½ÃÀ庸°í¼­
»óǰÄÚµå
1611944

¼¼°èÀÇ º´¸®Çпë AI ½ÃÀå : ÄÄÆ÷³ÍÆ®, ½Å°æ¸Á, ¿ëµµ, ÃÖÁ¾ »ç¿ëÀÚº° ¿¹Ãø(2025-2030³â)

AI in Pathology Market by Component (Hardware, Software), Neural Network (Convolutional neural networks (CNNs), Generative adversarial networks (GANs), Recurrent neural networks (RNNs)), Application, End-User - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 188 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

º´¸®Çпë AI ½ÃÀåÀº 2023³â¿¡ 2,901¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2024³â¿¡´Â 3,336¸¸ ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í, º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 15.33%·Î ¼ºÀåÇÏ¿©, 2030³â¿¡´Â 7,875¸¸ ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ´Ù ÇÕ´Ï´Ù.

º´¸®Çпë AI´Â Áø´Ü Á¤È®µµ, È¿À²¼º, °³ÀÎÈ­µÈ ȯÀÚ °ü¸®¸¦ °­È­ÇÏ¿© °Ç°­ °ü¸® »ê¾÷¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. Æò°¡¸¦ À§ÇØ ¸Ó½Å·¯´× ¾Ë°í¸®Áò°ú À̹ÌÁö ºÐ¼® µµ±¸¸¦ Ȱ¿ëÇÕ´Ï´Ù. AIÀÇ Çʿ伺Àº Áø´Ü ÀýÂ÷ÀÇ º¹À⼺, ³ôÀº 󸮷® ½ºÅ©¸®´× ¼ö¿ä, ¼¼°è º´¸®ÇÐÀÇ ºÎÁ·À¸·Î ÀÎÇÑ °ÍÀÔ´Ï´Ù. ÃÖÁ¾ »ç¿ëÀÚ´Â º´¿ø, Áø´Ü ½ÇÇè½Ç, ¿¬±¸ ±â°ü µîÀÌ Æ÷ÇԵ˴ϴÙ.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ(2023) 2,901¸¸ ´Þ·¯
¿¹Ãø³â(2024) 3,336¸¸ ´Þ·¯
¿¹Ãø³â(2030) 7,875¸¸ ´Þ·¯
º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)(%) 15.33%

½ÃÀåÀÇ ¼ºÀåÀº ÄÄÇ»ÆÃ ±â¼úÀÇ Áøº¸, °Ç°­ °ü¸®¿¡¼­ AI µµÀÔ Áõ°¡, Á¤¹ÐÀÇ·á¿¡ ´ëÇÑ °ü½É Áõ°¡¿¡ ÀÇÇØ ÃËÁøµË´Ï´Ù. °ßÀÎÇÏÁö¸¸, µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¿¡ ´ëÇÑ ¿ì·Á, ³ôÀº µµÀÔ ºñ¿ë, Ç¥ÁØÈ­ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©ÀÇ ºÎÁ·ÀÌ Å« °úÁ¦°¡ µÇ°í ÀÖ½À´Ï´Ù. °ú AI ¿¬±¸¿¡ ÅõÀÚÇÏ´Â Á¤ºÎ¿Í ¹Î°£ ´Üü´Â ½ÃÀå È®´ë¸¦ ´õ¿í Ȱ¼ºÈ­½Ãŵ´Ï´Ù.

Àç´Ü»çÀÇ AI ¼Ö·ç¼ÇÀ» °³¹ßÇϱâ À§ÇÑ ÇÏÀÌÅ×Å© ±â¾÷°ú ÀÇ·á Á¦°ø¾÷ü¿ÍÀÇ °øµ¿ »ç¾÷¿¡´Â »õ·Î¿î °³¹ß ±âȸ°¡ Àáµé¾î ÀÖ½À´Ï´Ù. ÇÏ´Â °ÍÀÌ Àå·ÁµË´Ï´Ù. ½ÃÀåÀº º¸´Ù ³ôÀº ÇØ¼® °¡´É¼º°ú ½Ç½Ã°£ ºÐ¼® ´É·ÂÀ» °®Ãá AI Ç÷§ÆûÀÇ °³¹ß¿¡ À־ ±â¼ú Çõ½ÅÀÇ ±â°è°¡ Àͼ÷ÇÕ´Ï´Ù. AIÀÇ ¶æ ÀÇ»ç °áÁ¤¿¡ ´ëÇÑ À±¸®Àû ¿ì·Á¿Í °°Àº °úÁ¦¸¦ ±Øº¹ÇÏ´Â °ÍÀº ¿©ÀüÈ÷ Áß¿äÇÕ´Ï´Ù. Àֱ⠶§¹®¿¡ ÀÌÇØ°ü°èÀڵ鿡°Ô´Â Å« ÅõÀÚ ¼öÀÍÀ» ±â´ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ÇÑ °æ·Î¸¦ º¸¿©ÁÝ´Ï´Ù.

