½ÃÀ庸°í¼­
»óǰÄÚµå
1621355

¼¼°èÀÇ ½Ç¸®ÄÜ ±¤ÀüÀÚ Áõ¹è°ü ½ÃÀå : À¯Çüº°, Á¦°øº°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº° - ¿¹Ãø(2025-2030³â)

Silicon Photomultiplier Market by Type (Analog Silicon Photomultiplier, Digital Silicon Photomultiplier), Offering (Near Ultraviolet Silicon Photomultiplier, Red, Green & Blue Silicon Photomultiplier), Application, End User - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 191 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

½Ç¸®ÄÜ ±¤ÀüÀÚ Áõ¹è°ü ½ÃÀåÀº 2023³â¿¡ 2¾ï 1,660¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2024³â¿¡´Â 2¾ï 3,165¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, CAGR 7.34%·Î ¼ºÀåÇÒ Àü¸ÁÀ̰í, 2030³â¿¡´Â 3¾ï 5,581¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

½Ç¸®ÄÜ ±¤ÀüÀÚ Áõ¹è°ü ½ÃÀåÀº ÷´Ü Æ÷Åä´Ð½º¿¡¼­ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, ÀÇ·á À̹Ì¡, Â÷·® žÀç LiDAR ½Ã½ºÅÛ, °í¿¡³ÊÁö ¹°¸®ÇÐ ¿¬±¸¿¡¼­ Å« °¡´É¼ºÀ» Á¦°øÇÕ´Ï´Ù. ½Ç¸®ÄÜ ±¤ÀüÀÚ Áõ¹è°üÀº °í°ÔÀÎÀ¸·Î Àú·¹º§ÀÇ ºûÀ» °ËÃâÇÏ´Â ´É·Â¿¡ ÀÇÇØ Á¤ÀǵǸç, Á¤¹Ðµµ¿Í °¨µµ°¡ ¿ä±¸µÇ´Â ¿ëµµ¿¡¼­ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ½Ç¸®ÄÜ ±¤ÀüÀÚ Áõ¹è°üÀÇ Çʿ伺Àº ÄÄÆÑÆ®¼º, °ß°í¼º, ÀúÀü¾Ð µ¿ÀÛ µîÀÇ ÀÌÁ¡À¸·Î ±âÁ¸ÀÇ ±¤ÀüÀÚ Áõ¹è°ü(PMT)À» ´ëüÇÏ´Â °ÍÀ¸·Î °­Á¶µÇ°í ÀÖ½À´Ï´Ù. ÃÖÁ¾ ¿ëµµ ºÐ¾ß¿¡¼­´Â, ÀÇ·á¿ë À̹Ì¡À̳ª Â÷Àç ¿Ü¿¡, ¾çÀÚ ÄÄÇ»ÆÃÀ̳ª ¹æ»ç¼± °ËÃâÀ̶ó°í ÇÏ´Â »õ·Î¿î ¿ëµµ¿¡µµ ½Ç¸®ÄÜ ±¤ÀüÀÚ Áõ¹è°üÀº ºÒ°¡°áÇϰí, ±× ½ÃÀå ±Ô¸ð´Â