½ÃÀ庸°í¼­
»óǰÄÚµå
1618554

¼¼°èÀÇ ±â°è »óÅ ¸ð´ÏÅ͸µ ½ÃÀå : ÄÄÆ÷³ÍÆ®, °¨½Ã À¯Çü, Àü°³, ±â´É, »ê¾÷º° ¿¹Ãø(2025-2030³â)

Machine Condition Monitoring Market by Component (Hardware, Software), Monitoring Type (Continuous Monitoring, Periodic Monitoring), Deployment, Function, Industry - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 193 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

±â°è »óÅ ¸ð´ÏÅ͸µ½ÃÀåÀÇ 2023³â ½ÃÀå ±Ô¸ð´Â 31¾ï 4,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2024³â¿¡´Â 33¾ï 5,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, CAGR 7.11%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 50¾ï 8,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

±â°è »óÅ ¸ð´ÏÅ͸µÀº ÀåºñÀÇ °ÇÀü¼ºÀ» Æò°¡ÇÏ°í ±â°èÀû °íÀåÀ» ¿¹ÃøÇϱâ À§ÇØ ´Ù¾çÇÑ ±â¼úÀ» »ç¿ëÇÏ´Â »ê¾÷ À¯Áö º¸¼ö ¹× ¿î¿µÀÇ Áß¿äÇÑ Ãø¸éÀÔ´Ï´Ù. ÀÌ·¯ÇÑ °¡µ¿ Áß´ÜÀ» ¹æÁöÇÏ°í ±â°èÀÇ ½Å·Ú¼ºÀ» ³ôÀ̰í À¯Áö º¸¼ö ÀÏÁ¤À» ÃÖÀûÈ­ ÇÒ Çʿ伺À¸·Î ÀÎÇØ Á¦Á¶¾÷, ¼®À¯ ¹× °¡½º »ê¾÷, Ç×°ø¿ìÁÖ »ê¾÷, ¿¡³ÊÁö »ê¾÷, ÀÚµ¿Â÷ »ê¾÷ µî ±â°èÀÇ ¼º´É À¯Áö°¡ Áß¿äÇÑ ´Ù¾çÇÑ ºÐ¾ß¿¡ °ÉÃÄ ÀÖ½À´Ï´Ù. »ç¹°ÀÎÅͳÝ(IIoT)ÀÇ º¸±ÞÀº ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼® ¹× ±â°èÁø´Ü °³¼±À» °¡´ÉÇÏ°Ô Çϱ⠶§¹®¿¡ Å« ¼ºÀå ÃËÁø¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ(2023) 31¾ï 4,000¸¸ ´Þ·¯
¿¹Ãø³â(2024) 33¾ï 5,000¸¸ ´Þ·¯
¿¹Ãø³â(2030) 50¾ï 8,000¸¸ ´Þ·¯
CAGR(%) 7.11%

¾÷°è Àü¹Ý¿¡ °ÉÃÄ µðÁöÅÐ º¯È¯¿¡ ´ëÇÑ ³ë·ÂÀÌ ±ÞÁõÇϰí ÀÖÀ¸¸ç, ƯÈ÷ »óÅ ¸ð´ÏÅ͸µ ¼Ö·ç¼Ç¿¡¼­ AI¿Í ¸Ó½Å·¯´×ÀÇ ÅëÇÕ°ú °ü·ÃÇÏ¿© Çõ½ÅÀÇ »õ·Î¿î ±âȸ°¡ µµÀԵǾú½À´Ï´Ù. °­È­ÇÏ°í ½º¸¶Æ® À¯Áö º¸¼ö Àü·«ÀÇ ÁøÀüÀ» ÃËÁøÇÕ´Ï´Ù. ±×·¯³ª, °íµµÀÇ °¨½Ã ½Ã½ºÅÛÀÇ µµÀÔ¿¡ ¼ö¹ÝÇÏ´Â Ãʱ⠺ñ¿ë, ÀÌ·¯ÇÑ ±â¼úÀ» ¿î¿ë¡¤°ü¸®ÇÏ´Â ¼÷·ÃÀÚÀÇ Çʿ伺À̶ó°í ÇÏ´Â °úÁ¦¿¡, ½ÃÀåÀÇ ¼ºÀåÀº Á÷¸éÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¿¬°á¼º°ú IoT ¹èÆ÷°¡ Áõ°¡ÇÔ¿¡ µû¶ó µ¥ÀÌÅÍ º¸¾È¿¡ ´ëÇÑ ¿ì·Áµµ Á¦Çѵ˴ϴÙ.

