½ÃÀ庸°í¼­
»óǰÄÚµå
1612248

¼¼°èÀÇ ½Å¾à°³¹ß ÀΰøÁö´É ½ÃÀå : Á¦°ø, ±â¼ú, ÇÁ·Î¼¼½º, ¿ëµµ, Ä¡·á ¿µ¿ª, ÃÖÁ¾ »ç¿ëÀÚº° ¿¹Ãø(2025-2030³â)

Artificial Intelligence in Drug Discovery Market by Offering (Services, Software), Technology (Context-Aware Processing, Machine Learning, Natural Language Processing), Process, Application, Therapeutic Area, End User - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 183 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

½Å¾à°³¹ß ÀΰøÁö´É½ÃÀåÀÇ 2023³â ½ÃÀå ±Ô¸ð´Â 10¾ï 8,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2024³â¿¡´Â 13¾ï 5,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, CAGR 27.10%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 58¾ï 1,000¸¸ ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

½Å¾à°³¹ß ÀΰøÁö´É(AI)Àº ÷´Ü °è»ê ±â¼úÀ» ºÐÀÚ ¼³°è ¹× °ËÁõ ÇÁ·Î¼¼½º¿¡ ÅëÇÕÇÔÀ¸·Î½á ÀǾàǰÀÇ ¿¬±¸ °³¹ß¿¡ º¯È­¸¦ °¡Á®¿Ã °ÍÀÔ´Ï´Ù. µ¿Á¤¿¡¼­ °¡»ó ½ºÅ©¸®´× ÃËÁø, ½ÉÁö¾î »ýü ½Ã½ºÅÛ¿¡¼­ ¾à¹°ÀÇ °Åµ¿ ¿¹Ãø¿¡ À̸£±â±îÁö ¸ðµç ´Ü°è¿¡ À̸¨´Ï´Ù. °íµµÀÇ ½ÇÆÐÀ²À» °¡Áø ÀüÅëÀûÀÎ ¹æ¹ýÀ» ÇÕ¸®È­ÇÏ´Â ¾÷°èÀÇ ±ä±ÞÇÑ Çʿ伺À¸·Î ÀÎÇØ AIÀÇ ÀÀ¿ëÀº À¯Àüü ¿¬±¸, ¸ÂÃãÇü ÀÇ·á, ÇÕ¼º ½ºÅ©¸®´× ÇÁ·Î¼¼½º ÃÖÀûÈ­ µî ´Ù¾çÇÑ ¿µ¿ª¿¡ °ÉÃÄ ÀÖ½À´Ï´Ù. ÃÖÁ¾ ¿ëµµ ºÐ¾ß¿¡´Â Á¦¾à ȸ»ç, ¹ÙÀÌ¿À Å×Å©³î·ÎÁö ±â¾÷, ¿¬±¸ °³¹ß ¼öŹ ±â°ü µîÀÌ ÀÖÀ¸¸ç, AI¸¦ Ȱ¿ëÇÏ¿© ºñ¿ë Àý°¨°ú ÀǾàǰ °³¹ß ÆÄÀÌÇÁ¶óÀÎÀÇ È¿À²¼º Çâ»óÀ» ¸ñÇ¥·Î Çϰí ÀÖ½À´Ï´Ù. ½ÃÀå ¼ºÀåÀº ±â¼úÀû Áøº¸, AI ±â¾÷°ú Á¦¾à ±â¾÷°úÀÇ ÆÄÆ®³Ê½Ê Áõ°¡, Á¤¹ÐÀÇ·á¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ Å©°Ô ¿µÇâÀ» ¹Þ°í ÀÖ½À´Ï´Ù. Áö¼ÓÀûÀÎ ¹ßÀü, ¹æ´ëÇÑ »ý¹° ÀÇÇÐ µ¥ÀÌÅÍ¿¡ ´ëÇÑ ¾×¼¼½º, ÀÇ·á ±â¼ú Çõ½Å¿¡ ´ëÇÑ Á¤ºÎÀÇ Áö¿øÀ¸·Î ÀÎÇØ ¹ß»ýÇÕ´Ï´Ù. ±â¾÷Àº ¿¹Ãø ºÐ¼®À» °­È­ÇÏ°í ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼®À» ¿ëÀÌÇÏ°Ô ÇÏ´Â °ß°íÇÑ AI Ç÷§Æû °³¹ß¿¡ ÅõÀÚÇØ¾ß ÇÏÁö¸¸ °úÁ¦´Â ¿©ÀüÈ÷ ³²¾Æ ÀÖ½À´Ï´Ù. ¿ì·Á, ´ë±Ô¸ð ÁÖ¼®ÀÌ ´Þ¸° µ¥ÀÌÅͼ¼Æ®ÀÇ Çʿ伺 µîÀÌ ÀǾàǰ¿¡¼­ AI ÅëÇÕÀ» º¹ÀâÇÏ°Ô ÇÕ´Ï´Ù.¸íÈ®ÇÑ Çõ½ÅÀÇ ±æÀº AI¿Í ±âÁ¸ ¼ö¹ýÀ» Á¶ÇÕÇÑ ÇÏÀ̺긮µå ¾îÇÁ·ÎÄ¡³ª, °è»ê »ý¹°ÇÐÀ» ¹ßÀü½ÃŰ´Â ÇÐÁ¦Àû Äݶ󺸷¹À̼ǿ¡ ÀÖ½À´Ï´Ù. ½ÃÀåÀÇ ¼º°ÝÀº ¸Å¿ì ¿ªµ¿ÀûÀÌ¸ç ±Þ¼ÓÇÑ ±â¼ú Áøº¸¿Í ÷´Ü Çù¾÷ µ¿ÇâÀ» º¼ ¼ö ÀÖ½À´Ï´Ù. ÀǾàǰ °³¹ß¿¡¼­ AIÀÇ °ü·Ã¼ºÀÇ ³ô¾ÆÁüÀ» Ȱ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ(2023) 10¾ï 8,000¸¸ ´Þ·¯
ÃßÁ¤³â(2024) 13¾ï 5,000¸¸ ´Þ·¯
¿¹Ãø³â(2030) 58¾ï 1,000¸¸ ´Þ·¯
CAGR(%) 27.10%

