½ÃÀ庸°í¼­
»óǰÄÚµå
1620753

¿¹Áöº¸Àü ½ÃÀå : ÄÄÆ÷³ÍÆ®, Àü°³, ¿ëµµ, Á¶Á÷ ±Ô¸ð, ÃÖÁ¾ »ç¿ëÀÚº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Predictive Maintenance Market by Component (Services, Solutions), Deployment (On-Cloud, On-Premise), Application, Organization Size, End-User - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 194 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

¿¹Áöº¸Àü½ÃÀåÀÇ 2023³â ½ÃÀå ±Ô¸ð´Â 106¾ï 4,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2024³â¿¡´Â 130¾ï 9,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, CAGR 24.02%·Î ¼ºÀåÇØ 2030³â¿¡´Â 480¾ï 7,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù.

¿¹Áöº¸ÀüÀº µ¥ÀÌÅÍ ºÐ¼®°ú ½Ç½Ã°£ ¸ð´ÏÅ͸µÀ» ÅëÇØ ÀåºñÀÇ °íÀåÀ» »çÀü¿¡ ¿¹ÃøÇϰí À¯Áöº¸¼ö ÀÏÁ¤À» ÃÖÀûÈ­ÇÏ¿© °¡µ¿ Áß´Ü ½Ã°£À» ÁÙÀÌ´Â »çÀü ¿¹¹æÀû Á¢±Ù ¹æ½ÄÀÔ´Ï´Ù. ¿¹Áöº¸ÀüÀº Á¦Á¶, ¿î¼Û, ¿¡³ÊÁö »ê¾÷ µîÀÇ »ê¾÷¿¡¼­ ¾÷¹« È¿À²¼º°ú ºñ¿ë È¿À²¼º¿¡ ´ëÇÑ ¿ä±¸°¡ ³ô¾ÆÁü¿¡ µû¶ó ±× Çʿ伺ÀÌ ´ëµÎµÇ°í ÀÖ½À´Ï´Ù. ¸Ó½Å·¯´× ¾Ë°í¸®Áò°ú IoT Áö¿ø ¼¾¼­¸¦ Àû¿ëÇÑ ¿¹Áöº¸Àü ½Ã½ºÅÛÀº ÀáÀçÀûÀÎ Àåºñ °íÀåÀ» ¿¹ÃøÇÏ¿© ½É°¢ÇÑ °íÀåÀÇ À§ÇèÀ» ÃÖ¼ÒÈ­Çϰí ÀÚ»êÀÇ ¼ö¸íÁֱ⸦ ¿¬ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù. ÃÖÁ¾ ¿ëµµ´Â ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ, À¯Æ¿¸®Æ¼ µî ¿¹±âÄ¡ ¾ÊÀº ´Ù¿îŸÀÓÀ» ÇÇÇÏ´Â °ÍÀÌ Áß¿äÇÑ ºÐ¾ß¿¡ °ÉÃÄ ÀÖ½À´Ï´Ù. ÁÖ¿ä ¼ºÀå ¿äÀÎÀ¸·Î´Â AI¿Í IoTÀÇ ±â¼ú ¹ßÀü, Àδõ½ºÆ®¸® 