½ÃÀ庸°í¼­
»óǰÄÚµå
1612257

¼¼°èÀÇ Àΰø ±¤ÇÕ¼º ½ÃÀå : ±â¼ú, ½Ã½ºÅÛ À¯Çü, ÃÖÁ¾ »ç¿ëÀÚ »ê¾÷º° ¿¹Ãø(2025-2030³â)

Artificial Photosynthesis Market by Technology (Biohybrid Systems, Co-Electrolysis, Hybrid Process), System Type (Heterogeneous System, Homogeneous System), End-User Industry - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 189 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Àΰø ±¤ÇÕ¼º ½ÃÀåÀÇ 2023³â ½ÃÀå ±Ô¸ð´Â 7,983¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2024³â¿¡´Â 9,092¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, CAGR 14.85%·Î ¼ºÀåÇϰí, 2030³â¿¡´Â 2¾ï1,053¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.

Àΰø ±¤ÇÕ¼ºÀº ž籤, ¹°, ÀÌ»êȭź¼Ò¸¦ »ç¿ë °¡´ÉÇÑ ¿¬·á ¹× È­Çй°Áú·Î º¯È¯ÇÏ´Â ±¤ÇÕ¼ºÀÇ ÀÚ¿¬ ÇÁ·Î¼¼½º¸¦ ÀçÇöÇÏ´Â °ÍÀ» ¸ñÀûÀ¸·Î ÇÑ Çõ½ÅÀûÀÎ ±â¼úÀÔ´Ï´Ù. ¹æ¹ýÀ» Á¦°øÇÔÀ¸·Î½á ¼¼°èÀÇ ¿¡³ÊÁö À§±â¿Í ±âÈÄ º¯È­¸¦ ´Ù·ç´Â Áß¿äÇÑ ¿ëµµ´Â ¼ö¼Ò ¿¬·á »ý¼º, ÀÌ»êȭź¼Ò ¹èÃâ·® °¨¼Ò, ÇÕ¼º źȭ¼ö¼Ò »ý»ê¿¡ ÁßÁ¡À» µÎ°í ÁÖ·Î ¿¡³ÊÁö ºÎ¹®¿¡ °ÉÃÄ ÀÖ½À´Ï´Ù. ÀüÁö¸¦ Áß½ÉÀ¸·Î ÇÑ ÀÚµ¿Â÷ »ê¾÷°ú ȯ°æ ģȭÀû ÀÎ È­ÇÕ¹°À» ÇÕ¼ºÇÏ´Â È­ÇÐ Á¦Á¶¾÷ÀÌ ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ(2023) 7,983¸¸ ´Þ·¯
ÃßÁ¤³â(2024) 9,092¸¸ ´Þ·¯
¿¹Ãø³â(2030) 2¾ï 1,053¸¸ ´Þ·¯
CAGR(%) 14.85%

Àΰø ±¤ÇÕ¼º ½ÃÀåÀº ¿¡³ÊÁö ¼ö¿ä Áõ°¡, ±×¸° Å×Å©³î·¯Áö¿¡ ´ëÇÑ Á¤ºÎÀÇ Áö¿ø, ´õ ±ú²ýÇϰí Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö ¼Ö·ç¼ÇÀ» Ãß±¸ÇÏ´Â ±âÈÄ º¯È­ÀÇ ¿µÇâÀÇ ½É°¢È­¿Í °°Àº ¸î °¡Áö ÁÖ¿ä ¿äÀÎÀÇ ¿µÇâÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ºñÁî´Ï½º ±âȸ´Â Ã˸а³¹ßÀÇ ±â¼úÀû Áøº¸, ±¤È­ÇÐ °øÁ¤ ÃÖÀûÈ­, Àΰø ±¤ÇÕ¼º ½Ã½ºÅÛ°ú ±âÁ¸ÀÇ Àç»ý °¡´É ¿¡³ÊÁö ÀÎÇÁ¶ó¿ÍÀÇ ÅëÇÕ¿¡ ÀÖ½À´Ï´Ù. ¶Ç´Â ÆÄÀÏ·µ ÇÁ·ÎÁ§Æ®¿¡ ÅõÀÚÇØ¾ßÇÕ´Ï´Ù.