½ÃÀå ¿ªÇÐ: ½Å¼ÓÇÏ°Ô ÁøÈ­ÇÏ´Â ½Å¾à°³¹ß ÀΰøÁö´É ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

½Å¾à°³¹ß ÀΰøÁö´É ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ë¿¡ ÀÇÇØ º¯¸ð¸¦ ÀÌ·ç°í ÀÖ½À´Ï´Ù. °áÁ¤, »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ ȹµæ ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦ÀûÀÎ ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ °æ°¨ÇÒ ¼ö ÀÖÀ½°ú µ¿½Ã¿¡ ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë°ú ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ½Å¾à°³¹ß ÇÁ·Î¼¼½º °ü¸® ¹× ºñ¿ë Àý°¨ ¿ä±¸
    • ÀüÀÓ»ó½ÃÇè Áß¿¡ »ý¼ºµÇ´Â ¹æ´ëÇÑ µ¥ÀÌÅ͸¦ °ü¸®ÇÒ Çʿ伺 Áõ°¡
    • ¹ÙÀÌ¿À ÀǾàǰ ±â¾÷ ÀüüÀÇ Ã¤¿ë Áõ°¡
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ¼÷·ÃµÈ Àü¹®°¡ÀÇ ºÎÁ·
  • ½ÃÀå ±âȸ
    • AI Ŭ¶ó¿ìµå¿¡ ÀÇÇÑ ½Å¾à°³¹ßÀÇ ÇÕ¸®È­¡¤ÀÚµ¿È­ Á¢±Ù
    • R&D ÅõÀÚ Áõ°¡
  • ½ÃÀåÀÇ °úÁ¦
    • µ¥ÀÌÅÍ ¼¼Æ®ÀÇ Á¦ÇÑµÈ °¡¿ë¼º

Porter's Five Force : ½Å¾à°³¹ß ÀΰøÁö´É ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Porter's Five Force Framework´Â ½ÃÀå »óȲ°æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ȸÇÇÇÔÀ¸·Î½á º¸´Ù °­ÀÎÇÑ ½ÃÀå¿¡¼­ÀÇ Æ÷Áö¼Å´×À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : ½Å¾à°³¹ß ÀΰøÁö´É ½ÃÀå¿¡¼­ ¿ÜºÎ ¿µÇâÀ» ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº ½Å¾à°³¹ß ÀΰøÁö´É ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ»ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸ Á¦°ø PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ¾ÕÀ¸·Î ¿¹»óÇÑ Àû±ØÀûÀÎ ÀÇ»ç °áÁ¤À» ÇÒ Áغñ°¡ µÇ¾î ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® : ½Å¾à°³¹ß ÀΰøÁö´É ½ÃÀå¿¡¼­°æÀï ±¸µµ ÆÄ¾Ç