4.0 äÅà Ȯ´ë, È¿À²ÀûÀÎ ÀÚ¿ø °ü¸®¸¦ ÅëÇÑ °æÀï ¿ìÀ§ È®º¸ Çʿ伺 µîÀÌ ÀÖ½À´Ï´Ù. ÃֽŠºñÁî´Ï½º ±âȸ´Â »ê¾÷ µðÁöÅÐÈ­°¡ °¡¼ÓÈ­µÇ°í ÀÖ´Â ¾Æ½Ã¾ÆÅÂÆò¾ç°ú ¿¹Ãø À¯Áöº¸¼ö¸¦ ÅëÇØ ¼³ºñ °ü¸®¸¦ °­È­ÇÒ ¼ö ÀÖ´Â ½º¸¶Æ® ºôµù°ú °°Àº ºÐ¾ß¿¡¼­ ãÀ» ¼ö ÀÖ½À´Ï´Ù. »ç¿ëÀÚ Ä£È­ÀûÀÎ ÀÎÅÍÆäÀ̽º¿Í °­·ÂÇÑ µ¥ÀÌÅÍ ºÐ¼® ±â´ÉÀ» °®Ãá ÅëÇÕ ¿¹Ãø ¼Ö·ç¼Ç¿¡ ÅõÀÚÇÏ´Â ±â¾÷Àº »ó´çÇÑ ½ÃÀå Á¡À¯À²À» È®º¸ÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ±×·¯³ª ³ôÀº Ãʱ⠵µÀÔ ºñ¿ë, µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹®Á¦, º¹ÀâÇÑ ½Ã½ºÅÛÀ» °ü¸®ÇÒ ¼÷·ÃµÈ ÀηÂÀÇ Çʿ伺 µîÀÌ ½ÃÀå ¼ºÀåÀÇ °É¸²µ¹·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ÀÌ¿¡ ´ëÀÀÇϱâ À§ÇØ ±â¾÷µéÀº È®Àå °¡´ÉÇÑ ¼Ö·ç¼ÇÀ» °³¹ßÇÏ°í »çÀ̹ö º¸¾È ´ëÃ¥À» °­È­ÇÏ´Â µ¥ ÁýÁßÇÏ´Â °ÍÀÌ ¹Ù¶÷Á÷ÇÕ´Ï´Ù. ÷´Ü ¼¾¼­ ±â¼ú °³¹ß, »ê¾÷º° ¸Ó½Å·¯´× ¸ðµ¨ ±¸Ãà, Ŭ¶ó¿ìµå ±â¹Ý ¿¹Ãø Ç÷§Æû °­È­ µî Çõ½ÅÀÇ ±âȸ°¡ Á¸ÀçÇÕ´Ï´Ù. ±â¼ú ±â¾÷, ¾÷°è °ü°èÀÚ, Çа谡 Çù·ÂÇϸé ÀÌ ºÐ¾ß¿¡¼­ Å« ÁøÀüÀ» ÀÌ·ê ¼ö ÀÖÀ» °ÍÀÔ´Ï´Ù. ½ÃÀåÀº ¿ªµ¿ÀûÀÌ°í °æÀïÀÌ Ä¡¿­Çϸç, Â÷º°È­¿Í Àü·«Àû ÆÄÆ®³Ê½ÊÀ» ÅëÇÑ ¼ºÀåÀÇ ¿©Áö°¡ ÃæºÐÇÕ´Ï´Ù. ½ÃÀå µ¿Çâ¿¡ ´ëÇÑ ¹ÎøÇÑ Á¢±Ù°ú ¿¬±¸°³¹ß¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÅëÇØ ±â¾÷µéÀº ¿¹Áöº¸Àü ¹ßÀüÀÇ ÃÖÀü¼±¿¡ ¼­¼­ µðÁöÅÐ ¿¹Ãø ÆÐ·¯´ÙÀÓÀÇ º¯È­ °¡´É¼ºÀ» Ȱ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ(2023) 106¾ï 4,000¸¸ ´Þ·¯
¿¹Ãø³â(2024) 130¾ï 9,000¸¸ ´Þ·¯
¿¹Ãø³â(2030) 480¾ï 7,000¸¸ ´Þ·¯
CAGR(%) 24.02%