½ÃÀå ¿ªÇÐ : ºü¸£°Ô ÁøÈ­ÇÏ´Â º´¸®Çпë AI ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

º´¸®Çпë AI ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ ÀÛ¿ë¿¡ ÀÇÇØ º¯¸ðÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐÀÇ ÁøÈ­¸¦ ÀÌÇØÇÔÀ¸·Î½á ±â¾÷Àº ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÅõÀÚ°áÁ¤, Àü·«Àû °áÁ¤ Á¤¹ÐÈ­, »õ·Î¿î ºñÁî´Ï½º ±âȸ ȹµæ¿¡ ´ëºñÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ °æ°¨ÇÒ ¼ö ÀÖÀ» »Ó¸¸ ¾Æ´Ï¶ó, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë ¶Ç´Â ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ»º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ¼¼°èÀÇ º´¸®ÇÐÀÇ µðÁöÅÐÈ­ÀÇ ÁøÀü
    • ¸¸¼º ÁúȯÀÇ ¸¸¿¬¿¡ ¼ö¹ÝÇÏ´Â ÅÚ·¹ÆÄ¼Ö·ÎÁöÀÇ ¿ä±¸ Áõ°¡
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • º´¸®Çпë AI¿Í °ü·ÃµÈ ³ôÀº ºñ¿ë
  • ½ÃÀå ±âȸ
    • º´¸®Çпë AIÀÇ ±â¼úÀû Áøº¸
    • °³º°È­, Ä¿½ºÅ͸¶ÀÌÁî ÀÇ·á¿¡ ¼ö¿äÀÇ ³ô¾Æ
  • ½ÃÀåÀÇ °úÁ¦
    • µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¿¡ ´ëÇÑ ¿ì·Á

Porter's Five Forces : º´¸®Çпë AI ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Porter's Five Forces Framework´Â ½ÃÀå »óȲ°æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Porter's Five Forces Framework´Â ±â¾÷ÀÇ °æÀï·ÂÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ ޱ¸ÇÏ´Â ¸íÈ®ÇÑ ±â¼úÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» °áÁ¤ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÀλçÀÌÆ®À» ÅëÇØ ±â¾÷Àº ÀÚ»çÀÇ °­Á¡À» Ȱ¿ëÇϰí, ¾àÁ¡À» ÇØ°áÇϰí, ÀáÀçÀûÀÎ °úÁ¦¸¦ ÇÇÇÒ ¼ö ÀÖÀ¸¸ç, º¸´Ù °­ÀÎÇÑ ½ÃÀå¿¡¼­ÀÇ Æ÷Áö¼Å´×À» º¸ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : º´¸®Çпë AI ½ÃÀå¿¡¼­ ¿ÜºÎ·ÎºÎÅÍÀÇ ¿µÇâ ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº º´¸®Çпë AI ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀÎ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¾ÕÀ¸·Î ¿¹»óµÇ´Â Àû±ØÀûÀÎ ÀÇ»ç °áÁ¤À» ÇÒ Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® º´¸®Çпë AI ½ÃÀå °æÀï ±¸µµ ÆÄ¾Ç