È®´ëµÇ°í ÀÖ½À´Ï´Ù. ½ÃÀåÀ» °ßÀÎÇϰí ÀÖ´Â °ÍÀº, ¹ÙÀÌ¿À ¸ÞµðÄà À̹Ì¡¿¡ À־ Á¤¹ÐÇÔ¿¡ ´ëÇÑ ¿ä±¸ÀÇ °íÁ¶, ÀÚµ¿Â÷ ¾ÈÀü ±â¼úÀÇ Áøº¸, Çмú ±â°ü¿¡ À־ÀÇ ¿¬±¸ °³¹ß ÅõÀÚÀÇ Áõ°¡ÀÔ´Ï´Ù. ÁÖ¿ä ¼ºÀå ¿äÀÎÀ¸·Î´Â ¼º´É°ú ºñ¿ë ´ëºñ È¿°ú Çâ»óÀ¸·Î À̾îÁö´Â ±â¼úÀû Áøº¸¿Í ƯÁ¤ ¿ä±¸¿¡ ¸ÂÃç ¼Ö·ç¼ÇÀ» Ä¿½ºÅ͸¶ÀÌ¡Çϱâ À§ÇÑ Á¦Á¶»ç¿Í ÃÖÁ¾ »ç¿ëÀÚ °£ÀÇ Çù·Â °ü°è¸¦ µé ¼ö ÀÖ½À´Ï´Ù. »ê¾÷ ¿ÀÅä¸ÞÀ̼ÇÀ̳ª Áõ°­ Çö½Ç°ú °°Àº ºñÀüÅëÇü ½ÃÀå¿¡¼­ÀÇ ½Ç¸®ÄÜ ±¤ÀüÀÚ Áõ¹è°üÀÇ ¿ëµµ È®´ë°¡ ±âȸÀÔ´Ï´Ù. ±×·¯³ª, ³ôÀº Ãʱ⠺ñ¿ë ¹× º¹ÀâÇÑ ½Ã½ºÅÛ¿¡ ½Ç¸®ÄÜ ±¤ÀüÀÚ Áõ¹è°üÀ» ÅëÇÕÇÏ·Á¸é ÇÐÁ¦°£ÀÇ Àü¹® Áö½ÄÀÌ ÇÊ¿äÇÏ´Ù´Â µîÀÇ °úÁ¦¿¡ Á÷¸éÇØ ÀÖ¾î ½Ç¸®ÄÜ ±¤ÀüÀÚ Áõ¹è°üÀÇ Ã¤¿ëÀÌ Á¦Çѵǰí ÀÖ½À´Ï´Ù. °Ô´Ù°¡ °æÁ¦Àû Á¦¾àÀ̳ª ½Ç¸®ÄÜ ±¤ÀüÀÚ Áõ¹è°üÀÇ ÀÌÁ¡¿¡ ´ëÇÑ ÀνÄÀÌ ÇÑÁ¤ÀûÀ̱⠶§¹®¿¡, ƯÁ¤ Áö¿ª¿¡¼­ÀÇ Ã¤¿ëÀ²ÀÌ ³·Àº °Íµµ ½ÃÀåÀ» ¾ïÁ¦Çϰí ÀÖ½À´Ï´Ù. ½Ç¸®ÄÜ ±¤ÀüÀÚ Áõ¹è°üÀ» ´Ù¸¥ ¼¾¼­ ±â¼ú°ú ÅëÇÕÇÑ ÇÏÀ̺긮µå ¸ðµ¨À» ¸ð»öÇϸ鼭 °¨µµ¿Í ³ëÀÌÁî Àú°¨À» °­È­ÇÑ ½Ç¸®ÄÜ ±¤ÀüÀÚ Áõ¹è°üÀ» °³¹ßÇÏ´Â µ¥ ±â¼ú Çõ½ÅÀÇ ±âȸ°¡ Á¸ÀçÇÕ´Ï´Ù. ¼ÒÇüÈ­¿Í ¿¡³ÊÁö È¿À²¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ÁßÁ¡ÀÌ ¼ºÀåÀÇ ¿øµ¿·ÂÀÌ µÉ °¡´É¼ºÀÌ ³ô½À´Ï´Ù. ÀÌ·¯ÇÑ ±âȸ¸¦ Æ÷ÂøÇϱâ À§ÇØ ±â¾÷µéÀº Àü·«Àû Á¦ÈÞ¿Í ¿¬±¸°³¹ß ÅõÀÚ¿¡ ÁÖ·ÂÇÏ°í ±â¼úÀÇ Áøº¸¿¡ µÚóÁöÁö ¾Êµµ·Ï ÇØ¾ß ÇÕ´Ï´Ù. ½ÅÈï ±â¾÷À̳ª ±âÁ¸ ±â¾÷ÀÌ ÆÄ±«Àû ±â¼ú°ú Àü·«Àû ½ÃÀå Æ÷Áö¼Å´×À» ÅëÇØ ÀÓÆÑÆ®¸¦ ÁÙ °¡´É¼ºÀ» °­Á¶Çϰí ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ(2023³â) 2¾ï 1,660¸¸ ´Þ·¯
ÃßÁ¤³â(2024³â) 2¾ï 3,165¸¸ ´Þ·¯
¿¹Ãø³â(2030³â) 3¾ï 5,581¸¸ ´Þ·¯
CAGR(%) 7.34%