±×·¯³ª ½ÃÀå ¼ºÀåÀº Ãʱâ R&D ºñ¿ë »ó½Â, ½ÇÇè½Ç ¼º°øÀ» »ó¾÷ ¼öÁØÀ¸·Î È®ÀåÇÏ´Â º¹À⼺, º¸´Ù È¿À²ÀûÀÎ ¿¡³ÊÁö ÀüȯÀ²ÀÇ Çʿ伺 µî ¿©·¯ °úÁ¦¿¡ ÀÇÇØ Á¦¾à ÀÌ·¯ÇÑ Á¦¾à¿¡ ´ëóÇϱâ À§Çؼ­´Â ƯÈ÷ ºñ¿ë È¿À²ÀûÀÎ Ã˸ŠÀç·á³ª ½Ã½ºÅÛ È¿À² °³¼± µî ºÐ¾ß¿¡ ÁßÁ¡À» µÐ ±â¼ú Çõ½ÅÀÌ ÇÊ¿äÇÕ´Ï´Ù.

»ç¾÷ ¼ºÀåÀ» À§Çؼ­´Â ¹ÙÀÌ¿À¹Ì¸Þƽ Ã˸ÅÀÇ °³¹ß, ½Å±Ô ±¤ ¸®¾×ÅÍ ¼³°èÀÇ Å½±¸, ž翡³ÊÁö¿Í dz·Â¿¡³ÊÁö ¼Ö·ç¼Ç°ú Àΰø ±¤ÇÕ¼ºÀ» ÅëÇÕÇÑ ÇÏÀ̺긮µå ½Ã½ºÅÛ µîÀÌ À¯¸ÁÇÑ ±â¼ú Çõ½Å¡¤¿¬±¸ ºÐ¾ßÀÔ´Ï´Ù. ÇöÀç °³¹ß µµ»ó¿¡ ÀÖÁö¸¸ ±â¼úÀû Çõ½ÅÀÌ ÀϾ ȯ°æ ±ÔÁ¦°¡ ¾ö°ÝÇØÁü¿¡ µû¶ó ºñ¾àÀûÀÎ ¼ºÀåÀ» ÀÌ·ç´Â ż¼°¡ °®Ãß¾îÁö°í ÀÖ½À´Ï´Ù. Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö Àü¸ÁÀÇ Ãʼ®À¸·Î ¹ßÀü½Ã۱â À§ÇÑ °øµ¿ ³ë·ÂÀ» ÃËÁøÇØ¾ß ÇÕ´Ï´Ù.