º´¸®Çпë AI ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¼öÀÍ, °í°´ ±â¹Ý, ¼ºÀå·ü µî ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀï Æ÷Áö¼Å´×À» ¹àÈú ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ½ÃÀå ÁýÁß, ´ÜÆíÈ­, ÅëÇÕ µ¿ÇâÀ» ¹àÇô³»°í º¥´õµéÀº °æÀïÀÌ Ä¡¿­ÇØÁö´Â °¡¿îµ¥ ÀÚ»çÀÇ ÁöÀ§¸¦ ³ôÀÌ´Â Àü·«Àû ÀÇ»ç °áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ Áö½ÄÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º º´¸®Çпë AI ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â º´¸®Çпë AI ½ÃÀå¿¡¼­ °ø±Þ¾÷ü¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ Çà·ÄÀ» ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº °ø±Þ¾÷üÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±âÁØÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ¸Â´Â ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ³× °¡Áö »çºÐ¸éÀ» ÅëÇØ °ø±Þ¾÷ü¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ¼¼ºÐÈ­ÇÏ¿© Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê ¹× ¼Ö·ç¼ÇÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× Ãßõ º´¸®Çпë AI ½ÃÀåÀÇ ¼º°ø¿¡ ´ëÇÑ °æ·Î¸¦ ±×¸³´Ï´Ù.

º´¸®Çпë AI ½ÃÀåÀÇ Àü·« ºÐ¼®Àº ½ÃÀå¿¡¼­ÀÇ Á¸À縦 °­È­ÇÏ·Á´Â ±â¾÷¿¡ ÇʼöÀûÀÔ´Ï´Ù. ÁÖ¿ä ÀÚ¿ø, ´É·Â ¹× ¼º°ú ÁöÇ¥¸¦ °ËÅäÇÔÀ¸·Î½á ±â¾÷Àº ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í °³¼±À» À§ÇØ ³ë·ÂÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀ» ÅëÇØ °æÀï ±¸µµ¿¡¼­ °úÁ¦¸¦ ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö Àִ üÁ¦¸¦ ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀåÀÇ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ : ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·Â Æò°¡.

2. ½ÃÀå °³Ã´µµ : ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡ÇÏ¸ç ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, R&D Ȱµ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¾ò°í ÀÇ»ç°áÁ¤À» ÇÒ ¼ö ÀÖµµ·Ï Áß¿äÇÑ Áú¹®¿¡ ´ë´äÇϰí ÀÖ½À´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹® ¹× Áö¿ªÀº ¾îµðÀԴϱî?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ, ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • ¼¼°è¿¡¼­ º´¸®ÇÐÀÇ µðÁöÅÐÈ­°¡ ÁøÇàµÇ´Â
      • ¸¸¼º ÁúȯÀÇ ¸¸¿¬¿¡ ¼ö¹ÝÇÏ´Â ÅÚ·¹ÆÄ¼Ö·ÎÁöÀÇ Çʿ伺 Áõ°¡
    • ¾ïÁ¦¿äÀÎ
      • º´¸®Çпë AI¿Í °ü·ÃµÈ ³ôÀº ºñ¿ë
    • ±âȸ
      • º´¸®Çпë AIÀÇ ±â¼úÀû Áøº¸
      • ¸ÂÃãÇü ¸ÂÃãÇü ÀÇ·á ¼ö¿ä Áõ°¡
    • °úÁ¦
      • µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¿¡ ´ëÇÑ ¿ì·Á
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
    • ±¸¼º ¿ä¼Ò : ¿øÈ°ÇÑ ¿öÅ©Ç÷οì¿Í È¿À²ÀûÀÎ µ¥ÀÌÅÍ °ü¸®¸¦ Á¦°øÇÏ´Â º´¸®Çп¡¼­ ±¤¹üÀ§ÇÑ ¼ÒÇÁÆ®¿þ¾î ¿ëµµ
    • ½Å°æ¸Á : Áø´ÜÀÇ Á¤È®¼º°ú È¿À²¼º Çâ»óÀ¸·Î »ý¼ºÀû Àû´ë ³×Æ®¿öÅ©ÀÇ Ã¤¿ëÀÌ Áõ°¡
    • ÀÀ¿ë : Áúº´ÀÇ Á¶±â ¹ß°ßÀ» ÃËÁøÇϱâ À§ÇØ Áúº´ÀÇ Áø´Ü¿¡ º´¸®Çпë AI¸¦ ³Î¸® Ȱ¿ë
    • ÃÖÁ¾ »ç¿ëÀÚ : ÀáÀçÀûÀÎ Ä¡·áÁ¦ ¹ß°ßÀ» À§ÇÑ Á¦¾à, ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ±â¾÷¿¡¼­ÀÇ º´¸®ÇÐ AIÀÇ È®´ë
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡Àû
    • °æÁ¦
    • »ç±³
    • ±â¼úÀû
    • ¹ý·ü»ó
    • ȯ°æ