½ÃÀå ¿ªÇÐ : ºü¸£°Ô ÁøÈ­ÇÏ´Â ½Ç¸®ÄÜ ±¤ÀüÀÚ Áõ¹è°ü ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

½Ç¸®ÄÜ ±¤ÀüÀÚ Áõ¹è°ü ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ ÀÛ¿ë¿¡ ÀÇÇØ º¯¸ð¸¦ ÀÌ·ç°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐÀÇ ÁøÈ­¸¦ ÀÌÇØÇÏ´Â °ÍÀ¸·Î, ±â¾÷Àº ÃæºÐÇÑ Á¤º¸¿¡ ±Ù°ÅÇÑ ÅõÀÚ °áÁ¤, Àü·«Àû °áÁ¤ÀÇ Á¤¹ÐÈ­, ±×¸®°í »õ·Î¿î ºñÁî´Ï½º Âù½ºÀÇ È¹µæ¿¡ ´ëºñÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Æ÷°ýÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦ÀûÀÎ ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ °æ°¨ÇÒ ¼ö ÀÖ´Â µ¿½Ã¿¡, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ëÀ̳ª ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ¼¼°è ÀÚµ¿Â÷ÀÇ LiDAR ¿ëµµ ¼ö¿ä Áõ°¡
    • ÇコÄÉ¾î ºÐ¾ß¿¡¼­ ¿ëµµ È®´ë
    • ¾÷°è ÀüüÀÇ ÀÔÀÚ °ËÃâ ¼ö¿ä Áõ°¡
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ¿¬±¸°³¹ß ¹× Á¦Á¶ °øÁ¤°ú °ü·ÃµÈ ³ôÀº Ãʱ⠺ñ¿ë
  • ½ÃÀå ±âȸ
    • °í±Þ º¸¾È ½Ã½ºÅÛ¿¡ ´ëÇÑ ¿ëµµ È®´ë
    • AI³ª ML°úÀÇ ÅëÇÕ ±â¼úÀÇ Áøº¸
  • ½ÃÀåÀÇ °úÁ¦
    • ±â¼úÀûÀ¸·Î ¿Âµµ º¯È­³ª ³ëÀÌÁîÀÇ ¿µÇâÀ» ¹Þ±â ½±½À´Ï´Ù.

Porter's Five Forces : ½Ç¸®ÄÜ ±¤ÀüÀÚ Áõ ¹è°ü ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Porter's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ½Ç¸®ÄÜ ±¤ÀüÀÚ Áõ ¹è°ü ½ÃÀå °æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Porter's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÇ °æÀï·ÂÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ ã±â À§ÇÑ ¸íÈ®ÇÑ ±â¹ýÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ÆÇµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÀλçÀÌÆ®¸¦ ÅëÇØ ±â¾÷Àº ÀÚ»çÀÇ °­Á¡À» Ȱ¿ëÇϰí, ¾àÁ¡¿¡ ´ëóÇϸç, ÀáÀçÀûÀÎ °úÁ¦¸¦ ȸÇÇÇÒ ¼ö ÀÖÀ¸¸ç, º¸´Ù °­ÀÎÇÑ ½ÃÀå¿¡¼­ÀÇ Æ÷Áö¼Å´×À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : ½Ç¸®ÄÜ ±¤ÀüÀÚ Áõ¹è°ü ½ÃÀå¿¡¼­ ¿ÜºÎ·ÎºÎÅÍÀÇ ¿µÇâ ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº ½Ç¸®ÄÜ ±¤ÀüÀÚ Áõ ¹è°ü ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀÎ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¾ÕÀ¸·Î ¿¹»óµÇ´Â Àû±ØÀûÀÎ ÀÇ»ç °áÁ¤À» ÇÒ Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® : ½Ç¸®ÄÜ ±¤ÀüÀÚ Áõ¹è°ü ½ÃÀå °æÀï ±¸µµ ÆÄ¾Ç