½ÃÀå ¿ªÇÐ: ºü¸£°Ô ÁøÈ­ÇÏ´Â Àΰø ±¤ÇÕ¼º ½ÃÀå¿¡¼­ Áß¿äÇÑ ½ÃÀå ÀλçÀÌÆ® ÇØ¸í

Àΰø ±¤ÇÕ¼º ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ë¿¡ ÀÇÇØ º¯¸ð¸¦ ÀÌ·ç°í ÀÖ½À´Ï´Ù. ±×¸®°í »õ·Î¿î ºñÁî´Ï½º ±âȸ ȹµæ¿¡ ´ëºñ ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ °æ°¨ÇÒ ¼ö ÀÖÀ½°ú µ¿½Ã¿¡ ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë°ú ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ¹«Á¤Àü Àü·Â °ø±Þ ¿ä±¸¸¦ ÃæÁ·½Ã۱â À§ÇÑ Ã»Á¤ ¿¡³ÊÁö ¹ßÀü¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ÅõÀÚ
    • ûÁ¤ ¿¡³ÊÁö ¹ßÀüÀ» Áö¿øÇϱâ À§ÇØ À¯¸®ÇÑ Á¤Ã¥°ú ÀÌ´Ï¼ÅÆ¼ºê¸¦ Áõ°¡½ÃŰ´Â Á¤ºÎ
    • È¿À²ÀûÀÌ°í °æÁ¦ÀûÀÎ Àΰø ±¤ÇÕ¼º¿¡ ÀÇÇÑ Å¾翡³ÊÁöÀÇ º¯È¯°ú ÀúÀå
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • Ãʱ⠺ñ¿ëÀÇ ³ôÀÌ¿¡ ´ëÇÑ ¿ì·Á
  • ½ÃÀå ±âȸ
    • ±â¼ú Áøº¸¿Í ½ÃÀå ±â¾÷ °£ÀÇ ÇÕº´ Áõ°¡
    • ±×¸° H2ÀÇ Ã¤¿ë È®´ë¿Í ģȯ°æ ¾×ü ¿¬·áÀÇ ¼Ò°³
  • ½ÃÀåÀÇ °úÁ¦
    • ÃÖÀûÈ­µÈ ÃË¸Å¿Í ±¤ ¾Ö³ëµå Àç·áÀÇ ¾ÈÁ¤¼º¿¡ ´ëÇÑ ÀÎ½Ä ºÎÁ·°ú ÀÎÇÁ¶ó ºÎÁ·

Porter's Five Force : Àΰø ±¤ÇÕ¼º ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Porter's Five Force Framework´Â ½ÃÀå »óȲ°æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù. ´ç½ÅÀº ´õ °­ÀÎÇÑ ½ÃÀå¿¡¼­ Æ÷Áö¼Å´×À» º¸ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : Àΰø ±¤ÇÕ¼º ½ÃÀå¿¡¼­ ¿ÜºÎ·ÎºÎÅÍÀÇ ¿µÇâ ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº Àΰø ±¤ÇÕ¼º ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ»ÇÕ´Ï´Ù. PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹ÃøÇÒ ¼ö ÀÖ´Â Àû±ØÀûÀÎ ÀÇ»ç °áÁ¤À» ÇÒ Áغñ°¡ µÇ¾ú½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® : Àΰø ±¤ÇÕ¼º ½ÃÀå °æÀï ±¸µµ ÆÄ¾Ç

Àΰø ±¤ÇÕ¼º ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ º¥´õÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ºÐ¸í ÀÌ ºÐ¼®À» ÅëÇØ ½ÃÀå ÁýÁß, ´ÜÆíÈ­ ¹× ÅëÇÕ µ¿ÇâÀ» ¹àÇô³»°í º¥´õ´Â °æÀïÀÌ Ä¡¿­ÇØÁö¸é¼­ ÀÚ½ÅÀÇ ÁöÀ§¸¦ ³ôÀÌ´Â Àü·«Àû ÀÇ»ç °áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ Áö½Ä ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º : Àΰø ±¤ÇÕ¼º ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â Àΰø ±¤ÇÕ¼º ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ±âº» °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ³× °¡Áö »çºÐ¸éÀ» ÅëÇØ º¥´õ¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ºÐÇÒÇϰí Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê ¹× ¼Ö·ç¼ÇÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× Ãßõ : Àΰø ±¤ÇÕ¼º ½ÃÀå¿¡¼­ ¼º°øÀ» À§ÇÑ ±æÀ» ±×¸®±â

Àΰø ±¤ÇÕ¼º ½ÃÀåÀÇ Àü·« ºÐ¼®Àº ¼¼°è ½ÃÀå¿¡¼­ÀÇ ÇÁ·¹Á𽺠°­È­¸¦ ¸ñÇ¥·Î ÇÏ´Â ±â¾÷¿¡ ÇʼöÀûÀÎ ¿ä¼ÒÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀ» ÅëÇØ °æÀï ±¸µµ¿¡¼­ °úÁ¦¸¦ ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö Àִ üÁ¦¸¦ ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀåÀÇ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ: ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·Â Æò°¡.