½Å¾à°³¹ß ÀΰøÁö´É ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ º¥´õÀÇ ½ÇÀûÀ» Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®Àº ½ÃÀå ÁýÁß, ´ÜÆíÈ­ ¹× ÅëÇÕ µ¿ÇâÀ» ¸íÈ®È÷ÇÏ°í º¥´õ´Â °æÀïÀÌ Ä¡¿­ ÇØÁü¿¡ µû¶ó ÀÚ»çÀÇ ÁöÀ§¸¦ ³ôÀÌ´Â Àü·«Àû ÀÇ»ç °áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ Áö½ÄÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º : ½Å¾à°³¹ß ÀΰøÁö´É ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â ½Å¾à°³¹ß ÀΰøÁö´É ½ÃÀå¿¡¼­ °ø±Þ¾÷ü¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Á¤º¸¸¦ ±â¹ÝÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ³× °¡Áö »çºÐ¸éÀ» ÅëÇØ º¥´õ¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ºÎ¹®È­Çϰí Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê ¹× ¼Ö·ç¼ÇÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·«ºÐ¼®°ú Ãßõ : ½Å¾à°³¹ß ÀΰøÁö´É ½ÃÀå¿¡¼­ ¼º°øÀ» À§ÇÑ ±æÀ» ±×¸³´Ï´Ù.

½Å¾à°³¹ß ÀΰøÁö´É ½ÃÀåÀÇ Àü·«ºÐ¼®Àº ¼¼°è ½ÃÀå¿¡¼­ÀÇ ÇÁ·¹Á𽺠°­È­¸¦ ¸ñÇ¥·Î ÇÏ´Â ±â¾÷¿¡ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ ¹æ¹ýÀ» »ç¿ëÇÏ¸é °æÀï ±¸µµ¿¡¼­ ¾î·Á¿òÀ» ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀåÀÇ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ: ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·Â Æò°¡.

2. ½ÃÀå °³Ã´µµ: ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡ÇÏ¸ç ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­: ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, R&D Ȱµ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¾ò°í ÀÇ»ç°áÁ¤À» ÇÒ ¼ö ÀÖµµ·Ï Áß¿äÇÑ Áú¹®¿¡ ´ë´äÇϰí ÀÖ½À´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹® ¹× Áö¿ªÀº ¾îµðÀԴϱî?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ¡¤Ã¶¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • ½Å¾à ÇÁ·Î¼¼½º Á¦¾î ¹× ºñ¿ë Àý°¨ ¼ö¿ä
      • ÀüÀÓ»ó ¿¬±¸ Áß¿¡ »ý¼ºµÇ´Â ´ë·®ÀÇ µ¥ÀÌÅ͸¦ °ü¸®ÇÒ Çʿ伺 Áõ°¡
      • ¹ÙÀÌ¿À ÀǾàǰ ±â¾÷¿¡¼­ÀÇ µµÀÔ È®´ë
    • ¾ïÁ¦¿äÀÎ
      • ¼÷·ÃµÈ Àü¹®°¡ÀÇ ºÎÁ·
    • ±âȸ
      • AI Ŭ¶ó¿ìµå°¡ ½Å¾à°³¹ß¿¡ À־ÀÇ ÇÕ¸®È­¿Í ÀÚµ¿È­ÀÇ Á¢±ÙÀ» ½ÇÇö
      • Áõ°¡ÇÏ´Â R&D ÅõÀÚ
    • °úÁ¦
      • µ¥ÀÌÅÍ ¼¼Æ®ÀÇ ÀÔ¼ö°¡ Á¦ÇѵȴÙ
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
    • Á¦°ø ³»¿ë : AI ¼ÒÇÁÆ®¿þ¾î°¡ ½Å¾à°³¹ß¿¡ ´ëÇÑ Çõ½ÅÀûÀÎ Á¢±Ù¹ýÀ» Á¦¾È
    • ±â¼ú : °³ÀÎÈ­µÈ Ä¡·á¿¡¼­ ÄÁÅØ½ºÆ® ÀÎ½Ä Ã³¸® äÅà Ȯ´ë
    • ÇÁ·Î¼¼½º: °è»ê ´É·Â°ú ¿¹Ãø ´É·Â¿¡ ÀÇÇÑ ½Å¾à°³¹ß ÇÁ·Î¼¼½ºÀÇ ´ëÆøÀûÀÎ °­È­
    • ÀÀ¿ë: Àΰ£ ÀÓ»ó½ÃÇè¿¡¼­ AI ¼³°èÀÇ ÀúºÐÀÚ ÀǾàǰÀÇ »ç¿ëÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
    • Ä¡·á ¿µ¿ª : °³º°È­ ¾Ï Ä¡·á¸¦ À§ÇÑ ½Å¾à°³¹ß¿¡ À־ÀÇ AIÀÇ Ã¤¿ëÀÌ Áõ°¡.
    • ÃÖÁ¾»ç¿ëÀÚ : Á¦¾à±â¾÷À̳ª ¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ±â¾÷¿¡ ÀÇÇÑ ½Å¾à°³¹ß ÇÁ·Î¼¼½ºÀÇ °¡¼ÓÈ­¸¦ ¸ñÀûÀ¸·Î ÇÑ ½Å¾à°³¹ß¿¡ À־ÀÇ AIÀÇ ÀÌ¿ë Áõ°¡
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡Àû
    • °æÁ¦
    • »ç±³
    • ±â¼úÀû
    • ¹ý·ü»ó
    • ȯ°æ