ÀÌ·¯ÇÑ ±âȸ¸¦ Ȱ¿ëÇϱâ À§ÇØ ±â¾÷Àº ºñ¿ë È¿À²ÀûÀ̰í È®Àå °¡´ÉÇÑ ¼Ö·ç¼Ç °³¹ß¿¡ ÁÖ·ÂÇϰí AI ±â¼ú¿¡ ÅõÀÚÇÏ¿© ¿¹Ãø ´É·ÂÀ» ³ô¿©¾ß ÇÕ´Ï´Ù. ¶Ç´Â ¹Ì°³Ã´ ½ÃÀåÀ¸·ÎÀÇ ÁøÃâÀº ½ÃÀå¿¡¼­ÀÇ Á¸Àç°¨À» ´õ¿í ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. Á¢±Ù¼º°ú È¿À²¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. IoT ÅëÇÕÀÇ °³¼±À» À§ÇÑ ¿¬±¸°³¹ß¿¡ ÅõÀÚÇÏ´Â ±â¾÷Àº ½º¸¶Æ® Á¦Á¶¿Í ÀÚµ¿È­ÀÇ Æ®·»µå¿¡ ¸ÂÃß¾î Å« °æÀï ¿ìÀ§¸¦ ¾ò´Â ÀÔÀå¿¡ ÀÖ½À´Ï´Ù.

½ÃÀå ¿ªÇÐ: ±Þ¼ÓÈ÷ ÁøÈ­ÇÏ´Â ±â°è »óÅ ¸ð´ÏÅ͸µ ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

±â°è »óÅ ¸ð´ÏÅ͸µ ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿Àû ÀÎ »óÈ£ ÀÛ¿ë¿¡ ÀÇÇØ º¯¸ð¸¦ ÀÌ·ç°í ÀÖ½À´Ï´Ù. »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ ¾ò´Â µ¥ µµ¿òÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ À§ÇèÀ» ÁÙÀÏ ¼ö ÀÖÀ¸¸ç, ¼ÒºñÀÚ Çൿ°ú ÀÌ´Â Á¦Á¶ ºñ¿ë°ú ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ´õ¿í ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ±â±âÀÇ °¡µ¿ »óŸ¦ °ÇÀüÇÏ°Ô À¯ÁöÇϱâ À§ÇÑ Ã¤¿ëÀÇ È®´ë
    • ¿¹¹æ º¸Àüº¸´Ù ¿¹Áö º¸Àü¿¡ÀÇ ±Þ¼ÓÇÑ °æ»ç
    • Á¦Á¶¾÷ÀÇ µðÁöÅÐÈ­ÀÇ °¡¼Ó°ú ½º¸¶Æ® °øÀåÀÇ µµÀÔ
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ±âÁ¸ ½Ã½ºÅÛ °³Á¶ ½Ã Ãß°¡ ºñ¿ë°ú »óÈ£ ¿î¿ë¼º ¹®Á¦
  • ½ÃÀå ±âȸ
    • ½º¸¶Æ®ÇÏ°í ½Ç½Ã°£ÀÎ ±â°è »óÅ ¸ð´ÏÅ͸µ ¼Ö·ç¼ÇÀÇ ÃâÇö
    • IIoT, AI, ºò µ¥ÀÌÅÍ ±â¼úÀ» ±â°è »óÅ ¸ð´ÏÅ͸µ¿¡ ÅëÇÕ
  • ½ÃÀåÀÇ °úÁ¦
    • À߸øµÈ ¿¹ÃøÀ̳ª ½Å·Ú¼ºÀÌ ³·°Å³ª ¿ÀÇØ¸¦ ÃÊ·¡ÇÏ´Â Á¤º¸¿¡ ´ëÇÑ ¿ì·Á