½ÃÀå ¿ªÇÐ: ºü¸£°Ô ÁøÈ­ÇÏ´Â ¿¹Áöº¸Àü ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

¿¹Áöº¸Àü ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ëÀ» ÅëÇØ º¯È­Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐÀÇ º¯È­¸¦ ÀÌÇØÇÔÀ¸·Î½á ±â¾÷Àº Á¤º¸¿¡ ÀÔ°¢ÇÑ ÅõÀÚ °áÁ¤À» ³»¸®°í, Àü·«ÀûÀÎ ÀÇ»ç°áÁ¤À» Á¤±³È­Çϸç, »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Æ÷ÂøÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Æ®·»µå¸¦ Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª Àü¹Ý¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ ÁÙÀÏ ¼ö ÀÖÀ¸¸ç, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë ¹× ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • Àδõ½ºÆ®¸® 4.0À¸·Î ÀÎÇÑ »ý»ê¶óÀÎÀÇ ±â°èÈ­ ¹× ÀÚµ¿È­ ÅõÀÚ Áõ°¡
    • ÀÚ»ê ÃßÀû ¹× ½Ç½Ã°£ ¸ð´ÏÅ͸µ ±â¼úÀÇ Áö¼ÓÀû °³¹ß
    • °¢±¹ Á¤ºÎ ±â°üÀÇ ¾ÈÀü ±ÔÁ¦ °­È­
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ÅëÇÕ ¹× ±¸Çö¿¡ µû¸¥ º¹À⼺°ú ºñ¿ë
  • ½ÃÀå ±âȸ
    • AI, IoT, °Ë»ç ±â¼ú ÅëÇÕÀ» ÅëÇÑ ¿¹Áöº¸Àü Çâ»ó
    • µðÁöÅÐ Æ®À© ±â¹Ý ¿¹Áöº¸Àü ½Ã½ºÅÛÀÇ µîÀå ¹× °³¹ß
  • ½ÃÀå °úÁ¦
    • µ¥ÀÌÅÍ º¸¾È ¹× ÇÁ¶óÀ̹ö½Ã º¸È£¿¡ ´ëÇÑ ¿ì·Á

Porter's Five Forces: ¿¹Áöº¸Àü ½ÃÀå Ž»öÀ» À§ÇÑ Àü·« µµ±¸

Porter's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ¿¹Áöº¸Àü ½ÃÀå °æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â µ¥ Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. PorterÀÇ Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÇ °æÀï·ÂÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ Ž»öÇÒ ¼ö ÀÖ´Â ¸íÈ®ÇÑ ¹æ¹ýÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÅëÂû·ÂÀ» ÅëÇØ ±â¾÷Àº °­Á¡À» Ȱ¿ëÇϰí, ¾àÁ¡À» ÇØ°áÇϰí, ÀáÀçÀûÀÎ µµÀüÀ» ÇÇÇϰí, º¸´Ù °­·ÂÇÑ ½ÃÀå Æ÷Áö¼Å´×À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : ¿¹Áöº¸Àü ½ÃÀåÀÇ ¿ÜºÎ ¿µÇâ ÆÄ¾Ç

PESTLE ºÐ¼® : ¿¹Áöº¸Àü ½ÃÀåÀÇ ¿ÜºÎ ¿µÇâ ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº ¿¹Áöº¸Àü ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀο¡ ´ëÇÑ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇϸç, PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀû À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£µµ, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¼±Á¦ÀûÀÌ°í ´Éµ¿ÀûÀÎ ÀÇ»ç°áÁ¤À» ³»¸± Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® ¿¹Áöº¸Àü ½ÃÀå¿¡¼­°æÀï ±¸µµ ÆÄ¾Ç

¿¹Áöº¸Àü ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¼öÀÍ, °í°´ ±â¹Ý, ¼ºÀå·ü°ú °°Àº ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀïÀû À§Ä¡¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®Àº ½ÃÀåÀÇ ÁýÁßÈ­, ´ÜÆíÈ­ ¹× ÅëÇÕ Ãß¼¼¸¦ ÆÄ¾ÇÇÏ¿© º¥´õ°¡ Ä¡¿­ÇÑ °æÀï¿¡¼­ ÀÚ½ÅÀÇ À§Ä¡¸¦ °­È­Çϱâ À§ÇÑ Àü·«Àû ÀÇ»ç°áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ ÅëÂû·ÂÀ» Á¦°øÇÕ´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º ¿¹Áöº¸Àü ½ÃÀå¿¡¼­ º¥´õÀÇ ¼º°ú Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â ¿¹Áöº¸Àü ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ ¸ÅÆ®¸¯½º¸¦ ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº º¥´õÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±â¹ÝÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ºÎÇÕÇÏ´Â Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖÀ¸¸ç, 4°³ÀÇ »çºÐ¸éÀ¸·Î º¥´õ¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ¼¼ºÐÈ­ÇÏ¿© Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê¿Í ¼Ö·ç¼ÇÀ» ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù. Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê¿Í ¼Ö·ç¼ÇÀ» ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù.

¿¹Áöº¸Àü ½ÃÀå¿¡¼­ ¼º°øÇϱâ À§ÇÑ Àü·« ºÐ¼® ¹× Ãßõ ¿¹Ãøº¸Àü ½ÃÀå¿¡¼­ÀÇ ¼º°ø °æ·Î¸¦ ±×¸³´Ï´Ù.

