ¾÷°è¿¡ À̸¨´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ(2023) 299¾ï 9,000¸¸ ´Þ·¯
ÃßÁ¤³â(2024) 364¾ï 9,000¸¸ ´Þ·¯
¿¹Ãø³â(2030) 1,222¾ï ´Þ·¯
º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)(%) 22.21%

½ÃÀå ¼ºÀå ÃËÁø¿äÀÎÀ¸·Î´Â µ¥ÀÌÅÍ Ã³¸®ÀÇ ÀÚµ¿È­ ¿ä±¸°¡ ³ô¾ÆÁö°í, AI ¾Ë°í¸®ÁòÀÇ °³¼±, AI¿Í ºò µ¥ÀÌÅÍÀÇ ÅëÇÕ µîÀÌ ÀÖ½À´Ï´Ù. Áؼö µ¥ÀÌÅÍ °ü¸® ¼Ö·ç¼Ç°ú È®À强°ú À¯¿¬¼ºÀ» Á¦°øÇϴ Ŭ¶ó¿ìµå ±â¹Ý µ¥ÀÌÅÍ °ü¸® ½Ã½ºÅÛ °³¹ß ºñÁî´Ï½º ±âȸ°¡ ÀÖ½À´Ï´Ù. ¶ÇÇÑ ½Ç½Ã°£ ºÐ¼®ÀÇ Áøº¸´Â Ãß°¡ÀûÀÎ Àü¸ÁÀ» Á¦°øÇÕ´Ï´Ù. AI¿Í µ¥ÀÌÅÍ °ü¸®ÀÇ ¼÷·ÃµÈ Àü¹®°¡ÀÇ ºÎÁ·ÀÌ ¼ºÀåÀ» ´õ¿í Á¦¾àÇϰí ÀÖ½À´Ï´Ù.

Çõ½ÅÀ» À§ÇØ µ¥ÀÌÅÍ º¸¾È ÇÁ·¹ÀÓ¿öÅ©¸¦ °­È­Çϰí ÀÚµ¿È­µÈ Á÷°üÀûÀÎ µ¥ÀÌÅÍ Ã³¸® µµ±¸¸¦ °³¹ßÇÏ´Â µ¥ ÁÖ·ÂÇÔÀ¸·Î½á °æÀï ¿ìÀ§¸¦ È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÃÖÀûÈ­ ¹× ·¹°Å½Ã ½Ã½ºÅÛ¿¡ ¿øÈ°ÇÑ AI ÅëÇÕÀ» ÃËÁøÇÏ´Â µ¥ ÁßÁ¡À» µÓ´Ï´Ù. ½ÃÀåÀÇ ¼ºÁú¿¡ °üÇØ¼­´Â ±Þ¼ÓÇÑ ±â¼ú Áøº¸³ª ÇÏÀÌÅ×Å© ±â¾÷°£ÀÇ Äݶ󺸷¹À̼ÇÀÇ È°¼ºÈ­¸¦ Ư¡À¸·Î ÇÏ´Â °æÀï ¿ªÇÐÀÌ ±Þ¼ÓÈ÷ ÁøÈ­Çϰí ÀÖ¾î, Çõ½ÅÀÇ ±â°è°¡ ÀÍÀº Á¤¼¼¸¦ ¾ç¼ºÇϰí ÀÖ½À´Ï´Ù ±â¾÷Àº »õ·Î¿î µ¿Çâ°ú ±â¼úÀû Çõ½ÅÀ» Ȱ¿ëÇϱâ À§ÇØ À¯¿¬¼º°ú ÀûÀÀ¼ºÀ» ¿ì¼±½ÃÇØ¾ß ÇÕ´Ï´Ù.

½ÃÀå ¿ªÇÐ : ºü¸£°Ô ÁøÈ­ÇÏ´Â AI µ¥ÀÌÅÍ °ü¸® ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