Porter's Five Force : ±â°è »óÅ ¸ð´ÏÅ͸µ ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Porter's Five Force Framework´Â ±â°è »óÅ ¸ð´ÏÅ͸µ ½ÃÀå °æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ´õ °­ÀÎÇÑ ½ÃÀå¿¡¼­ Æ÷Áö¼Å´×À» º¸Àå ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : ±â°è »óÅ ¸ð´ÏÅ͸µ ½ÃÀå¿¡¼­ ¿ÜºÎ·ÎºÎÅÍÀÇ ¿µÇâ ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº ±â°è »óÅ ¸ð´ÏÅ͸µ ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ»ÇÕ´Ï´Ù. ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. PESTLE ¿äÀÎÀ» Á¶»çÇÏ¸é ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. Àû±ØÀûÀÎ ÀÇ»ç °áÁ¤À» ÇÒ Áغñ°¡µÇ¾î ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® : ±â°è »óÅ ¸ð´ÏÅ͸µ ½ÃÀå °æÀï ±¸µµ ÆÄ¾Ç

±â°è »óÅ ¸ð´ÏÅ͸µ ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ½ÃÀå ÁýÁß, ´ÜÆíÈ­, ÅëÇÕ µ¿ÇâÀ» ¹àÇô³»°í º¥´õ´Â °æÀïÀÌ Ä¡¿­ÇØÁö¸é¼­ ÀÚ»çÀÇ ÁöÀ§¸¦ ³ôÀÌ´Â Àü·«Àû ÀÇ»ç°áÁ¤À» Çϱâ À§ÇØ ÇÊ¿äÇÑ Áö°ß ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º : ±â°è »óÅ ¸ð´ÏÅ͸µ ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â ±â°è »óÅ ¸ð´ÏÅ͸µ ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ³× °¡Áö »çºÐ¸éÀ» ÅëÇØ º¥´õ¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ºÐÇÒÇϰí Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê ¹× ¼Ö·ç¼ÇÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× ±ÇÀå : ±â°è »óÅ ¸ð´ÏÅ͸µ ½ÃÀå¿¡¼­ ¼º°ø¿¡ ´ëÇÑ °æ·Î¸¦ ±×¸³´Ï´Ù.

±â°è »óÅ ¸ð´ÏÅ͸µ ½ÃÀåÀÇ Àü·« ºÐ¼®Àº ¼¼°è ½ÃÀå¿¡¼­ÀÇ ÇÁ·¹Á𽺠°­È­¸¦ ¸ñÇ¥·Î ÇÏ´Â ±â¾÷¿¡ ÇʼöÀûÀÎ ¿ä¼ÒÀÔ´Ï´Ù. ÀÌ Á¢±Ù¹ýÀ» ÅëÇØ °æÀï ±¸µµ¿¡¼­ °úÁ¦¸¦ ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö Àִ üÁ¦¸¦ ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀåÀÇ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ: ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·Â Æò°¡.