½Ç¸®ÄÜ ±¤ÀüÀÚ Áõ¹è°ü ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¼öÀÍ, °í°´ ±â¹Ý, ¼ºÀå·ü µî ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀï Æ÷Áö¼Å´×À» ¹àÈú ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ½ÃÀå ÁýÁß, ´ÜÆíÈ­, ÅëÇÕ µ¿ÇâÀ» ¹àÇô³»°í º¥´õµéÀº °æÀïÀÌ Ä¡¿­ÇØÁö´Â °¡¿îµ¥ ÀÚ»çÀÇ ÁöÀ§¸¦ ³ôÀÌ´Â Àü·«Àû ÀÇ»ç °áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ Áö½ÄÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º : ½Ç¸®ÄÜ ±¤ÀüÀÚ Áõ ¹è°ü ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â ½Ç¸®ÄÜ ±¤ÀüÀÚ Áõ¹è°ü ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ ¸ÅÆ®¸¯½º¸¦ ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº °ø±Þ¾÷üÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±âÁØÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ¸Â´Â ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ³× °¡Áö »çºÐ¸éÀ» ÅëÇØ °ø±Þ¾÷ü¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ¼¼ºÐÈ­ÇÏ¿© Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê ¹× ¼Ö·ç¼ÇÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× Ãßõ : ½Ç¸®ÄÜ ±¤ÀüÀÚ Áõ¹è°ü ½ÃÀå¿¡¼­ ¼º°øÀ» À§ÇÑ ±æÀ» ±×¸®±â

½Ç¸®ÄÜ ±¤ÀüÀÚ Áõ¹è°ü ½ÃÀåÀÇ Àü·« ºÐ¼®Àº ¼¼°è ½ÃÀå¿¡¼­ÀÇ ÇÁ·¹Á𽺠°­È­¸¦ ¸ñÇ¥·Î ÇÏ´Â ±â¾÷¿¡ ÇʼöÀûÀÔ´Ï´Ù. ÁÖ¿ä ÀÚ¿ø, ´É·Â ¹× ¼º°ú ÁöÇ¥¸¦ °ËÅäÇÔÀ¸·Î½á ±â¾÷Àº ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í °³¼±À» À§ÇØ ³ë·ÂÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀ» ÅëÇØ °æÀï ±¸µµ¿¡¼­ °úÁ¦¸¦ ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö Àִ üÁ¦¸¦ ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀåÀÇ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ : ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·ÂÀ» Æò°¡ÇÕ´Ï´Ù.

2. ½ÃÀå °³Ã´µµ : ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡ÇÏ¸ç ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, ¿¬±¸°³¹ß Ȱµ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¾ò°í ÀÇ»ç°áÁ¤À» ÇÒ ¼ö ÀÖµµ·Ï Áß¿äÇÑ Áú¹®¿¡ ´ë´äÇϰí ÀÖ½À´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹® ¹× Áö¿ªÀº ¾îµðÀԴϱî?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ ¹× ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • ¼¼°è ÀÚµ¿Â÷ÀÇ LiDAR ¿ëµµ ¼ö¿ä Áõ°¡
      • ÇコÄÉ¾î ºÐ¾ß¿¡¼­ ¿ëµµ È®´ë
      • ¾÷°è Àüü¿¡¼­ ÀÔÀÚ °ËÃâ ¼ö¿ä Áõ°¡
    • ¾ïÁ¦¿äÀÎ
      • ¿¬±¸°³¹ß ¹× Á¦Á¶ °øÁ¤°ú °ü·ÃµÈ °í¾×ÀÇ Ãʱ⠺ñ¿ë
    • ±âȸ
      • °í±Þ º¸¾È ½Ã½ºÅÛ¿¡ ´ëÇÑ ¿ëµµ È®´ë
      • AI¿Í MLÀÇ ÅëÇÕÀ» À§ÇÑ ±â¼úÀÇ Áøº¸
    • °úÁ¦
      • ¿Âµµ º¯È­³ª ¼ÒÀ½ ¹®Á¦¿¡ ´ëÇÑ ±â¼úÀû Ãë¾à¼º
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
    • À¯Çüº° : µðÁöÅÐ ½Ç¸®ÄÜ ±¤ÀüÀÚ Áõ¹è°üÀÇ ÁÖ¿ä Çõ½Å ½ÃÀå Ž»ö
    • ¿ëµµº° : ÀÇ·á¿ë À̹ÌÁö, °í±Þ °ËÃâ±â ¹× LiDAR ±â¼ú¿¡¼­ ½Ç¸®ÄÜ ±¤ÀüÀÚ Áõ¹è°ü ¿ëµµÀÇ Á¾ÇÕÀûÀÎ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡Àû
    • °æÁ¦
    • »ç±³
    • ±â¼úÀû
    • ¹ý·ü»ó
    • ȯ°æ