AI µ¥ÀÌÅÍ °ü¸® ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ë¿¡ ÀÇÇØ º¯¸ð¸¦ ÀÌ·ç°í ÀÖ½À´Ï´Ù. »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ ¾ò´Â µ¥ µµ¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ °æ°¨ÇÒ ¼ö ÀÖÀ½°ú µ¿½Ã¿¡ ¼ÒºñÀÚ Çൿ°ú ±×°Í Á¦Á¶ ºñ¿ë°ú ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ»º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ¼¼°è ±â¾÷ Á¶Á÷¿¡¼­ÀÇ µ¥ÀÌÅÍ ÀÌ¿ëÀÇ ±ÞÁõ
    • IoT ¹× Ä¿³ØÆ¼µå µð¹ÙÀ̽ºÀÇ Ã¤¿ë Áõ°¡
    • °¢Á¾ µ¥ÀÌÅÍ º¸È£ ±ÔÁ¦¿¡ ´ëÇÑ ´ëÀÀ ¿ä±¸ Áõ°¡
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • AI µ¥ÀÌÅÍ °ü¸® ¼Ö·ç¼Ç °³¹ß ¹× ¹èÆ÷¿¡ µå´Â ºñ¿ë ³ôÀÌ
  • ½ÃÀå ±âȸ
    • ÷´Ü AI µ¥ÀÌÅÍ °ü¸® ¼Ö·ç¼ÇÀÇ µµÀÔ Áõ°¡
    • ¾÷°è ƯȭÇü AI µ¥ÀÌÅÍ °ü¸® ÅøÀÇ Ã¤¿ë Áõ°¡
  • ½ÃÀåÀÇ °úÁ¦
    • AI µ¥ÀÌÅÍ °ü¸® ÅøÀÇ ±â¼úÀû ÇѰè

Porter's Five Forces : AI µ¥ÀÌÅÍ °ü¸® ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Porter's Five Forces Framework´Â AI µ¥ÀÌÅÍ °ü¸® ½ÃÀå °æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Porter's Five Forces Framework´Â ±â¾÷ÀÇ °æÀï·ÂÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ ޱ¸ÇÏ´Â ¸íÈ®ÇÑ ±â¼úÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÀλçÀÌÆ®À» ÅëÇØ ±â¾÷Àº ÀÚ»çÀÇ °­Á¡À» Ȱ¿ëÇÏ°í ¾àÁ¡À» ÇØ°áÇϰí ÀáÀçÀûÀÎ °úÁ¦¸¦ ÇÇÇÔÀ¸·Î½á º¸´Ù °­ÀÎÇÑ ½ÃÀå¿¡¼­ÀÇ Æ÷Áö¼Å´×À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : AI µ¥ÀÌÅÍ °ü¸® ½ÃÀå¿¡¼­ ¿ÜºÎ·ÎºÎÅÍÀÇ ¿µÇâ ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº AI µ¥ÀÌÅÍ °ü¸® ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀÎ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¾ÕÀ¸·Î ¿¹»óµÇ´Â Àû±ØÀûÀÎ ÀÇ»ç °áÁ¤À» ÇÒ Áغñ°¡ °¡´ÉÇÕ´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® AI µ¥ÀÌÅÍ °ü¸® ½ÃÀå °æÀï ±¸µµ ÆÄ¾Ç

AI µ¥ÀÌÅÍ °ü¸® ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¼öÀÍ, °í°´ ±â¹Ý, ¼ºÀå·ü µî ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀï Æ÷Áö¼Å´×À» ¹àÈú ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ½ÃÀå ÁýÁß, ´ÜÆíÈ­, ÅëÇÕ µ¿ÇâÀ» ¹àÇô³»°í º¥´õµéÀº °æÀïÀÌ Ä¡¿­ÇØÁö´Â °¡¿îµ¥ ÀÚ»çÀÇ ÁöÀ§¸¦ ³ôÀÌ´Â Àü·«Àû ÀÇ»ç °áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ Áö½ÄÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º AI µ¥ÀÌÅÍ °ü¸® ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â AI µ¥ÀÌÅÍ °ü¸® ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ Çà·ÄÀ» ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº °ø±Þ¾÷üÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±âÁØÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ¸Â´Â ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ³× °¡Áö »çºÐ¸éÀ» ÅëÇØ °ø±Þ¾÷ü¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ¼¼ºÐÈ­ÇÏ¿© Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê ¹× ¼Ö·ç¼ÇÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× ±ÇÀå AI µ¥ÀÌÅÍ °ü¸® ½ÃÀå¿¡¼­ ¼º°øÀ» À§ÇÑ ±æÀ» ±×¸®±â

AI µ¥ÀÌÅÍ °ü¸® ½ÃÀåÀÇ Àü·« ºÐ¼®Àº ½ÃÀå¿¡¼­ÀÇ ÇÁ·¹Á𽺠°­È­¸¦ ¸ñÇ¥·Î ÇÏ´Â ±â¾÷¿¡ ÇʼöÀûÀÎ ¿ä¼ÒÀÔ´Ï´Ù. ÀÌ Á¢±Ù¹ýÀ» ÅëÇØ °æÀï ±¸µµ¿¡¼­ °úÁ¦¸¦ ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö Àִ üÁ¦¸¦ ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀåÀÇ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ : ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·Â Æò°¡.