2. ½ÃÀå °³Ã´µµ: ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡ÇÏ¸ç ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­: ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, R&D Ȱµ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¾ò°í ÀÇ»ç°áÁ¤À» ÇÒ ¼ö ÀÖµµ·Ï Áß¿äÇÑ Áú¹®¿¡ ´ë´äÇϰí ÀÖ½À´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹® ¹× Áö¿ªÀº ¾îµðÀԴϱî?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ¡¤Ã¶¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • ±â±âÀÇ ¿î¿ë °ÇÀü¼ºÀ» À¯ÁöÇϱâ À§ÇÑ Ã¤¿ë Áõ°¡
      • ¿¹¹æ º¸¼öº¸´Ù ¿¹Ãø º¸¼ö¿¡ÀÇ ±Þ¼ÓÇÑ °æÇâ
      • Á¦Á¶¾÷ÀÇ µðÁöÅÐÈ­¿Í ½º¸¶Æ® ÆÑÅ丮 µµÀÔÀÇ °¡¼Ó
    • ¾ïÁ¦¿äÀÎ
      • ±âÁ¸ ½Ã½ºÅÛÀÇ °³¼ö ½Ã Ãß°¡ ºñ¿ë°ú »óÈ£ ¿î¿ë¼º ¹®Á¦
    • ±âȸ
      • ½º¸¶Æ®ÇÏ°í ½Ç½Ã°£ÀÎ ±â°è »óÅ ¸ð´ÏÅ͸µ ¼Ö·ç¼ÇÀÇ ÃâÇö
      • ±â°è »óÅ ¸ð´ÏÅ͸µ¿¡¼­ IIoT, AI, ºò µ¥ÀÌÅÍ ±â¼úÀÇ ÅëÇÕ
    • °úÁ¦
      • À߸øµÈ ¿¹ÃøÀ̳ª ½Å·ÚÇÒ ¼ö ¾ø´Â Á¤º¸, ¿ÀÇØ¸¦ ÃÊ·¡ÇÏ´Â Á¤º¸¿¡ ´ëÇÑ ¿ì·Á
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
    • ÄÄÆ÷³ÍÆ®: ¼ÒÇÁÆ®¿þ¾î ¶Ç´Â µ¥ÀÌÅÍ Ãëµæ ¹× ó¸® ÀÌ¿ë È®´ë
    • °¨½Ã À¯Çü: ´Ù¿îŸÀÓ°ú À¯Áö º¸¼ö ºñ¿ëÀ» ÃÖ¼ÒÈ­Çϱâ À§ÇØ Áö¼ÓÀûÀÎ °¨½Ã °æÇâÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù
    • ¹èÆ÷: ½±°Ô È®ÀåÇϰųª È®ÀåÇÒ ¼ö ÀÖÀ¸¹Ç·Î ±â°è »óÅ ¸ð´ÏÅ͸µ ½Ã½ºÅÛÀÇ Å¬¶ó¿ìµå ±â¹Ý ¹èÆ÷°¡ ¼±È£µÇ´Â °æÇâÀÌ ÀÖ½À´Ï´Ù.
    • »ê¾÷: ǰÁú°ú ¾ÈÀü±âÁØÀ» À¯ÁöÇϱâ À§ÇÑ »ê¾÷ó¸® ¼ö¿ä Áõ°¡
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡Àû
    • °æÁ¦
    • »ç±³
    • ±â¼úÀû
    • ¹ý·ü»ó
    • ȯ°æ

Á¦6Àå ±â°è »óÅ ¸ð´ÏÅ͸µ ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • Çϵå¿þ¾î
    • Ä«¸Þ¶ó
    • ÇÚµåÇïµå µ¥ÀÌÅÍ ÄÝ·ºÅÍ ¹× ¾Ö³Î¶óÀÌÀú
    • ¼¾¼­
  • ¼ÒÇÁÆ®¿þ¾î
    • ¿Â¶óÀÎ »óÅ ¸ð´ÏÅ͸µ ½Ã½ºÅÛ
    • ±¤ÇÐÀû »óÅ ¸ð´ÏÅ͸µ
    • ·çÆ® ±â¹Ý ¸ð´ÏÅ͸µ