¿¹Áöº¸Àü ½ÃÀå Àü·« ºÐ¼®Àº ¼¼°è ½ÃÀå¿¡¼­ ÀÔÁö¸¦ °­È­ÇϰíÀÚ ÇÏ´Â ±â¾÷¿¡°Ô ÇʼöÀûÀÔ´Ï´Ù. ÁÖ¿ä ÀÚ¿ø, ¿ª·® ¹× ¼º°ú ÁöÇ¥¸¦ °ËÅäÇÔÀ¸·Î½á ±â¾÷Àº ¼ºÀå ±âȸ¸¦ ½Äº°ÇÏ°í °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀ» ÅëÇØ °æÀï ȯ°æÀÇ µµÀüÀ» ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö ÀÖµµ·Ï ÁغñÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀå¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõµµ : ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·Â Æò°¡.

2. ½ÃÀå °³Ã´µµ: ½ÅÈï ½ÃÀå¿¡¼­ÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇϰí, ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡Çϸç, ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù°¢È­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä ¹ßÀü, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú ¹ßÀü µîÀ» °ËÅäÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÷´Ü ±â¼ú, ¿¬±¸ °³¹ß Ȱµ¿ ¹× Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚµéÀÌ Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸®´Â µ¥ µµ¿òÀÌ µÇ´Â Áß¿äÇÑ Áú¹®¿¡ ´ëÇÑ ´äº¯µµ Á¦°øÇÕ´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå Àü¸ÁÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹®, Áö¿ªÀº?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5.º¥´õ ½ÃÀå ÁøÀÔ ¹× ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
    • ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ±âȸ
    • °úÁ¦
    • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
    • Porter's Five Forces ºÐ¼®
    • PESTEL ºÐ¼®
      • Á¤Ä¡Àû
      • °æÁ¦Àû
      • »çȸÀû
      • ±â¼úÀû
      • ¹ýÀû
      • ȯ°æÀû

    Á¦6Àå ¿¹Áöº¸Àü½ÃÀå : ÄÄÆ÷³ÍÆ®º°

    • ¼­ºñ½º
      • ¸Å´ÏÁöµå ¼­ºñ½º
      • Àü¹® ¼­ºñ½º
        • ÄÁ¼³ÆÃ
        • Áö¿ø ¹× À¯Áö º¸¼ö
        • ½Ã½ºÅÛ ÅëÇÕ
    • ¼Ö·ç¼Ç
      • ÅëÇÕÇü
      • µ¶¸³Çü

    Á¦7Àå ¿¹Áö º¸Àü ½ÃÀå : Àü°³º°

    • Ŭ¶ó¿ìµå»ó
    • ¿ÂÇÁ·¹¹Ì½º

    Á¦8Àå ¿¹Áö º¸Àü ½ÃÀå : ¿ëµµº°

    • Àü±â °Ë»ç
    • ¿ÀÀÏ ºÐ¼®
    • ¿­È­»ó
    • ÃÊÀ½ÆÄ ¹æ»ç¼±
    • Áøµ¿ ÇØ¼®

    Á¦9Àå ¿¹Áö º¸Àü ½ÃÀå : Á¶Á÷ ±Ô¸ðº°

    • ´ë±â¾÷
    • Áß¼Ò±â¾÷

    Á¦10Àå ¿¹Áö º¸Àü ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

    • Ç×°ø¿ìÁÖ ¹× ¹æ¾î
    • ÀÚµ¿Â÷ ¹× ¿î¼Û
    • ÀºÇà/±ÝÀ¶¼­ºñ½º/º¸Çè
    • °ÇÃà/°Ç¼³/ºÎµ¿»ê
    • ¼ÒºñÀç?¼Ò¸Å
    • ±³À°
    • ¿¡³ÊÁö¡¤À¯Æ¿¸®Æ¼
    • Á¤ºÎ ¹× °ø°ø ºÎ¹®
    • ÇコÄÉ¾î ¹× »ý¸í°úÇÐ
    • Á¤º¸±â¼ú ¹× Åë½Å
    • Á¦Á¶¾÷
    • ¹Ìµð¾î ¹× ¿£ÅÍÅ×ÀÎ¸ÕÆ®
    • ¿©Çà?È£½ºÇÇÅ»¸®Æ¼