2. ½ÃÀå °³Ã´µµ : ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡ÇÏ¸ç ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, R&D Ȱµ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¾ò°í ÀÇ»ç°áÁ¤À» ÇÒ ¼ö ÀÖµµ·Ï Áß¿äÇÑ Áú¹®¿¡ ´ë´äÇϰí ÀÖ½À´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹® ¹× Áö¿ªÀº ¾îµðÀԴϱî?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ, ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • ¼¼°èÀÇ ºñÁî´Ï½º Á¶Á÷¿¡¼­ÀÇ µ¥ÀÌÅÍ ÀÌ¿ëÀÇ ±ÞÁõ
      • IoT¿Í Á¢¼Ó µð¹ÙÀ̽ºÀÇ µµÀÔ Áõ°¡
      • ´Ù¾çÇÑ µ¥ÀÌÅÍ º¸È£ ±ÔÁ¦ ÁؼöÀÇ Çʿ伺 Áõ°¡
    • ¾ïÁ¦¿äÀÎ
      • AI µ¥ÀÌÅÍ °ü¸® ¼Ö·ç¼Ç¿¡ ÀÇÇÑ °³¹ß ¹× µµÀÔ ºñ¿ëÀÌ ³ô´Ù
    • ±âȸ
      • °í±Þ AI µ¥ÀÌÅÍ °ü¸® ¼Ö·ç¼ÇÀÇ µµÀÔ È®´ë
      • ¾÷°è °íÀ¯ÀÇ AI µ¥ÀÌÅÍ °ü¸® ÅøÀÇ Ã¤¿ë Áõ°¡
    • °úÁ¦
      • AI µ¥ÀÌÅÍ °ü¸® Åø°ú °ü·ÃµÈ ±â¼úÀû Á¦ÇÑ
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
    • Á¦°ø ³»¿ë : ´Ù¸¥ ¼Ò½º·ÎºÎÅÍ µ¥ÀÌÅÍÀÇ ÅëÇÕÀ» ¿ëÀÌÇÏ°Ô ÇÏ´Â AI µ¥ÀÌÅÍ °ü¸® ¼ÒÇÁÆ®¿þ¾îÀÇ »ç¿ë È®´ë
    • µµÀÔ : ±Þ¼ÓÇÑ µ¥ÀÌÅÍ È®ÀåÀÌ ÇÊ¿äÇÑ ±â¾÷µé »çÀÌ¿¡¼­ Ŭ¶ó¿ìµå ±â¹Ý AI µ¥ÀÌÅÍ °ü¸® ¼Ö·ç¼ÇÀÇ °¡´É¼ºÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù
    • ÃÖÁ¾ ¿ëµµ : Á¤ºÎ ¹× ¹æÀ§ ºÎ¹®¿¡¼­ ±â¹Ð µ¥ÀÌÅÍ °ü¸®¿¡¼­ AI µ¥ÀÌÅÍ °ü¸®ÀÇ Á߿伺 Áõ°¡
    • ÀÀ¿ë : Ž»öÀû µ¥ÀÌÅÍ ºÐ¼®(EDA)¿¡¼­ÀÇ AI µ¥ÀÌÅÍ °ü¸®ÀÇ ¿ëµµ È®´ë, ÁÖ¿ä Æ¯Â¡À» ¿ä¾àÇÑ
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡Àû
    • °æÁ¦
    • »ç±³
    • ±â¼úÀû
    • ¹ý·ü»ó
    • ȯ°æ