Á¦6Àå ½Ç¸®ÄÜ ±¤ÀüÀÚ Áõ¹è°ü ½ÃÀå : À¯Çüº°

  • ¾Æ³¯·Î±× ½Ç¸®ÄÜ ±¤ÀüÀÚ Áõ¹è°ü
  • µðÁöÅÐ ½Ç¸®ÄÜ ±¤ÀüÀÚ Áõ¹è°ü

Á¦7Àå ½Ç¸®ÄÜ ±¤ÀüÀÚ Áõ¹è°ü ½ÃÀå : Á¦°øº°

  • ±ÙÀڿܼ± ½Ç¸®ÄÜ ±¤ÀüÀÚ Áõ¹è°ü
  • »¡°­, ÃÊ·Ï, ÆÄ¶û ½Ç¸®ÄÜ ±¤ÀüÀÚ Áõ¹è°ü

Á¦8Àå ½Ç¸®ÄÜ ±¤ÀüÀÚ Áõ¹è°ü ½ÃÀå : ¿ëµµº°

  • ¹ÙÀÌ¿ÀÆ÷Åä´Ð½º ¹× ÀÇ·á À̹ÌÁö
  • ÇÃ·Î¿ì »çÀÌÅä¸ÞÆ®¸®
  • °í¿¡³ÊÁö ¹°¸®ÇÐ
  • LiDAR ¹× 3D °Å¸® ÃøÁ¤
  • ¹æ»ç¼± °ËÃâ ¹× °¨½Ã

Á¦9Àå ½Ç¸®ÄÜ ±¤ÀüÀÚ Áõ¹è°ü ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • Ç×°ø¿ìÁÖ
  • ÀÚµ¿Â÷
  • °¡ÀüÁ¦Ç° ¹× Åë½Å
  • ÇコÄɾî
  • ¼®À¯ ¹× °¡½º

Á¦10Àå ¾Æ¸Þ¸®Ä«ÀÇ ½Ç¸®ÄÜ ±¤ÀüÀÚ Áõ¹è°ü ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦11Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ½Ç¸®ÄÜ ±¤ÀüÀÚ Áõ¹è°ü ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦12Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ½Ç¸®ÄÜ ±¤ÀüÀÚ Áõ¹è°ü ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦13Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®(2023³â)
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º(2023³â)
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
    • Hamamatsu Photonics, NKT Æ÷Åä´Ð½º Àμö ¿Ï·á
    • Kromek»ç, Áß¿äÇÑ ÀÎÇÁ¶ó º¸È£¸¦ À§ÇÑ °­È­ ÇÁ·Îºê¸¦ žÀçÇÑ Â÷¼¼´ë RayMon °ËÃ⠽ýºÅÛ ¹ß¸Å
  • Àü·« ºÐ¼® ¹× Á¦¾È

±â¾÷ ¸ñ·Ï

  • Advansid Srl by. Cefla sc
  • Berkeley Nucleonics Corporation
  • Broadcom Inc.
  • CAEN SpA
  • Compagnie de Saint-Gobain SA
  • Cremat Inc.
  • ET Enterprises, Ltd.
  • Excelitas Technologies Corp.
  • First Sensor AG
  • Hamamatsu Photonics KK
  • John Caunt Scientific Ltd.
  • KETEK GmbH
  • Onsemi by Semiconductor Components Industries, LLC
  • Photonics Spectra
  • PicoQuant GmbH
  • Radiation Monitoring Devices, Inc.
  • Thorlabs, Inc.
  • Toshiba Corporation
  • Vertilon Corporation
  • Zecotek Photonics Inc.
AJY 25.01.09

The Silicon Photomultiplier Market was valued at USD 216.60 million in 2023, expected to reach USD 231.65 million in 2024, and is projected to grow at a CAGR of 7.34%, to USD 355.81 million by 2030.