    Á¦11Àå ¾Æ¸Þ¸®Ä«ÀÇ ¿¹Áöº¸Àü½ÃÀå

    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
    • ¹Ì±¹

    Á¦12Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¿¹Áöº¸Àü½ÃÀå

    • È£ÁÖ
    • Áß±¹
    • Àεµ
    • Àεµ³×½Ã¾Æ
    • ÀϺ»
    • ¸»·¹À̽þÆ
    • Çʸ®ÇÉ
    • ½Ì°¡Æ÷¸£
    • Çѱ¹
    • ´ë¸¸
    • ű¹
    • º£Æ®³²

    Á¦13Àå À¯·´¡¤Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ¿¹Áöº¸Àü½ÃÀå

    • µ§¸¶Å©
    • ÀÌÁýÆ®
    • Çɶõµå
    • ÇÁ¶û½º
    • µ¶ÀÏ
    • À̽º¶ó¿¤
    • ÀÌÅ»¸®¾Æ
    • ³×´ú¶õµå
    • ³ªÀÌÁö¸®¾Æ
    • ³ë¸£¿þÀÌ
    • Æú¶õµå
    • īŸ¸£
    • ·¯½Ã¾Æ
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ½ºÆäÀÎ
    • ½º¿þµ§
    • ½ºÀ§½º
    • ÅÍŰ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • ¿µ±¹

    Á¦14Àå °æÀï ±¸µµ

    • ½ÃÀå Á¡À¯À² ºÐ¼®, 2023
    • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2023
    • °æÀï ½Ã³ª¸®¿À ºÐ¼®
    • Àü·« ºÐ¼®°ú Á¦¾È

    ±â¾÷ ¸ñ·Ï

    • Altair Engineering Inc.
    • Amazon Web Services, Inc.
    • Asystom
    • C3.ai, Inc.
    • Databricks, Inc.
    • DINGO Software Pty. Ltd.
    • Fiix Inc. by Rockwell Automation, Inc.
    • General Electric Company
    • Hitachi, Ltd.
    • Honeywell International Inc.
    • Infineon Technologies AG
    • Intel Corporation
    • International Business Machines Corporation
    • Limble Solutions, LLC
    • Micro Focus International PLC by Open Text Corporation
    • Microsoft Corporation
    • NVIDIA Corporation
    • Operational Excellence(OPEX) Group Ltd.
    • Oracle Corporation
    • Robert Bosch GmbH
    • SAP SE
    • Schneider Electric SE
    • Siemens AG
    • Software AG
    • SparkCognition, Inc.
    • Splunk Inc.
    • TIBCO Software Inc. by Cloud Software Group, Inc.
    • TWI Ltd.
    • Uptake Technologies Inc.
    BJH 25.01.08

    The Predictive Maintenance Market was valued at USD 10.64 billion in 2023, expected to reach USD 13.09 billion in 2024, and is projected to grow at a CAGR of 24.02%, to USD 48.07 billion by 2030.

    Predictive maintenance is a proactive approach that leverages data analytics and real-time monitoring to predict equipment failures before they occur, optimizing maintenance schedules and reducing downtime. Its necessity arises from the increasing demand for operational efficiency and cost-effectiveness in industries such as manufacturing, transportation, and energy. By applying machine learning algorithms and IoT-enabled sensors, predictive maintenance systems can forecast potential equipment malfunctions, minimizing the risk of acute failures and extending asset lifecycles. End-use scope spans across sectors including automotive, aerospace, and utilities, where avoiding unscheduled downtime is critical. Key growth factors include technological advancements in AI and IoT, the rising adoption of Industry 4.0, and the need for competitive advantage through efficient resource management. Latest opportunities lie in expanding markets such as Asia-Pacific, where industrial digitization is gaining momentum, and in sectors like smart buildings where predictive maintenance can enhance facility management. Companies that invest in integrated predictive solutions with user-friendly interfaces and robust data analytics stand to gain considerable market share. However, limitations such as high initial implementation costs, data privacy concerns, and the need for skilled personnel to manage complex systems pose challenges to market growth. To counter these, businesses are encouraged to develop scalable solutions and focus on enhancing cybersecurity measures. Innovation opportunities exist in developing advanced sensor technologies, creating industry-specific machine learning models, and enhancing cloud-based predictive platforms. Collaborative efforts between tech companies, industry players, and academia can drive substantial advancements in this field. The market is dynamic and increasingly competitive, with ample room for growth through differentiation and strategic partnerships. An agile approach to market trends and investing in R&D can place businesses at the forefront of predictive maintenance advancements, tapping into the transformative potential of digital predictive paradigms.