2. ½ÃÀå °³Ã´µµ: ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡ÇÏ¸ç ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­: ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, R&D Ȱµ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¾ò°í ÀÇ»ç°áÁ¤À» ÇÒ ¼ö ÀÖµµ·Ï Áß¿äÇÑ Áú¹®¿¡ ´ë´äÇϰí ÀÖ½À´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹® ¹× Áö¿ªÀº ¾îµðÀԴϱî?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ¡¤Ã¶¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • Áß´Ü ¾ø´Â Àü·Â °ø±Þ ¿ä±¸¸¦ ÃæÁ·½Ã۱â À§ÇÑ Ã»Á¤ ¿¡³ÊÁö »ý¼º¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ÅõÀÚ
      • Á¤ºÎ´Â ûÁ¤¿¡³ÊÁöÀÇ ¹ßÀüÀ» Áö¿øÇϱâ À§ÇÑ À¯¸®ÇÑ Á¤Ã¥°ú ´ëó¸¦ °­È­
      • Àΰø ±¤ÇÕ¼º¿¡ ÀÇÇÑ Å¾翡³ÊÁöÀÇ º¯È¯°ú ÀúÀåÀº È¿À²ÀûÀÌ°í °æÁ¦ÀûÀÔ´Ï´Ù
    • ¾ïÁ¦¿äÀÎ
      • Ãʱ⠺ñ¿ëÀÇ ³ôÀÌ¿¡ ´ëÇÑ ¿ì·Á
    • ±âȸ
      • ±â¼ú Áøº¸¿Í ½ÃÀå ÁøÃâ±â¾÷ °£ÀÇ ÅëÇÕ Áõ°¡
      • ±×¸° H2ÀÇ Ã¤¿ë È®´ë¿Í ģȯ°æ ¾×ü ¿¬·áÀÇ ¼Ò°³
    • °úÁ¦
      • ÃÖÀûÈ­µÈ ÃË¸Å¿Í ±¤¾ç±Ø Àç·áÀÇ ¾ÈÁ¤¼º¿¡ ´ëÇÑ ÀνÄÀÇ ºÎÁ·°ú ºÒÃæºÐÇÑ ÀÎÇÁ¶ó
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
    • ±â¼ú:ÀÚ¿¬ ½Ã½ºÅÛÀÇ ³ôÀº È¿À²¼º°ú ¼±ÅüºÀ» Ȱ¿ëÇÑ ¹ÙÀÌ¿À ÇÏÀ̺긮µå ½Ã½ºÅÛÀÇ È£°¨µµ°¡ ³ô¾ÆÁö°í ÀÖ´Ù
    • ÃÖÁ¾ »ç¿ëÀÚ »ê¾÷ : ³ó¾÷ ºÐ¾ß¿¡¼­ Àΰø ±¤ÇÕ¼ºÀÇ »ç¿ëÀ» ´Ã¸®°í ÀÛ¹° »ý»êÀ» Çâ»ó
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡Àû
    • °æÁ¦
    • »ç±³
    • ±â¼úÀû
    • ¹ý·ü»ó
    • ȯ°æ

Á¦6Àå Àΰø ±¤ÇÕ¼º ½ÃÀå : ±â¼úº°

  • ¹ÙÀÌ¿À ÇÏÀ̺긮µå ½Ã½ºÅÛ
  • °øÀüÇØ
  • ÇÏÀ̺긮µå ÇÁ·Î¼¼½º
  • ºÐÀÚ Ã˸Å
  • ±¤Àü±â Ã˸Å
  • ±¤Àü±âÈ­Çм¿(PEC)