Á¦6Àå AI µ¥ÀÌÅÍ °ü¸® ½ÃÀå : Á¦°øº°

  • ¼­ºñ½º
  • ¼ÒÇÁÆ®¿þ¾î

Á¦7Àå AI µ¥ÀÌÅÍ °ü¸® ½ÃÀå : µ¥ÀÌÅÍ À¯Çüº°

  • ¿Àµð¿À
  • À̹ÌÁö
  • ¿¬¼³°ú À½¼º
  • ¹®Àå
  • ºñµð¿À

Á¦8Àå AI µ¥ÀÌÅÍ °ü¸® ½ÃÀå : ±â¼úº°

  • ÄÄÇ»ÅÍ ºñÀü
  • ¸Ó½Å·¯´×
  • ÀÚ¿¬¾îó¸®

Á¦9Àå AI µ¥ÀÌÅÍ °ü¸® ½ÃÀå : Àü°³º°

  • Ŭ¶ó¿ìµå»ó
  • ¿ÂÇÁ·¹¹Ì½º

Á¦10Àå AI µ¥ÀÌÅÍ °ü¸® ½ÃÀå : ¿ëµµº°

  • µ¥ÀÌÅÍÀÇ À͸íÈ­¿Í ¾ÐÃà
  • µ¥ÀÌÅÍ È®Àå
  • µ¥ÀÌÅÍ °ËÁõ ¹× ³ëÀÌÁî Àú°¨
  • Ž»öÀû µ¥ÀÌÅÍ ºÐ¼®
  • ´ëÀÔ ¿¹Ãø ¸ðµ¨¸µ
  • ÇÁ·Î¼¼½º ÀÚµ¿È­

Á¦11Àå AI µ¥ÀÌÅÍ °ü¸® ½ÃÀå : ÃÖÁ¾ ¿ëµµº°

  • ÀºÇà/±ÝÀ¶¼­ºñ½º/º¸Çè
  • ¿¡³ÊÁö, À¯Æ¿¸®Æ¼
  • Á¤ºÎ ¹× ¹æÀ§
  • ÇコÄÉ¾î ¹× »ý¸í°úÇÐ
  • Á¦Á¶¾÷
  • ¹Ìµð¾î ¹× ¿£ÅÍÅ×ÀÎ¸ÕÆ®
  • ¼Ò¸Å¾÷ ¹× ÀüÀÚ»ó°Å·¡
  • Åë½Å

Á¦12Àå ¾Æ¸Þ¸®Ä«ÀÇ AI µ¥ÀÌÅÍ °ü¸® ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦13Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ AI µ¥ÀÌÅÍ °ü¸® ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦14Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ AI µ¥ÀÌÅÍ °ü¸® ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦15Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®(2023³â)
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º(2023³â)
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
    • AI žÀç Àç°í °ü¸® ½Ã½ºÅÛ Predian Ãâ½Ã
    • Duck Creek Technologies, ´ö Å©¸¯ Ŭ¶ó¸®Æ¼ÀÇ ¹ß¸Å¿¡ ÀÇÇØ Â÷¼¼´ëÀÇ µ¥ÀÌÅÍ °ü¸®¿Í ºÐ¼®À» ¹ßÇ¥
    • K2view, ÇÕ¼º µ¥ÀÌÅÍ °ü¸® ¼Ö·ç¼Ç ¹ßÇ¥
  • Àü·« ºÐ¼®°ú Á¦¾È

±â¾÷ ¸ñ·Ï

  • Alteryx, Inc.
  • Amazon Web Services, Inc.
  • Attivio Inc.
  • Cloudera, Inc.
  • Collibra NV
  • Confluent, Inc.
  • Couchbase, Inc.
  • Databricks Inc.
  • Dataiku Inc.
  • DataRobot, Inc.
  • Elastic NV
  • Google LLC
  • Informatica LLC
  • International Business Machines Corporation
  • MarkLogic Corporation
  • Microsoft Corporation
  • MongoDB, Inc.
  • Neo4j, Inc.
  • Oracle Corporation
  • Palantir Technologies Inc.
  • Qlik Technologies Inc.
  • Redis Labs, Inc.
  • SAP SE
  • SAS Institute Inc.
  • Snowflake Inc.
  • Talend SA
  • Teradata Corporation
  • ThoughtSpot Inc.
BJH 24.12.24

The AI Data Management Market was valued at USD 29.99 billion in 2023, expected to reach USD 36.49 billion in 2024, and is projected to grow at a CAGR of 22.21%, to USD 122.20 billion by 2030.

AI Data Management encompasses the systems and processes for handling, storing, and utilizing data in artificial intelligence applications, crucial for deriving actionable insights. It involves data collection, processing, storage, analysis, and privacy management. This segment is essential as it underpins AI's ability to learn and make decisions, influencing sectors like healthcare, finance, and retail. The necessity of AI data management is underscored by the exponential growth of data and the demand for efficient, scalable solutions to process and analyze information. Key applications include predictive analytics, customer experience enhancement, and operational efficiency improvements. The end-use scope spans industries such as healthcare, where AI is used for patient diagnostics, to autonomous driving, where real-time data handling is vital.