Á¦6Àå ½Å¾à°³¹ß ÀΰøÁö´É½ÃÀå : Á¦°øº°

  • ¼­ºñ½º
  • ¼ÒÇÁÆ®¿þ¾î

Á¦7Àå ½Å¾à°³¹ß ÀΰøÁö´É ½ÃÀå : ±â¼úº°

  • ÄÁÅØ½ºÆ® ÀÎ½Ä Ã³¸®
  • ¸Ó½Å·¯´×
  • ÀÚ¿¬¾ð¾îó¸®

Á¦8Àå ½Å¾à°³¹ß ÀΰøÁö´É ½ÃÀå : ÇÁ·Î¼¼½ºº°

  • Èĺ¸ÀÚÀÇ ¼±Á¤°ú °ËÁõ
  • È÷Æ® ½Äº° ¹× ¿ì¼± ¼øÀ§ ÁöÁ¤
  • È÷Æ® Åõ ¸®µåÀÇ Æ¯Á¤/¸®µå »ý¼º
  • ¸®µå ÃÖÀûÈ­
  • Ÿ°Ù ½Äº° ¹× ¼±ÅÃ
  • Ÿ°Ù °ËÁõ

Á¦9Àå ½Å¾à°³¹ß ÀΰøÁö´É ½ÃÀå : ¿ëµµº°

  • »ý¹° Á¦Á¦ÀÇ ¼³°è ¹× ÃÖÀûÈ­
  • Áúº´ÀÇ ½Äº°°ú Æò°¡
  • ¾ÈÀü¼º, µ¶¼º, ÄÄÇöóÀ̾𽺠Æò°¡
  • ÀúºÐÀÚ ¼³°è ¹× ÃÖÀûÈ­
  • ¹é½ÅÀÇ ¼³°è¿Í ÃÖÀûÈ­

Á¦10Àå ½Å¾à°³¹ß ÀΰøÁö´É ½ÃÀå Ä¡·á ¿µ¿ªº°

  • ½ÉÇ÷°ü Áúȯ
  • ¸é¿ªÁ¾¾çÇÐ
  • ´ë»ç¼º Áúȯ
  • ½Å°æÅðÇ༺ Áúȯ

Á¦11Àå ½Å¾à°³¹ß ÀΰøÁö´É ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • °è¾à¿¬±¸±â°ü
  • Á¦¾à¡¤¹ÙÀÌ¿ÀÅ×Å©³î·¯Áö ±â¾÷
  • ¿¬±¸¼¾ÅÍ ¹× Çмú¡¤Á¤ºÎ±â°ü