Á¦7Àå Àΰø ±¤ÇÕ¼º ½ÃÀå : ½Ã½ºÅÛ À¯Çüº°

  • ÀÌÁ¾ ½Ã½ºÅÛ
  • ±ÕÁú ½Ã½ºÅÛ

Á¦8Àå Àΰø ±¤ÇÕ¼º ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚ ¾÷°èº°

  • ³ó¾÷
  • ¿¡³ÊÁö¡¤À¯Æ¿¸®Æ¼
  • ȯ°æ°ú ¹° °ü¸®

Á¦9Àå ¾Æ¸Þ¸®Ä«ÀÇ Àΰø ±¤ÇÕ¼º ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦10Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Àΰø ±¤ÇÕ¼º ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦11Àå À¯·´¡¤Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ Àΰø ±¤ÇÕ¼º ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦12Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼® 2023
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2023
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
    • Hessian Program, ÀÌ»êȭź¼Ò Àüȯ°ú ±âÈÄ ³»¼º Çâ»óÀ» À§ÇØ ¿±·Ïü¸¦ °­È­ÇÏ´Â ÇÁ·ÎÁ§Æ®¿¡ 440¸¸ À¯·Î¸¦ ÀÚ±Ý Á¦°ø
    • Çõ½ÅÀûÀÎ Àΰø ±¤ÇÕ¼º ±â¼ú¿¡ ÀÇÇØ Ǫ¸¶¸£»êÀÇ »ý»ê·®ÀÌ µÎ¹è·Î µÇ¾î, »ýºÐÇØ¼º ÇÃ¶ó½ºÆ½°ú Áö¼Ó°¡´É¼ºÀÌ Çâ»ó
    • NTT Corporation, Çõ½ÅÀûÀΠź¼Ò °íÁ¤ ÀåÄ¡·Î Àΰø ±¤ÇÕ¼ºÀÇ µ¹ÆÄ±¸¸¦ ´Þ¼º
  • Àü·« ºÐ¼®°ú Á¦¾È

±â¾÷ ¸ñ·Ï

  • Cemvita Factory, Inc.
  • Engie SA
  • Evonik Industries AG
  • Fujitsu Limited by Furukawa Group
  • H2U Technologies, Inc.
  • Hitachi, Ltd.
  • Horiba, Ltd.
  • Idemitsu Kosan Co., Ltd.
  • JX Metals Corporation
  • Mitsubishi Chemical Group Corporation
  • NTT Corporation
  • Nydalen Group AS
  • Panasonic Holdings Corporation
  • Phytonix Corporation
  • PorphyChem SAS
  • Shimadzu Corporation
  • Siemens AG
  • SunHydrogen, Inc.
  • Toshiba Corporation
  • Twelve Benefit Corporation
JHS 24.12.24

The Artificial Photosynthesis Market was valued at USD 79.83 million in 2023, expected to reach USD 90.92 million in 2024, and is projected to grow at a CAGR of 14.85%, to USD 210.53 million by 2030.

Artificial photosynthesis is an innovative technology aimed at replicating the natural process of photosynthesis to convert sunlight, water, and carbon dioxide into usable fuels and chemicals. This technology is crucial in addressing the global energy crisis and climate change by providing a sustainable way to produce clean energy. Its applications predominantly span across energy sectors, focusing on generating hydrogen fuel, reducing carbon emissions, and producing synthetic hydrocarbons. Among the primary end-use industries are the automotive sector, particularly in hydrogen fuel cells, and chemical manufacturing for the synthesis of environmentally-friendly compounds.

KEY MARKET STATISTICS
Base Year [2023] USD 79.83 million
Estimated Year [2024] USD 90.92 million
Forecast Year [2030] USD 210.53 million
CAGR (%) 14.85%

The market for artificial photosynthesis is influenced by several key factors, including increasing energy needs, government support for green technologies, and the escalating impact of climate change demanding cleaner and sustainable energy solutions. The potential opportunities lie in technological advancements in catalyst development, optimization of photochemical processes, and the integration of artificial photosynthesis systems with existing renewable energy infrastructure. To capitalize on these opportunities, stakeholders should invest in research partnerships and pilot projects that demonstrate the commercial viability of this technology.