The Silicon Photomultiplier (SiPM) market plays a pivotal role in advanced photonics, offering immense scope in medical imaging, automotive LiDAR systems, and high-energy physics research. Defined by its capability to detect low levels of light with high gain, SiPMs are crucial in applications demanding precision and sensitivity. The necessity of SiPMs is underscored by their replacement of traditional photomultiplier tubes (PMTs) due to advantages like compactness, robustness, and low voltage operation. In terms of end-use sectors, besides medical imaging and automotive, SiPMs are integral to emerging applications in quantum computing and radiation detection, broadening their market reach. The market is driven by increasing demand for precision in biomedical imaging, advancements in automotive safety technologies, and rising investments in research and development in academic institutions. Key growth factors include technological advancements leading to improved performance and cost-effectiveness, alongside collaborations between manufacturers and end-users to customize solutions for specific needs. Opportunities lie in expanding the application of SiPMs in non-traditional markets like industrial automation and augmented reality. However, market growth faces challenges such as high initial costs and the necessity for interdisciplinary expertise to integrate SiPMs into complex systems, limiting their adoption. Moreover, the market is restrained by the slow adoption rate in certain regions due to economic constraints and limited awareness of SiPM benefits. Innovation opportunities exist in developing SiPMs with enhanced sensitivity and noise reduction, while exploring hybrid models integrating SiPMs with other sensor technologies. Continued emphasis on miniaturization and energy efficiency will likely drive further growth. To capture these opportunities, businesses must focus on strategic collaborations and investments in R&D to keep pace with technological advancements. The market remains moderately consolidated, with a nature that favors innovation-led growth, highlighting the potential for startups and established players to impact through disruptive technologies and strategic market positioning.

KEY MARKET STATISTICS
Base Year [2023] USD 216.60 million
Estimated Year [2024] USD 231.65 million
Forecast Year [2030] USD 355.81 million
CAGR (%) 7.34%

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Silicon Photomultiplier Market

The Silicon Photomultiplier Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Increasing demand for LiDAR applications in automobiles across the globe
    • Extending applications in the healthcare sector
    • Rising demand of particle detection across industries
  • Market Restraints
    • High upfront costs associated with research and development and manufacturing process
  • Market Opportunities
    • Expanding applications in sophisticated security systems
    • Technological advancements for integration with AI and ML
  • Market Challenges
    • Technical susceptibility to temperature variations and noise issues

Porter's Five Forces: A Strategic Tool for Navigating the Silicon Photomultiplier Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Silicon Photomultiplier Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Silicon Photomultiplier Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Silicon Photomultiplier Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Silicon Photomultiplier Market

A detailed market share analysis in the Silicon Photomultiplier Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Silicon Photomultiplier Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Silicon Photomultiplier Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Silicon Photomultiplier Market

A strategic analysis of the Silicon Photomultiplier Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Silicon Photomultiplier Market, highlighting leading vendors and their innovative profiles. These include Advansid S.r.l. by. Cefla s.c., Berkeley Nucleonics Corporation, Broadcom Inc., CAEN SpA, Compagnie de Saint-Gobain S.A., Cremat Inc., ET Enterprises, Ltd., Excelitas Technologies Corp., First Sensor AG, Hamamatsu Photonics K.K., John Caunt Scientific Ltd., KETEK GmbH, Onsemi by Semiconductor Components Industries, LLC, Photonics Spectra, PicoQuant GmbH, Radiation Monitoring Devices, Inc., Thorlabs, Inc., Toshiba Corporation, Vertilon Corporation, and Zecotek Photonics Inc..