KEY MARKET STATISTICS
Base Year [2023] USD 29.99 billion
Estimated Year [2024] USD 36.49 billion
Forecast Year [2030] USD 122.20 billion
CAGR (%) 22.21%

Market insights reveal several growth drivers, such as the increasing need for automated data processing, improvements in AI algorithms, and the integration of AI with big data. The push for digital transformation across enterprises also fuels demand. Opportunities lie in developing GDPR-compliant data management solutions and cloud-based data management systems, which offer scalability and flexibility. Furthermore, advancements in real-time analytics present additional prospects. However, challenges such as data privacy concerns, regulatory hurdles, and the complexity of integrating AI systems with existing infrastructures pose significant roadblocks. A shortage of skilled professionals in AI and data management further constrains growth.

For innovation, focusing on enhancing data security frameworks and developing automated, intuitive data handling tools can provide competitive advantages. Research could focus on optimizing real-time data processing and facilitating seamless AI integration into legacy systems. In terms of market nature, it is rapidly evolving with competitive dynamics characterized by rapid technological advancements and increasing collaboration among tech companies, fostering a landscape ripe for innovation. Businesses should prioritize flexibility and adaptability to capitalize on emerging trends and technological breakthroughs in AI data management.

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving AI Data Management Market

The AI Data Management Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Proliferation of data usage across business organizations worldwide
    • Rising adoption of IoT and connected devices
    • Increasing need for compliance with various data protection regulations
  • Market Restraints
    • High cost of development and deployment with AI data management solutions
  • Market Opportunities
    • Growing introduction of advanced AI data management solutions
    • Rising adoption of industry-specific AI data management tools
  • Market Challenges
    • Technical limitations associated with AI data management tools

Porter's Five Forces: A Strategic Tool for Navigating the AI Data Management Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the AI Data Management Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the AI Data Management Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the AI Data Management Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the AI Data Management Market

A detailed market share analysis in the AI Data Management Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the AI Data Management Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the AI Data Management Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the AI Data Management Market

A strategic analysis of the AI Data Management Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the AI Data Management Market, highlighting leading vendors and their innovative profiles. These include Alteryx, Inc., Amazon Web Services, Inc., Attivio Inc., Cloudera, Inc., Collibra N.V., Confluent, Inc., Couchbase, Inc., Databricks Inc., Dataiku Inc., DataRobot, Inc., Elastic N.V., Google LLC, Informatica LLC, International Business Machines Corporation, MarkLogic Corporation, Microsoft Corporation, MongoDB, Inc., Neo4j, Inc., Oracle Corporation, Palantir Technologies Inc., Qlik Technologies Inc., Redis Labs, Inc., SAP SE, SAS Institute Inc., Snowflake Inc., Talend SA, Teradata Corporation, and ThoughtSpot Inc..

Market Segmentation & Coverage

This research report categorizes the AI Data Management Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Offering, market is studied across Services and Software.
  • Based on Data Type, market is studied across Audio, Image, Speech & Voice, Text, and Video.
  • Based on Technology, market is studied across Computer Vision, Machine Learning, and Natural Language Processing.
  • Based on Deployment, market is studied across On-Cloud and On-Premise.
  • Based on Application, market is studied across Data Anonymization & Compression, Data Augmentation, Data Validation & Noise Reduction, Exploratory Data Analysis, Imputation Predictive Modeling, and Process Automation.
  • Based on End-Use, market is studied across Banking, Financial Services & Insurance, Energy & Utilities, Government & Defense, Healthcare & Life Sciences, Manufacturing, Media & Entertainment, Retail & eCommerce, and Telecommunications.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Proliferation of data usage across business organizations worldwide
      • 5.1.1.2. Rising adoption of IoT and connected devices
      • 5.1.1.3. Increasing need for compliance with various data protection regulations
    • 5.1.2. Restraints
      • 5.1.2.1. High cost of development and deployment with AI data management solutions
    • 5.1.3. Opportunities
      • 5.1.3.1. Growing introduction of advanced AI data management solutions
      • 5.1.3.2. Rising adoption of industry-specific AI data management tools
    • 5.1.4. Challenges
      • 5.1.4.1. Technical limitations associated with AI data management tools
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Offering: Expanding usage of AI data management software that facilitates the merging of data from different sources
    • 5.2.2. Deployment: Rising potential cloud-based AI data management solution among companies that require rapid data scaling
    • 5.2.3. End-Use: Rising significance of AI data management in the government & defense sector for managing sensitive data
    • 5.2.4. Application: Expanding usage of AI data management for exploratory data analysis (EDA), which summarizes the main characteristics
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. AI Data Management Market, by Offering