Á¦7Àå ±â°è »óÅ ¸ð´ÏÅ͸µ ½ÃÀå : °¨½Ã À¯Çüº°

  • Áö¼ÓÀû ¸ð´ÏÅ͸µ
  • Á¤±âÀû ¸ð´ÏÅ͸µ

Á¦8Àå ±â°è »óÅ ¸ð´ÏÅ͸µ ½ÃÀå : Àü°³º°

  • Ŭ¶ó¿ìµå
  • ¿ÂÇÁ·¹¹Ì½º

Á¦9Àå ±â°è »óÅ ¸ð´ÏÅ͸µ ½ÃÀå : ±â´Éº°

  • ºÎ½Ä °¨½Ã
  • ¸ðÅÍ Àü·ù ÇØ¼®
  • ¿ÀÀÏ ºÐ¼®
  • ¼­¸ð±×·¡ÇÇ
  • Áøµ¿ °¨½Ã

Á¦10Àå ±â°è »óÅ ¸ð´ÏÅ͸µ ½ÃÀå : ¾÷°èº°

  • ÀÚµ¿Â÷ °øÇÐ
  • °ø¾÷ó¸®
  • ±Ý¼Ó ä±¼
  • ¼®À¯ ¹× °¡½º
  • dz·Â¿¡³ÊÁö

Á¦11Àå ¾Æ¸Þ¸®Ä«ÀÇ ±â°è »óÅ ¸ð´ÏÅ͸µ ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦12Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ±â°è »óÅ ¸ð´ÏÅ͸µ ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦13Àå À¯·´¡¤Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ±â°è »óÅ ¸ð´ÏÅ͸µ ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦14Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼® 2023
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2023
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
    • ECO-Adapt SAS Àμö·Î SchaefflerÀÇ ¶óÀÌÇÁŸÀÓ ¼Ö·ç¼Ç Æ÷Æ®Æú¸®¿À °­È­
    • ABB Ltd´Â Samotics¿Í Á¦ÈÞÇØ Àü±âÀû ½Ã±×´Ïó ºÐ¼®¿¡ ÀÇÇÑ »óÅ ¸ð´ÏÅ͸µ ¼­ºñ½º¸¦ È®´ë
    • SKF AB, AWS¸¦ Ȱ¿ëÇÑ SKF Axios Ãâ½Ã
    • OMRON Corporation, È÷ÅÍÀÇ ¿¹Áö º¸Àü¿ë »óÅ ¸ð´ÏÅ͸µ ÀåÄ¡ ¡¸K7TM¡¹À» ¹ß¸Å
  • Àü·« ºÐ¼®°ú Á¦¾È

±â¾÷ ¸ñ·Ï

  • ABB Ltd.
  • Advanced Technology Services, Inc.
  • ALS Limited
  • Amphenol Corporation
  • Analog Devices Inc.
  • Baker Hughes Company
  • Balluff Pty Ltd.
  • Canstar Instruments Inc.
  • Crystal Instruments Corporation
  • Dewesoft doo
  • Eaton Corporation PLC
  • Emerson Electric Co.
  • Fluke Corporation
  • General Electric Company
  • Honeywell International Inc.
  • ifm efector pty ltd.
  • Infineon Technologies AG
  • International Business Machines Corporation
  • MachineMetrics, Inc.
  • Mitsubishi Electric Corporation
  • MoviTHERM
  • National Instruments Corporation
  • NSK Ltd.
  • Omron Corporation
  • Parker Hannifin Corporation
  • Rockwell Automation Inc.
  • SAP SE
  • Schaeffler Technologies AG & CoKG
  • Schneider Electric SE
  • Siemens AG
  • SKF AB
  • Teledyne FLIR LLC
  • Viking Analytics
  • Yokogawa Electric Corporation
JHS 24.12.30

The Machine Condition Monitoring Market was valued at USD 3.14 billion in 2023, expected to reach USD 3.35 billion in 2024, and is projected to grow at a CAGR of 7.11%, to USD 5.08 billion by 2030.

Machine Condition Monitoring is a critical aspect of industrial maintenance and operations, involving the use of various techniques to assess equipment health and predict mechanical failures. The necessity for condition monitoring stems from the need for industries to prevent costly downtimes, enhance machinery reliability, and optimize maintenance schedules. Its applications span across diverse sectors including manufacturing, oil and gas, aerospace, energy, and automotive industries where maintaining machinery performance is crucial. End-users range from industrial plants to service providers focusing on predictive maintenance and asset management. The growing need for predictive maintenance solutions and the proliferation of the Industrial Internet of Things (IIoT) are significant growth drivers, as they enable real-time data analytics and improved machine diagnostics.

KEY MARKET STATISTICS
Base Year [2023] USD 3.14 billion
Estimated Year [2024] USD 3.35 billion
Forecast Year [2030] USD 5.08 billion
CAGR (%) 7.11%

The surge in digital transformation initiatives across industries presents new opportunities for innovation, especially concerning the integration of AI and machine learning in condition monitoring solutions. These technologies provide enhanced data accuracy and predictive insights, driving advancements in smart maintenance strategies. However, market growth faces challenges such as the high initial costs associated with implementing sophisticated monitoring systems and the need for skilled personnel to operate and manage these technologies. Data security concerns also pose a limitation, especially with increased connectivity and IoT adoption.

To leverage these opportunities, businesses should focus on developing cost-effective, scalable solutions and invest in AI technology to enhance predictive capabilities. Collaborations with tech companies for integrated solutions and expanding into untapped markets can further bolster market presence. Innovators may also explore wireless sensor technologies and cloud-based platforms to improve accessibility and efficiency. The nature of the market is increasingly competitive with ongoing technological advancements, demanding continuous innovation and adaptation. Companies investing in R&D for improved sensor technologies, AI algorithms, and IoT integration stand to gain significant competitive advantage, aligning with the trend of smart manufacturing and automation.