However, the market growth is constrained by several challenges, including high initial research and development costs, the complexity of scaling laboratory successes to commercial levels, and the need for more efficient energy conversion rates. Addressing these limitations requires focused innovation, particularly in the areas of cost-effective catalyst materials and improved system efficiency.

For business growth, promising areas of innovation and research include the development of biomimetic catalysts, exploration of novel photoreactor designs, and hybrid systems integrating artificial photosynthesis with solar and wind energy solutions. The nature of the market is currently nascent but poised for exponential growth as technological breakthroughs occur and as environmental regulations become more stringent. Companies should foster collaborative efforts to overcome technical barriers and leverage policy incentives to advance artificial photosynthesis as a cornerstone of the future sustainable energy landscape.

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Artificial Photosynthesis Market

The Artificial Photosynthesis Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Ongoing investments in clean energy generation for fulfilling the need for an uninterrupted power supply
    • Government increasing favorable policies and initiatives for supporting clean energy generation
    • Conversion and storage of solar energy through artificial photosynthesis making it efficient and economic
  • Market Restraints
    • Concerns regarding high initial costs
  • Market Opportunities
    • Technological advancements and rising amalgamation among the market players
    • Growing adoption for green H2 and the introduction of eco-friendly liquid fuels
  • Market Challenges
    • Lack of awareness and insufficient infrastructure for optimized catalyst and stability of photoanode material

Porter's Five Forces: A Strategic Tool for Navigating the Artificial Photosynthesis Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Artificial Photosynthesis Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Artificial Photosynthesis Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Artificial Photosynthesis Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Artificial Photosynthesis Market

A detailed market share analysis in the Artificial Photosynthesis Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Artificial Photosynthesis Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Artificial Photosynthesis Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Artificial Photosynthesis Market

A strategic analysis of the Artificial Photosynthesis Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Artificial Photosynthesis Market, highlighting leading vendors and their innovative profiles. These include Cemvita Factory, Inc., Engie SA, Evonik Industries AG, Fujitsu Limited by Furukawa Group, H2U Technologies, Inc., Hitachi, Ltd., Horiba, Ltd., Idemitsu Kosan Co., Ltd., JX Metals Corporation, Mitsubishi Chemical Group Corporation, NTT Corporation, Nydalen Group AS, Panasonic Holdings Corporation, Phytonix Corporation, PorphyChem SAS, Shimadzu Corporation, Siemens AG, SunHydrogen, Inc., Toshiba Corporation, and Twelve Benefit Corporation.

Market Segmentation & Coverage

This research report categorizes the Artificial Photosynthesis Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Technology, market is studied across Biohybrid Systems, Co-Electrolysis, Hybrid Process, Molecular Catalysts, Photo-Electro Catalysis, and Photoelectrochemical Cells (PECs).
  • Based on System Type, market is studied across Heterogeneous System and Homogeneous System.
  • Based on End-User Industry, market is studied across Agriculture, Energy & Utilities, and Environmental & Water Management.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Ongoing investments in clean energy generation for fulfilling the need for an uninterrupted power supply
      • 5.1.1.2. Government increasing favorable policies and initiatives for supporting clean energy generation
      • 5.1.1.3. Conversion and storage of solar energy through artificial photosynthesis making it efficient and economic
    • 5.1.2. Restraints
      • 5.1.2.1. Concerns regarding high initial costs
    • 5.1.3. Opportunities
      • 5.1.3.1. Technological advancements and rising amalgamation among the market players
      • 5.1.3.2. Growing adoption for green H2 and the introduction of eco-friendly liquid fuels
    • 5.1.4. Challenges
      • 5.1.4.1. Lack of awareness and insufficient infrastructure for optimized catalyst and stability of photoanode material
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Technology: Increasing preference for biohybrid systems due to leverage of the high efficiency and selectivity of natural systems
    • 5.2.2. End-User Industry: Increasing usage of artificial photosynthesis in the agriculture sector to enhance crop production
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Artificial Photosynthesis Market, by Technology