    KEY MARKET STATISTICS
    Base Year [2023] USD 10.64 billion
    Estimated Year [2024] USD 13.09 billion
    Forecast Year [2030] USD 48.07 billion
    CAGR (%) 24.02%

    Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Predictive Maintenance Market

    The Predictive Maintenance Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

    • Market Drivers
      • Rising investments in mechanizing and automating production lines with Industry 4.0
      • Ongoing deployment of asset tracking and real-time monitoring technologies
      • Increasing safety regulations imposed by government agencies across economies
    • Market Restraints
      • Complexities and costs associated with integration and implementation
    • Market Opportunities
      • Improvements in predictive maintenance through integration of AI, IoT, and inspection technologies
      • Emergence and development of digital twin-based predictive maintenance systems
    • Market Challenges
      • Concerns looming around data security and privacy

    Porter's Five Forces: A Strategic Tool for Navigating the Predictive Maintenance Market

    Porter's five forces framework is a critical tool for understanding the competitive landscape of the Predictive Maintenance Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

    PESTLE Analysis: Navigating External Influences in the Predictive Maintenance Market

    External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Predictive Maintenance Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

    Market Share Analysis: Understanding the Competitive Landscape in the Predictive Maintenance Market

    A detailed market share analysis in the Predictive Maintenance Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

    FPNV Positioning Matrix: Evaluating Vendors' Performance in the Predictive Maintenance Market

    The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Predictive Maintenance Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

    Strategy Analysis & Recommendation: Charting a Path to Success in the Predictive Maintenance Market

    A strategic analysis of the Predictive Maintenance Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

    Key Company Profiles

    The report delves into recent significant developments in the Predictive Maintenance Market, highlighting leading vendors and their innovative profiles. These include Altair Engineering Inc., Amazon Web Services, Inc., Asystom, C3.ai, Inc., Databricks, Inc., DINGO Software Pty. Ltd., Fiix Inc. by Rockwell Automation, Inc., General Electric Company, Hitachi, Ltd., Honeywell International Inc., Infineon Technologies AG, Intel Corporation, International Business Machines Corporation, Limble Solutions, LLC, Micro Focus International PLC by Open Text Corporation, Microsoft Corporation, NVIDIA Corporation, Operational Excellence (OPEX) Group Ltd., Oracle Corporation, Robert Bosch GmbH, SAP SE, Schneider Electric SE, Siemens AG, Software AG, SparkCognition, Inc., Splunk Inc., TIBCO Software Inc. by Cloud Software Group, Inc., TWI Ltd., and Uptake Technologies Inc..

    Market Segmentation & Coverage

    This research report categorizes the Predictive Maintenance Market to forecast the revenues and analyze trends in each of the following sub-markets:

    • Based on Component, market is studied across Services and Solutions. The Services is further studied across Managed Services and Professional Services. The Professional Services is further studied across Consulting, Support & Maintenance, and System Integration. The Solutions is further studied across Integrated and Standalone.
    • Based on Deployment, market is studied across On-Cloud and On-Premise.
    • Based on Application, market is studied across Electrical Inspections, Oil Analysis, Thermal Imaging, Ultrasound Emissions, and Vibration Analysis.
    • Based on Organization Size, market is studied across Large Enterprises and Small & Medium-size Enterprises.
    • Based on End-User, market is studied across Aerospace & Defense, Automotive & Transportation, Banking, Financial Services & Insurance, Building, Construction & Real Estate, Consumer Goods & Retail, Education, Energy & Utilities, Government & Public Sector, Healthcare & Life Sciences, Information Technology & Telecommunication, Manufacturing, Media & Entertainment, and Travel & Hospitality.
    • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