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Machine Condition Monitoring Market

The Machine Condition Monitoring Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Growing adoption to maintain operational health of equipment
    • Rapid inclination towards predictive maintenance over preventive maintenance
    • Accelerated digitalization of the manufacturing sector and implementation of smart factories
  • Market Restraints
    • Additional expenses and interoperability issues during retrofitting of existing system
  • Market Opportunities
    • Emergence of smart and real-time machine condition monitoring solutions
    • Integration of IIoT, AI, and Big data technologies in machine condition monitoring
  • Market Challenges
    • Concern regarding false prediction and unreliable or misleading information

Porter's Five Forces: A Strategic Tool for Navigating the Machine Condition Monitoring Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Machine Condition Monitoring Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Machine Condition Monitoring Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Machine Condition Monitoring Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Machine Condition Monitoring Market

A detailed market share analysis in the Machine Condition Monitoring Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Machine Condition Monitoring Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Machine Condition Monitoring Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Machine Condition Monitoring Market

A strategic analysis of the Machine Condition Monitoring Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Machine Condition Monitoring Market, highlighting leading vendors and their innovative profiles. These include ABB Ltd., Advanced Technology Services, Inc., ALS Limited, Amphenol Corporation, Analog Devices Inc., Baker Hughes Company, Balluff Pty Ltd., Canstar Instruments Inc., Crystal Instruments Corporation, Dewesoft d.o.o., Eaton Corporation PLC, Emerson Electric Co., Fluke Corporation, General Electric Company, Honeywell International Inc., ifm efector pty ltd., Infineon Technologies AG, International Business Machines Corporation, MachineMetrics, Inc., Mitsubishi Electric Corporation, MoviTHERM, National Instruments Corporation, NSK Ltd., Omron Corporation, Parker Hannifin Corporation, Rockwell Automation Inc., SAP SE, Schaeffler Technologies AG & CoKG, Schneider Electric SE, Siemens AG, SKF AB, Teledyne FLIR LLC, Viking Analytics, and Yokogawa Electric Corporation.

Market Segmentation & Coverage

This research report categorizes the Machine Condition Monitoring Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Component, market is studied across Hardware and Software. The Hardware is further studied across Cameras, Handheld Data Collectors & Analyzers, and Sensors. The Software is further studied across Online Condition Monitoring Systems, Optical Condition Monitoring, and Route-Based Monitoring.
  • Based on Monitoring Type, market is studied across Continuous Monitoring and Periodic Monitoring.
  • Based on Deployment, market is studied across Cloud and On-Premises.
  • Based on Function, market is studied across Corrosion Monitoring, Motor Current Analysis, Oil Analysis, Thermography, and Vibration Monitoring.
  • Based on Industry, market is studied across Automotive Engineering, Industrial Processing, Metal Mining, Oil & Gas, and Wind Energy.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Growing adoption to maintain operational health of equipment
      • 5.1.1.2. Rapid inclination towards predictive maintenance over preventive maintenance
      • 5.1.1.3. Accelerated digitalization of the manufacturing sector and implementation of smart factories
    • 5.1.2. Restraints
      • 5.1.2.1. Additional expenses and interoperability issues during retrofitting of existing system
    • 5.1.3. Opportunities
      • 5.1.3.1. Emergence of smart and real-time machine condition monitoring solutions
      • 5.1.3.2. Integration of IIoT, AI, and Big data technologies in machine condition monitoring
    • 5.1.4. Challenges
      • 5.1.4.1. Concern regarding false prediction and unreliable or misleading information
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Component: Expanding usage of softwares or data acquisition and processing
    • 5.2.2. Monitoring Type: Increasing inclination towards continuous monitoring to minimizing downtime and maintenance costs
    • 5.2.3. Deployment: Growing preference for cloud-based deployment of machine condition monitoring systems due to their ability to easily scale up or down
    • 5.2.4. Industry: Increasing demand for industrial processing to maintain quality and safety standards
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Machine Condition Monitoring Market, by Component

  • 6.1. Introduction
  • 6.2. Hardware
    • 6.2.1. Cameras
    • 6.2.2. Handheld Data Collectors & Analyzers
    • 6.2.3. Sensors
  • 6.3. Software
    • 6.3.1. Online Condition Monitoring Systems
    • 6.3.2. Optical Condition Monitoring
    • 6.3.3. Route-Based Monitoring