  • 6.1. Introduction
  • 6.2. Biohybrid Systems
  • 6.3. Co-Electrolysis
  • 6.4. Hybrid Process
  • 6.5. Molecular Catalysts
  • 6.6. Photo-Electro Catalysis
  • 6.7. Photoelectrochemical Cells (PECs)

7. Artificial Photosynthesis Market, by System Type

  • 7.1. Introduction
  • 7.2. Heterogeneous System
  • 7.3. Homogeneous System

8. Artificial Photosynthesis Market, by End-User Industry

  • 8.1. Introduction
  • 8.2. Agriculture
  • 8.3. Energy & Utilities
  • 8.4. Environmental & Water Management

9. Americas Artificial Photosynthesis Market

  • 9.1. Introduction
  • 9.2. Argentina
  • 9.3. Brazil
  • 9.4. Canada
  • 9.5. Mexico
  • 9.6. United States

10. Asia-Pacific Artificial Photosynthesis Market

  • 10.1. Introduction
  • 10.2. Australia
  • 10.3. China
  • 10.4. India
  • 10.5. Indonesia
  • 10.6. Japan
  • 10.7. Malaysia
  • 10.8. Philippines
  • 10.9. Singapore
  • 10.10. South Korea
  • 10.11. Taiwan
  • 10.12. Thailand
  • 10.13. Vietnam

11. Europe, Middle East & Africa Artificial Photosynthesis Market

  • 11.1. Introduction
  • 11.2. Denmark
  • 11.3. Egypt
  • 11.4. Finland
  • 11.5. France
  • 11.6. Germany
  • 11.7. Israel
  • 11.8. Italy
  • 11.9. Netherlands
  • 11.10. Nigeria
  • 11.11. Norway
  • 11.12. Poland
  • 11.13. Qatar
  • 11.14. Russia
  • 11.15. Saudi Arabia
  • 11.16. South Africa
  • 11.17. Spain
  • 11.18. Sweden
  • 11.19. Switzerland
  • 11.20. Turkey
  • 11.21. United Arab Emirates
  • 11.22. United Kingdom

12. Competitive Landscape

  • 12.1. Market Share Analysis, 2023
  • 12.2. FPNV Positioning Matrix, 2023
  • 12.3. Competitive Scenario Analysis
    • 12.3.1. Hessian program funds Euro 4.4 million project enhancing chloroplasts for improved CO2 conversion and climate resilience
    • 12.3.2. Innovative artificial photosynthesis technique doubles fumaric acid production, enhancing biodegradable plastics and sustainability
    • 12.3.3. NTT Corporation achieves breakthrough in artificial photosynthesis with innovative carbon fixation device
  • 12.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Cemvita Factory, Inc.
  • 2. Engie SA
  • 3. Evonik Industries AG
  • 4. Fujitsu Limited by Furukawa Group
  • 5. H2U Technologies, Inc.
  • 6. Hitachi, Ltd.
  • 7. Horiba, Ltd.
  • 8. Idemitsu Kosan Co., Ltd.
  • 9. JX Metals Corporation
  • 10. Mitsubishi Chemical Group Corporation
  • 11. NTT Corporation
  • 12. Nydalen Group AS
  • 13. Panasonic Holdings Corporation
  • 14. Phytonix Corporation
  • 15. PorphyChem SAS
  • 16. Shimadzu Corporation
  • 17. Siemens AG
  • 18. SunHydrogen, Inc.
  • 19. Toshiba Corporation
  • 20. Twelve Benefit Corporation
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