    The report offers a comprehensive analysis of the market, covering key focus areas:

    1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

    2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

    3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

    4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

    5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

    The report also answers critical questions to aid stakeholders in making informed decisions:

    1. What is the current market size, and what is the forecasted growth?

    2. Which products, segments, and regions offer the best investment opportunities?

    3. What are the key technology trends and regulatory influences shaping the market?

    4. How do leading vendors rank in terms of market share and competitive positioning?

    5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

    Table of Contents

    1. Preface

    • 1.1. Objectives of the Study
    • 1.2. Market Segmentation & Coverage
    • 1.3. Years Considered for the Study
    • 1.4. Currency & Pricing
    • 1.5. Language
    • 1.6. Stakeholders

    2. Research Methodology

    • 2.1. Define: Research Objective
    • 2.2. Determine: Research Design
    • 2.3. Prepare: Research Instrument
    • 2.4. Collect: Data Source
    • 2.5. Analyze: Data Interpretation
    • 2.6. Formulate: Data Verification
    • 2.7. Publish: Research Report
    • 2.8. Repeat: Report Update

    3. Executive Summary

    4. Market Overview

    5. Market Insights

    • 5.1. Market Dynamics
      • 5.1.1. Drivers
        • 5.1.1.1. Rising investments in mechanizing and automating production lines with Industry 4.0
        • 5.1.1.2. Ongoing deployment of asset tracking and real-time monitoring technologies
        • 5.1.1.3. Increasing safety regulations imposed by government agencies across economies
      • 5.1.2. Restraints
        • 5.1.2.1. Complexities and costs associated with integration and implementation
      • 5.1.3. Opportunities
        • 5.1.3.1. Improvements in predictive maintenance through integration of AI, IoT, and inspection technologies
        • 5.1.3.2. Emergence and development of digital twin-based predictive maintenance systems
      • 5.1.4. Challenges
        • 5.1.4.1. Concerns looming around data security and privacy
    • 5.2. Market Segmentation Analysis
      • 5.2.1. Component: Rising demand for predictive maintenance solutions due to their ability to significantly reduce unexpected machinery breakdowns
      • 5.2.2. End-User: Rising adoption in the automotive & transportation sector to ensure vehicles and transport systems operate efficiently and safely.
    • 5.3. Porter's Five Forces Analysis
      • 5.3.1. Threat of New Entrants
      • 5.3.2. Threat of Substitutes
      • 5.3.3. Bargaining Power of Customers
      • 5.3.4. Bargaining Power of Suppliers
      • 5.3.5. Industry Rivalry
    • 5.4. PESTLE Analysis
      • 5.4.1. Political
      • 5.4.2. Economic
      • 5.4.3. Social
      • 5.4.4. Technological
      • 5.4.5. Legal
      • 5.4.6. Environmental

    6. Predictive Maintenance Market, by Component

    • 6.1. Introduction
    • 6.2. Services
      • 6.2.1. Managed Services
      • 6.2.2. Professional Services
        • 6.2.2.1. Consulting
        • 6.2.2.2. Support & Maintenance
        • 6.2.2.3. System Integration
    • 6.3. Solutions
      • 6.3.1. Integrated
      • 6.3.2. Standalone

    7. Predictive Maintenance Market, by Deployment

    • 7.1. Introduction
    • 7.2. On-Cloud
    • 7.3. On-Premise

    8. Predictive Maintenance Market, by Application

    • 8.1. Introduction
    • 8.2. Electrical Inspections
    • 8.3. Oil Analysis
    • 8.4. Thermal Imaging
    • 8.5. Ultrasound Emissions
    • 8.6. Vibration Analysis

    9. Predictive Maintenance Market, by Organization Size

    • 9.1. Introduction
    • 9.2. Large Enterprises
    • 9.3. Small & Medium-size Enterprises

    10. Predictive Maintenance Market, by End-User

    • 10.1. Introduction
    • 10.2. Aerospace & Defense
    • 10.3. Automotive & Transportation
    • 10.4. Banking, Financial Services & Insurance
    • 10.5. Building, Construction & Real Estate
    • 10.6. Consumer Goods & Retail
    • 10.7. Education
    • 10.8. Energy & Utilities
    • 10.9. Government & Public Sector
    • 10.10. Healthcare & Life Sciences
    • 10.11. Information Technology & Telecommunication
    • 10.12. Manufacturing
    • 10.13. Media & Entertainment
    • 10.14. Travel & Hospitality