Á¦6Àå º´¸®Çпë AI ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • Çϵå¿þ¾î
  • ¼ÒÇÁÆ®¿þ¾î

Á¦7Àå º´¸®Çпë AI ½ÃÀå : ½Å°æ¸Áº°

  • ÄÁ¹ú·ç¼Ç ½Å°æ¸Á(CNN)
  • »ý¼ºÀû Àû´ë ³×Æ®¿öÅ©(GAN)
  • ¸®Ä¿·±Æ® ½Å°æ¸Á(RNN)

Á¦8Àå º´¸®Çп¡ À־ÀÇ AI ½ÃÀå : ¿ëµµº°

  • ÀÓ»ó ¿öÅ©Ç÷οì
  • Áúº´ÀÇ Áø´Ü°ú ¿¹ÈÄ
  • â¾à
  • Æ®·¹ÀÌ´× ¹× ±³À°

Á¦9Àå º´¸®Çпë AI ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • Çмú¿¬±¸±â°ü
  • º´¿ø
  • Á¦¾à, ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ±â¾÷

Á¦10Àå ¾Æ¸Þ¸®Ä«ÀÇ º´¸®Çп¡¼­ÀÇ AI ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦11Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ º´¸®Çп¡¼­ÀÇ AI ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦12Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ º´¸®Çп¡ À־ÀÇ AI ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦13Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®(2023³â)
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º(2023³â)
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
    • Microsoft°¡ ¼¼°è ÃÖ´ëÀÇ º´¸®ÇÐ, Á¾¾çÇÐ È­»ó AIÀÇ ±¸Ãà¿¡ Çù·Â
    • PathAI´Â Á¾¾ç ¹Ì¼¼È¯°æÀ¸·ÎºÎÅÍ ¹Ì°³Ã´ÀÇ ÀλçÀÌÆ®À» À̲ø¾î³»´Â AI žÀç º´¸® ÆÐ³Î PathExplore¸¦ ¹ßÇ¥
    • Paige¿Í Leica Biosystems, ¼¼°èÀûÀÎ µðÁöÅÐ º´¸®ÇÐ ¿öÅ©Ç÷ο쿡 À־ÀÇ È­»ó °ü¸®¿Í ÀΰøÁö´É ±â¼úÀÇ ÀÌ¿ëÀ» °­È­Çϱâ À§ÇÑ Á¦ÈÞ È®´ë¸¦ ¹ßÇ¥
  • Àü·« ºÐ¼®°ú Á¦¾È

±â¾÷ ¸ñ·Ï

  • aetherAI
  • Aiforia Technologies Oyj
  • Akoya Biosciences, Inc.
  • Deep Bio, Inc.
  • Evident Corporation
  • F. Hoffmann-La Roche Ltd.
  • Ibex Medical Analytics Ltd.
  • Indica Labs, Inc.
  • Inspirata, Inc.
  • LUMEA, Inc.
  • MindPeak GmbH
  • Nucleai Inc.
  • OptraSCAN Inc.
  • Paige.AI, Inc.
  • PathAI, Inc.
  • Proscia Inc.
  • Techcyte, Inc.
  • Tempus Labs, Inc.
  • Tribun Health
  • Visikol, Inc. by CELLINK
  • Visiopharm A/S
BJH 24.12.24

The AI in Pathology Market was valued at USD 29.01 million in 2023, expected to reach USD 33.36 million in 2024, and is projected to grow at a CAGR of 15.33%, to USD 78.75 million by 2030.