Á¦12Àå ¾Æ¸Þ¸®Ä«ÀÇ ½Å¾à°³¹ß ÀΰøÁö´É ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦13Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ½Å¾à°³¹ß ÀΰøÁö´É ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦14Àå À¯·´¡¤Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ½Å¾à°³¹ß ÀΰøÁö´É ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦15Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼® 2023
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2023
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
    • ¸ÓÅ©, AI¸¦ Ȱ¿ëÇÑ ½Å¾à°³¹ßÀ» °­È­Çϱâ À§ÇØ 2°³ÀÇ Àü·«Àû Á¦ÈÞ¸¦ ü°á
    • InsilicoÀÇ ÆäÀÌÁî II ÇÁ·Î±×·¥ÀÇ °³½Ã´Â Á¦³×·¹ÀÌÆ¼ºê AIÀÇ ±â¼¼¸¦ ºÎÁ¶·Î ÇÑ´Ù
    • Google Cloud, AI¸¦ Ȱ¿ëÇÑ ½Å¾à°³¹ß°ú Á¤¹ÐÀǷḦ ¾ÈÀüÇÏ°Ô °¡¼ÓÈ­ÇÏ´Â ¼Ö·ç¼ÇÀ» ¹ßÇ¥
  • Àü·« ºÐ¼®°ú Á¦¾È

±â¾÷ ¸ñ·Ï

  • Aria Pharmaceuticals, Inc.
  • Atomwise, Inc.
  • BenevolentAI Limited
  • BenevolentAI SA
  • BioSymetrics Inc.
  • BPGbio Inc.
  • Butterfly Network, Inc.
  • Cloud Pharmaceuticals, Inc.
  • Cyclica Inc.
  • Deargen Inc.
  • Deep Genomics Incorporated
  • Envisagenics, Inc.
  • Euretos Services BV
  • Exscientia PLC
  • Insilico Medicine
  • Insitro, Inc.
  • International Business Machines Corporation
  • InveniAI LLC
  • Microsoft Corporation
  • Novartis AG
  • NVIDIA Corporation
  • Oracle Corporation
  • Owkin, Inc.
  • Verge Genomics Inc.
  • XtalPi Inc.
JHS 24.12.24

The Artificial Intelligence in Drug Discovery Market was valued at USD 1.08 billion in 2023, expected to reach USD 1.35 billion in 2024, and is projected to grow at a CAGR of 27.10%, to USD 5.81 billion by 2030.

Artificial Intelligence (AI) in drug discovery is a transformative facet of pharmaceutical research and development, integrating advanced computational techniques into the molecule design and validation process. The scope of AI in this field encompasses all stages from identifying promising molecular targets to facilitating virtual screening and even predicting drug behavior in biological systems. Its necessity stems from the industry's urgent need to streamline traditional methods that are time-consuming and fraught with high failure rates. The application of AI spans various domains such as genomics research, personalized medicine, and optimization of synthetic screening processes. End-use sectors include pharmaceuticals, biotechnology firms, and contract research organizations, which leverage AI to reduce costs and improve the efficacy of drug development pipelines. Market growth is significantly influenced by technological advancements, increasing partnerships between AI firms and pharmaceutical companies, and escalating demand for precision medicine. Key opportunities arise from ongoing developments in machine learning algorithms, access to vast biomedical data, and governmental support for innovation in health technology. To seize these opportunities, companies should invest in developing robust AI platforms that enhance predictive analytics and facilitate real-time data analysis. However, challenges persist; regulatory hurdles, data privacy concerns, and the need for large, annotated datasets complicate the integration of AI in drug discovery. A well-defined innovation pathway lies in hybrid approaches that combine AI with traditional methods and interdisciplinary collaborations that advance computational biology. Future areas of interest include AI-driven drug repurposing and development of novel compound libraries. The nature of the market is highly dynamic, with rapid technological advancements and a trend towards high collaboration. Remaining agile and fostering strategic partnerships will enable stakeholders to overcome market limitations and capitalize on the increasing relevance of AI in pharmaceutical development.