    11. Americas Predictive Maintenance Market

    • 11.1. Introduction
    • 11.2. Argentina
    • 11.3. Brazil
    • 11.4. Canada
    • 11.5. Mexico
    • 11.6. United States

    12. Asia-Pacific Predictive Maintenance Market

    • 12.1. Introduction
    • 12.2. Australia
    • 12.3. China
    • 12.4. India
    • 12.5. Indonesia
    • 12.6. Japan
    • 12.7. Malaysia
    • 12.8. Philippines
    • 12.9. Singapore
    • 12.10. South Korea
    • 12.11. Taiwan
    • 12.12. Thailand
    • 12.13. Vietnam

    13. Europe, Middle East & Africa Predictive Maintenance Market

    • 13.1. Introduction
    • 13.2. Denmark
    • 13.3. Egypt
    • 13.4. Finland
    • 13.5. France
    • 13.6. Germany
    • 13.7. Israel
    • 13.8. Italy
    • 13.9. Netherlands
    • 13.10. Nigeria
    • 13.11. Norway
    • 13.12. Poland
    • 13.13. Qatar
    • 13.14. Russia
    • 13.15. Saudi Arabia
    • 13.16. South Africa
    • 13.17. Spain
    • 13.18. Sweden
    • 13.19. Switzerland
    • 13.20. Turkey
    • 13.21. United Arab Emirates
    • 13.22. United Kingdom

    14. Competitive Landscape

    • 14.1. Market Share Analysis, 2023
    • 14.2. FPNV Positioning Matrix, 2023
    • 14.3. Competitive Scenario Analysis
      • 14.3.1. Infineon Technologies AG partnered with Aurora Labs to bring a new level of safety to predictive maintenance applications for vehicles
      • 14.3.2. ONYX Insight Expands Advanced Predictive Maintenance Solutions to Enhance bp Wind Energy's U.S. Operations
      • 14.3.3. Aperia Expands Halo Connect for Superior Real-Time Equipment Monitoring
      • 14.3.4. Stratio and Freeway Transport's Partnership Enhances Efficiency through Predictive Maintenance
      • 14.3.5. SKFAcquired Presenso, Revolutionizing Predictive Maintenance for Reduced Downtime and Costs
      • 14.3.6. Modelon and iQuant's Digital Twin Solutions Propel Predictive Maintenance
      • 14.3.7. Schaeffler Enhances Predictive Maintenance Capabilities through Strategic Acquisition of Eco-Adapt
      • 14.3.8. Viking Analytics Secures EUR 3 Million in Series A Funding to Fuel Global Expansion
      • 14.3.9. Paprima Industries' Launched IoT-Based Predictive Program to Revolutionize Maintenance Tasks
    • 14.4. Strategy Analysis & Recommendation

    Companies Mentioned

    • 1. Altair Engineering Inc.
    • 2. Amazon Web Services, Inc.
    • 3. Asystom
    • 4. C3.ai, Inc.
    • 5. Databricks, Inc.
    • 6. DINGO Software Pty. Ltd.
    • 7. Fiix Inc. by Rockwell Automation, Inc.
    • 8. General Electric Company
    • 9. Hitachi, Ltd.
    • 10. Honeywell International Inc.
    • 11. Infineon Technologies AG
    • 12. Intel Corporation
    • 13. International Business Machines Corporation
    • 14. Limble Solutions, LLC
    • 15. Micro Focus International PLC by Open Text Corporation
    • 16. Microsoft Corporation
    • 17. NVIDIA Corporation
    • 18. Operational Excellence (OPEX) Group Ltd.
    • 19. Oracle Corporation
    • 20. Robert Bosch GmbH
    • 21. SAP SE
    • 22. Schneider Electric SE
    • 23. Siemens AG
    • 24. Software AG
    • 25. SparkCognition, Inc.
    • 26. Splunk Inc.
    • 27. TIBCO Software Inc. by Cloud Software Group, Inc.
    • 28. TWI Ltd.
    • 29. Uptake Technologies Inc.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