Artificial Intelligence (AI) in pathology is revolutionizing the healthcare industry by enhancing diagnostic accuracy, efficiency, and personalized patient care. The field involves leveraging machine learning algorithms and image analysis tools for automated and semi-automated pathological assessments. The necessity of AI in pathology arises from the increasing complexity of diagnostic procedures, the demand for high-throughput screening, and the global shortage of trained pathologists. Applications encompass digital pathology, tissue analysis, disease detection, and prognosis assessment, with end-users including hospitals, diagnostic laboratories, and research institutions.

KEY MARKET STATISTICS
Base Year [2023] USD 29.01 million
Estimated Year [2024] USD 33.36 million
Forecast Year [2030] USD 78.75 million
CAGR (%) 15.33%

Market growth is propelled by advancements in computational technologies, increasing adoption of AI in healthcare, and a growing focus on precision medicine. The integration of AI technologies aids in early disease detection and improves workflow efficiency, driving demand. However, data privacy concerns, high implementation costs, and lack of standardized regulatory frameworks pose significant challenges. The sector benefits from technological enhancements such as deep learning and big data analytics, which facilitate precise pattern recognition and predictive analytics. Governments and private entities investing in healthcare digitization and AI research further energize market expansion.

Emerging opportunities lie in collaborative ventures between tech companies and healthcare providers to develop tailored AI solutions. Regulatory bodies are encouraged to establish clear guidelines to accelerate AI adoption. The market is ripe for innovation in developing AI platforms with higher interpretability and real-time analytical capabilities. However, overcoming challenges such as interoperability issues and ethical concerns regarding AI decision-making in patient care remains critical. The market is dynamic, with continuous R&D efforts focused on refining AI algorithms to surpass human diagnostic capabilities, thus ensuring significant returns on investment for stakeholders. The pursuit of innovations that enhance data integration across various healthcare systems and the emphasis on explainable AI represent promising avenues for future growth and competitive advantage.

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving AI in Pathology Market

The AI in Pathology Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Increasing digitalization of pathology worldwide
    • Growing need for telepathology with the prevalence of chronic disease
  • Market Restraints
    • High cost associated with AI in pathology
  • Market Opportunities
    • Technological advancements in AI in pathology
    • Rising demand for personalized and customized medicine
  • Market Challenges
    • Concerns associated with data privacy

Porter's Five Forces: A Strategic Tool for Navigating the AI in Pathology Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the AI in Pathology Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the AI in Pathology Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the AI in Pathology Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the AI in Pathology Market

A detailed market share analysis in the AI in Pathology Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the AI in Pathology Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the AI in Pathology Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the AI in Pathology Market

A strategic analysis of the AI in Pathology Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the AI in Pathology Market, highlighting leading vendors and their innovative profiles. These include aetherAI, Aiforia Technologies Oyj, Akoya Biosciences, Inc., Deep Bio, Inc., Evident Corporation, F. Hoffmann-La Roche Ltd., Ibex Medical Analytics Ltd., Indica Labs, Inc., Inspirata, Inc., LUMEA, Inc., MindPeak GmbH, Nucleai Inc., OptraSCAN Inc., Paige.AI, Inc., PathAI, Inc., Proscia Inc., Techcyte, Inc., Tempus Labs, Inc., Tribun Health, Visikol, Inc. by CELLINK, and Visiopharm A/S.

Market Segmentation & Coverage

This research report categorizes the AI in Pathology Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Component, market is studied across Hardware and Software.
  • Based on Neural Network, market is studied across Convolutional neural networks (CNNs), Generative adversarial networks (GANs), and Recurrent neural networks (RNNs).
  • Based on Application, market is studied across Clinical Workflow, Disease Diagnosis & Prognosis, Drug Discovery, and Training & Education.
  • Based on End-User, market is studied across Academic & Research Institutes, Hospitals, and Pharmaceuticals & Biotechnology Companies.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Increasing digitalization of pathology worldwide
      • 5.1.1.2. Growing need for telepathology with the prevalence of chronic disease
    • 5.1.2. Restraints
      • 5.1.2.1. High cost associated with AI in pathology
    • 5.1.3. Opportunities
      • 5.1.3.1. Technological advancements in AI in pathology
      • 5.1.3.2. Rising demand for personalized and customized medicine
    • 5.1.4. Challenges
      • 5.1.4.1. Concerns associated with data privacy
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Component: Extensive software applications in pathology for seamless workflows and efficient data management
    • 5.2.2. Neural Network: Increasing generative adversarial networks adoption due to diagnostic accuracy and efficiency
    • 5.2.3. Application: Wide utilization of AI in pathology for disease diagnosis to facilitate early detection of diseases
    • 5.2.4. End-User: Expansion of pathology AI in pharmaceuticals & biotechnology companies for discovering potential therapeutics
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. AI in Pathology Market, by Component