  • 6.1. Introduction
  • 6.2. Services
  • 6.3. Software

7. AI Data Management Market, by Data Type

  • 7.1. Introduction
  • 7.2. Audio
  • 7.3. Image
  • 7.4. Speech & Voice
  • 7.5. Text
  • 7.6. Video

8. AI Data Management Market, by Technology

  • 8.1. Introduction
  • 8.2. Computer Vision
  • 8.3. Machine Learning
  • 8.4. Natural Language Processing

9. AI Data Management Market, by Deployment

  • 9.1. Introduction
  • 9.2. On-Cloud
  • 9.3. On-Premise

10. AI Data Management Market, by Application

  • 10.1. Introduction
  • 10.2. Data Anonymization & Compression
  • 10.3. Data Augmentation
  • 10.4. Data Validation & Noise Reduction
  • 10.5. Exploratory Data Analysis
  • 10.6. Imputation Predictive Modeling
  • 10.7. Process Automation

11. AI Data Management Market, by End-Use

  • 11.1. Introduction
  • 11.2. Banking, Financial Services & Insurance
  • 11.3. Energy & Utilities
  • 11.4. Government & Defense
  • 11.5. Healthcare & Life Sciences
  • 11.6. Manufacturing
  • 11.7. Media & Entertainment
  • 11.8. Retail & eCommerce
  • 11.9. Telecommunications

12. Americas AI Data Management Market

  • 12.1. Introduction
  • 12.2. Argentina
  • 12.3. Brazil
  • 12.4. Canada
  • 12.5. Mexico
  • 12.6. United States

13. Asia-Pacific AI Data Management Market

  • 13.1. Introduction
  • 13.2. Australia
  • 13.3. China
  • 13.4. India
  • 13.5. Indonesia
  • 13.6. Japan
  • 13.7. Malaysia
  • 13.8. Philippines
  • 13.9. Singapore
  • 13.10. South Korea
  • 13.11. Taiwan
  • 13.12. Thailand
  • 13.13. Vietnam

14. Europe, Middle East & Africa AI Data Management Market

  • 14.1. Introduction
  • 14.2. Denmark
  • 14.3. Egypt
  • 14.4. Finland
  • 14.5. France
  • 14.6. Germany
  • 14.7. Israel
  • 14.8. Italy
  • 14.9. Netherlands
  • 14.10. Nigeria
  • 14.11. Norway
  • 14.12. Poland
  • 14.13. Qatar
  • 14.14. Russia
  • 14.15. Saudi Arabia
  • 14.16. South Africa
  • 14.17. Spain
  • 14.18. Sweden
  • 14.19. Switzerland
  • 14.20. Turkey
  • 14.21. United Arab Emirates
  • 14.22. United Kingdom

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2023
  • 15.2. FPNV Positioning Matrix, 2023
  • 15.3. Competitive Scenario Analysis
    • 15.3.1. AI Powered Inventory Management System Predian Launches
    • 15.3.2. Duck Creek Technologies Unveils the Next Generation of Data Management and Analytics with the Launch of Duck Creek Clarity
    • 15.3.3. K2view Launches Synthetic Data Management Solution
  • 15.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Alteryx, Inc.
  • 2. Amazon Web Services, Inc.
  • 3. Attivio Inc.
  • 4. Cloudera, Inc.
  • 5. Collibra N.V.
  • 6. Confluent, Inc.
  • 7. Couchbase, Inc.
  • 8. Databricks Inc.
  • 9. Dataiku Inc.
  • 10. DataRobot, Inc.
  • 11. Elastic N.V.
  • 12. Google LLC
  • 13. Informatica LLC
  • 14. International Business Machines Corporation
  • 15. MarkLogic Corporation
  • 16. Microsoft Corporation
  • 17. MongoDB, Inc.
  • 18. Neo4j, Inc.
  • 19. Oracle Corporation
  • 20. Palantir Technologies Inc.
  • 21. Qlik Technologies Inc.
  • 22. Redis Labs, Inc.
  • 23. SAP SE
  • 24. SAS Institute Inc.
  • 25. Snowflake Inc.
  • 26. Talend SA
  • 27. Teradata Corporation
  • 28. ThoughtSpot Inc.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