KEY MARKET STATISTICS
Base Year [2023] USD 1.08 billion
Estimated Year [2024] USD 1.35 billion
Forecast Year [2030] USD 5.81 billion
CAGR (%) 27.10%

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Artificial Intelligence in Drug Discovery Market

The Artificial Intelligence in Drug Discovery Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Demand to Control Drug Discovery Process and Reduce Cost
    • Increasing Need to Manage the Large Data Generated During Preclinical Studies
    • Increasing Adoption across Biopharmaceutical Companies
  • Market Restraints
    • Unavailability of Skilled Professionals
  • Market Opportunities
    • AI Cloud to Create a Streamlined and Automated Approach in Drug Discovery
    • Increasingly Growing R&D Investments
  • Market Challenges
    • Limited Availability of Data Sets

Porter's Five Forces: A Strategic Tool for Navigating the Artificial Intelligence in Drug Discovery Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Artificial Intelligence in Drug Discovery Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Artificial Intelligence in Drug Discovery Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Artificial Intelligence in Drug Discovery Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Artificial Intelligence in Drug Discovery Market

A detailed market share analysis in the Artificial Intelligence in Drug Discovery Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Artificial Intelligence in Drug Discovery Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Artificial Intelligence in Drug Discovery Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Artificial Intelligence in Drug Discovery Market

A strategic analysis of the Artificial Intelligence in Drug Discovery Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Artificial Intelligence in Drug Discovery Market, highlighting leading vendors and their innovative profiles. These include Aria Pharmaceuticals, Inc., Atomwise, Inc., BenevolentAI Limited, BenevolentAI SA, BioSymetrics Inc., BPGbio Inc., Butterfly Network, Inc., Cloud Pharmaceuticals, Inc., Cyclica Inc., Deargen Inc., Deep Genomics Incorporated, Envisagenics, Inc., Euretos Services BV, Exscientia PLC, Insilico Medicine, Insitro, Inc., International Business Machines Corporation, InveniAI LLC, Microsoft Corporation, Novartis AG, NVIDIA Corporation, Oracle Corporation, Owkin, Inc., Verge Genomics Inc., and XtalPi Inc..

Market Segmentation & Coverage

This research report categorizes the Artificial Intelligence in Drug Discovery Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Offering, market is studied across Services and Software.
  • Based on Technology, market is studied across Context-Aware Processing, Machine Learning, and Natural Language Processing.
  • Based on Process, market is studied across Candidate Selection & Validation, Hit Identification & Prioritization, Hit-to-lead Identification/ Lead generation, Lead Optimization, Target Identification & Selection, and Target Validation.
  • Based on Application, market is studied across Biologics Design & Optimization, Disease Identification & Assessment, Safety, Toxicity, & Compliance Assessment, Small Molecule Design & Optimization, and Vaccine Design & Optimization.
  • Based on Therapeutic Area, market is studied across Cardiovascular Disease, Immuno-Oncology, Metabolic Diseases, and Neurodegenerative Diseases.
  • Based on End User, market is studied across Contract Research Organizations, Pharmaceutical & Biotechnology Companies, and Research Centers and Academic & Government Institutes.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Demand to Control Drug Discovery Process and Reduce Cost
      • 5.1.1.2. Increasing Need to Manage the Large Data Generated During Preclinical Studies
      • 5.1.1.3. Increasing Adoption across Biopharmaceutical Companies
    • 5.1.2. Restraints
      • 5.1.2.1. Unavailability of Skilled Professionals
    • 5.1.3. Opportunities
      • 5.1.3.1. AI Cloud to Create a Streamlined and Automated Approach in Drug Discovery
      • 5.1.3.2. Increasingly Growing R&D Investments
    • 5.1.4. Challenges
      • 5.1.4.1. Limited Availability of Data Sets
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Offering: AI Software propose a revolutionary approach to drug discovery
    • 5.2.2. Technology: Growing adoption of context-aware processing in personalized therapeutic
    • 5.2.3. Process: Significant augmentation in the drug discovery process with computational prowess and predictive capabilities
    • 5.2.4. Application: Growing usage of AI-designed small molecule drugs for human clinical trials.
    • 5.2.5. Therapeutic Area: Rising adoption of AI in the drug discovery for personalized cancer treatment.
    • 5.2.6. End User: Increasing use of AI in the drug discovery by pharmaceutical and biotechnology companies to accelerate their drug discovery process
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Artificial Intelligence in Drug Discovery Market, by Offering

  • 6.1. Introduction
  • 6.2. Services
  • 6.3. Software

7. Artificial Intelligence in Drug Discovery Market, by Technology

  • 7.1. Introduction
  • 7.2. Context-Aware Processing
  • 7.3. Machine Learning
  • 7.4. Natural Language Processing