  • 6.1. Introduction
  • 6.2. Hardware
  • 6.3. Software

7. AI in Pathology Market, by Neural Network

  • 7.1. Introduction
  • 7.2. Convolutional neural networks (CNNs)
  • 7.3. Generative adversarial networks (GANs)
  • 7.4. Recurrent neural networks (RNNs)

8. AI in Pathology Market, by Application

  • 8.1. Introduction
  • 8.2. Clinical Workflow
  • 8.3. Disease Diagnosis & Prognosis
  • 8.4. Drug Discovery
  • 8.5. Training & Education

9. AI in Pathology Market, by End-User

  • 9.1. Introduction
  • 9.2. Academic & Research Institutes
  • 9.3. Hospitals
  • 9.4. Pharmaceuticals & Biotechnology Companies

10. Americas AI in Pathology Market

  • 10.1. Introduction
  • 10.2. Argentina
  • 10.3. Brazil
  • 10.4. Canada
  • 10.5. Mexico
  • 10.6. United States

11. Asia-Pacific AI in Pathology Market

  • 11.1. Introduction
  • 11.2. Australia
  • 11.3. China
  • 11.4. India
  • 11.5. Indonesia
  • 11.6. Japan
  • 11.7. Malaysia
  • 11.8. Philippines
  • 11.9. Singapore
  • 11.10. South Korea
  • 11.11. Taiwan
  • 11.12. Thailand
  • 11.13. Vietnam

12. Europe, Middle East & Africa AI in Pathology Market

  • 12.1. Introduction
  • 12.2. Denmark
  • 12.3. Egypt
  • 12.4. Finland
  • 12.5. France
  • 12.6. Germany
  • 12.7. Israel
  • 12.8. Italy
  • 12.9. Netherlands
  • 12.10. Nigeria
  • 12.11. Norway
  • 12.12. Poland
  • 12.13. Qatar
  • 12.14. Russia
  • 12.15. Saudi Arabia
  • 12.16. South Africa
  • 12.17. Spain
  • 12.18. Sweden
  • 12.19. Switzerland
  • 12.20. Turkey
  • 12.21. United Arab Emirates
  • 12.22. United Kingdom

13. Competitive Landscape

  • 13.1. Market Share Analysis, 2023
  • 13.2. FPNV Positioning Matrix, 2023
  • 13.3. Competitive Scenario Analysis
    • 13.3.1. Microsoft Collab to Build World's Largest Pathology, Oncology Imaging AI
    • 13.3.2. PathAI Announces PathExplore, an AI-powered Pathology Panel to Unlock Untapped Insights from the Tumor Microenvironment
    • 13.3.3. Paige and Leica Biosystems Announce Expanded Partnership to Enhance Use of Image Management and Artificial Intelligence Technology in Global Digital Pathology Workflows
  • 13.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. aetherAI
  • 2. Aiforia Technologies Oyj
  • 3. Akoya Biosciences, Inc.
  • 4. Deep Bio, Inc.
  • 5. Evident Corporation
  • 6. F. Hoffmann-La Roche Ltd.
  • 7. Ibex Medical Analytics Ltd.
  • 8. Indica Labs, Inc.
  • 9. Inspirata, Inc.
  • 10. LUMEA, Inc.
  • 11. MindPeak GmbH
  • 12. Nucleai Inc.
  • 13. OptraSCAN Inc.
  • 14. Paige.AI, Inc.
  • 15. PathAI, Inc.
  • 16. Proscia Inc.
  • 17. Techcyte, Inc.
  • 18. Tempus Labs, Inc.
  • 19. Tribun Health
  • 20. Visikol, Inc. by CELLINK
  • 21. Visiopharm A/S
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