7. Machine Condition Monitoring Market, by Monitoring Type

  • 7.1. Introduction
  • 7.2. Continuous Monitoring
  • 7.3. Periodic Monitoring

8. Machine Condition Monitoring Market, by Deployment

  • 8.1. Introduction
  • 8.2. Cloud
  • 8.3. On-Premises

9. Machine Condition Monitoring Market, by Function

  • 9.1. Introduction
  • 9.2. Corrosion Monitoring
  • 9.3. Motor Current Analysis
  • 9.4. Oil Analysis
  • 9.5. Thermography
  • 9.6. Vibration Monitoring

10. Machine Condition Monitoring Market, by Industry

  • 10.1. Introduction
  • 10.2. Automotive Engineering
  • 10.3. Industrial Processing
  • 10.4. Metal Mining
  • 10.5. Oil & Gas
  • 10.6. Wind Energy

11. Americas Machine Condition Monitoring Market

  • 11.1. Introduction
  • 11.2. Argentina
  • 11.3. Brazil
  • 11.4. Canada
  • 11.5. Mexico
  • 11.6. United States

12. Asia-Pacific Machine Condition Monitoring Market

  • 12.1. Introduction
  • 12.2. Australia
  • 12.3. China
  • 12.4. India
  • 12.5. Indonesia
  • 12.6. Japan
  • 12.7. Malaysia
  • 12.8. Philippines
  • 12.9. Singapore
  • 12.10. South Korea
  • 12.11. Taiwan
  • 12.12. Thailand
  • 12.13. Vietnam

13. Europe, Middle East & Africa Machine Condition Monitoring Market

  • 13.1. Introduction
  • 13.2. Denmark
  • 13.3. Egypt
  • 13.4. Finland
  • 13.5. France
  • 13.6. Germany
  • 13.7. Israel
  • 13.8. Italy
  • 13.9. Netherlands
  • 13.10. Nigeria
  • 13.11. Norway
  • 13.12. Poland
  • 13.13. Qatar
  • 13.14. Russia
  • 13.15. Saudi Arabia
  • 13.16. South Africa
  • 13.17. Spain
  • 13.18. Sweden
  • 13.19. Switzerland
  • 13.20. Turkey
  • 13.21. United Arab Emirates
  • 13.22. United Kingdom

14. Competitive Landscape

  • 14.1. Market Share Analysis, 2023
  • 14.2. FPNV Positioning Matrix, 2023
  • 14.3. Competitive Scenario Analysis
    • 14.3.1. Acquisition of ECO-Adapt SAS strengthens Schaeffler's portfolio of Lifetime Solutions
    • 14.3.2. ABB Ltd partners with Samotics to expand condition monitoring services with electrical signature analysis
    • 14.3.3. SKF AB launches of SKF Axios powered by AWS
    • 14.3.4. OMRON Corporation launches K7TM condition monitoring device for predictive maintenance of heaters
  • 14.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. ABB Ltd.
  • 2. Advanced Technology Services, Inc.
  • 3. ALS Limited
  • 4. Amphenol Corporation
  • 5. Analog Devices Inc.
  • 6. Baker Hughes Company
  • 7. Balluff Pty Ltd.
  • 8. Canstar Instruments Inc.
  • 9. Crystal Instruments Corporation
  • 10. Dewesoft d.o.o.
  • 11. Eaton Corporation PLC
  • 12. Emerson Electric Co.
  • 13. Fluke Corporation
  • 14. General Electric Company
  • 15. Honeywell International Inc.
  • 16. ifm efector pty ltd.
  • 17. Infineon Technologies AG
  • 18. International Business Machines Corporation
  • 19. MachineMetrics, Inc.
  • 20. Mitsubishi Electric Corporation
  • 21. MoviTHERM
  • 22. National Instruments Corporation
  • 23. NSK Ltd.
  • 24. Omron Corporation
  • 25. Parker Hannifin Corporation
  • 26. Rockwell Automation Inc.
  • 27. SAP SE
  • 28. Schaeffler Technologies AG & CoKG
  • 29. Schneider Electric SE
  • 30. Siemens AG
  • 31. SKF AB
  • 32. Teledyne FLIR LLC
  • 33. Viking Analytics
  • 34. Yokogawa Electric Corporation
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