8. Artificial Intelligence in Drug Discovery Market, by Process

  • 8.1. Introduction
  • 8.2. Candidate Selection & Validation
  • 8.3. Hit Identification & Prioritization
  • 8.4. Hit-to-lead Identification/ Lead generation
  • 8.5. Lead Optimization
  • 8.6. Target Identification & Selection
  • 8.7. Target Validation

9. Artificial Intelligence in Drug Discovery Market, by Application

  • 9.1. Introduction
  • 9.2. Biologics Design & Optimization
  • 9.3. Disease Identification & Assessment
  • 9.4. Safety, Toxicity, & Compliance Assessment
  • 9.5. Small Molecule Design & Optimization
  • 9.6. Vaccine Design & Optimization

10. Artificial Intelligence in Drug Discovery Market, by Therapeutic Area

  • 10.1. Introduction
  • 10.2. Cardiovascular Disease
  • 10.3. Immuno-Oncology
  • 10.4. Metabolic Diseases
  • 10.5. Neurodegenerative Diseases

11. Artificial Intelligence in Drug Discovery Market, by End User

  • 11.1. Introduction
  • 11.2. Contract Research Organizations
  • 11.3. Pharmaceutical & Biotechnology Companies
  • 11.4. Research Centers and Academic & Government Institutes

12. Americas Artificial Intelligence in Drug Discovery Market

  • 12.1. Introduction
  • 12.2. Argentina
  • 12.3. Brazil
  • 12.4. Canada
  • 12.5. Mexico
  • 12.6. United States

13. Asia-Pacific Artificial Intelligence in Drug Discovery Market

  • 13.1. Introduction
  • 13.2. Australia
  • 13.3. China
  • 13.4. India
  • 13.5. Indonesia
  • 13.6. Japan
  • 13.7. Malaysia
  • 13.8. Philippines
  • 13.9. Singapore
  • 13.10. South Korea
  • 13.11. Taiwan
  • 13.12. Thailand
  • 13.13. Vietnam

14. Europe, Middle East & Africa Artificial Intelligence in Drug Discovery Market

  • 14.1. Introduction
  • 14.2. Denmark
  • 14.3. Egypt
  • 14.4. Finland
  • 14.5. France
  • 14.6. Germany
  • 14.7. Israel
  • 14.8. Italy
  • 14.9. Netherlands
  • 14.10. Nigeria
  • 14.11. Norway
  • 14.12. Poland
  • 14.13. Qatar
  • 14.14. Russia
  • 14.15. Saudi Arabia
  • 14.16. South Africa
  • 14.17. Spain
  • 14.18. Sweden
  • 14.19. Switzerland
  • 14.20. Turkey
  • 14.21. United Arab Emirates
  • 14.22. United Kingdom

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2023
  • 15.2. FPNV Positioning Matrix, 2023
  • 15.3. Competitive Scenario Analysis
    • 15.3.1. Merck Enters Two Strategic Collaborations to Strengthen AI-driven Drug Discovery
    • 15.3.2. Launch of Insilico's Phase II Program Highlights Generative AI Momentum
    • 15.3.3. Google Cloud Launches AI-powered Solutions to Safely Accelerate Drug Discovery and Precision Medicine
  • 15.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Aria Pharmaceuticals, Inc.
  • 2. Atomwise, Inc.
  • 3. BenevolentAI Limited
  • 4. BenevolentAI SA
  • 5. BioSymetrics Inc.
  • 6. BPGbio Inc.
  • 7. Butterfly Network, Inc.
  • 8. Cloud Pharmaceuticals, Inc.
  • 9. Cyclica Inc.
  • 10. Deargen Inc.
  • 11. Deep Genomics Incorporated
  • 12. Envisagenics, Inc.
  • 13. Euretos Services BV
  • 14. Exscientia PLC
  • 15. Insilico Medicine
  • 16. Insitro, Inc.
  • 17. International Business Machines Corporation
  • 18. InveniAI LLC
  • 19. Microsoft Corporation
  • 20. Novartis AG
  • 21. NVIDIA Corporation
  • 22. Oracle Corporation
  • 23. Owkin, Inc.
  • 24. Verge Genomics Inc.
  • 25. XtalPi Inc.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