Market Segmentation & Coverage

This research report categorizes the Silicon Photomultiplier Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Type, market is studied across Analog Silicon Photomultiplier and Digital Silicon Photomultiplier.
  • Based on Offering, market is studied across Near Ultraviolet Silicon Photomultiplier and Red, Green & Blue Silicon Photomultiplier.
  • Based on Application, market is studied across Bio Photonics & Medical Imaging, Flow Cytometry, High Energy Physics, Lidar & 3D Ranging, and Radiation Detection & Monitoring.
  • Based on End User, market is studied across Aerospace, Automotive, Consumer Electronics & Telecommunication, Healthcare, and Oil & Gas.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Increasing demand for LiDAR applications in automobiles across the globe
      • 5.1.1.2. Extending applications in the healthcare sector
      • 5.1.1.3. Rising demand of particle detection across industries
    • 5.1.2. Restraints
      • 5.1.2.1. High upfront costs associated with research and development and manufacturing process
    • 5.1.3. Opportunities
      • 5.1.3.1. Expanding applications in sophisticated security systems
      • 5.1.3.2. Technological advancements for integration with AI and ML
    • 5.1.4. Challenges
      • 5.1.4.1. Technical susceptibility to temperature variations and noise issues
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Type: Exploring digital silicon photomultiplier market for key innovations
    • 5.2.2. Application: Comprehensive analysis of silicon photomultiplier applications in medical imaging, advanced detectors, and Lidar technology
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Silicon Photomultiplier Market, by Type

  • 6.1. Introduction
  • 6.2. Analog Silicon Photomultiplier
  • 6.3. Digital Silicon Photomultiplier

7. Silicon Photomultiplier Market, by Offering

  • 7.1. Introduction
  • 7.2. Near Ultraviolet Silicon Photomultiplier
  • 7.3. Red, Green & Blue Silicon Photomultiplier

8. Silicon Photomultiplier Market, by Application

  • 8.1. Introduction
  • 8.2. Bio Photonics & Medical Imaging
  • 8.3. Flow Cytometry
  • 8.4. High Energy Physics
  • 8.5. Lidar & 3D Ranging
  • 8.6. Radiation Detection & Monitoring

9. Silicon Photomultiplier Market, by End User

  • 9.1. Introduction
  • 9.2. Aerospace
  • 9.3. Automotive
  • 9.4. Consumer Electronics & Telecommunication
  • 9.5. Healthcare
  • 9.6. Oil & Gas

10. Americas Silicon Photomultiplier Market

  • 10.1. Introduction
  • 10.2. Argentina
  • 10.3. Brazil
  • 10.4. Canada
  • 10.5. Mexico
  • 10.6. United States

11. Asia-Pacific Silicon Photomultiplier Market

  • 11.1. Introduction
  • 11.2. Australia
  • 11.3. China
  • 11.4. India
  • 11.5. Indonesia
  • 11.6. Japan
  • 11.7. Malaysia
  • 11.8. Philippines
  • 11.9. Singapore
  • 11.10. South Korea
  • 11.11. Taiwan
  • 11.12. Thailand
  • 11.13. Vietnam

12. Europe, Middle East & Africa Silicon Photomultiplier Market

  • 12.1. Introduction
  • 12.2. Denmark
  • 12.3. Egypt
  • 12.4. Finland
  • 12.5. France
  • 12.6. Germany
  • 12.7. Israel
  • 12.8. Italy
  • 12.9. Netherlands
  • 12.10. Nigeria
  • 12.11. Norway
  • 12.12. Poland
  • 12.13. Qatar
  • 12.14. Russia
  • 12.15. Saudi Arabia
  • 12.16. South Africa
  • 12.17. Spain
  • 12.18. Sweden
  • 12.19. Switzerland
  • 12.20. Turkey
  • 12.21. United Arab Emirates
  • 12.22. United Kingdom

13. Competitive Landscape

  • 13.1. Market Share Analysis, 2023
  • 13.2. FPNV Positioning Matrix, 2023
  • 13.3. Competitive Scenario Analysis
    • 13.3.1. Hamamatsu Photonics completes acquisition of NKT Photonics
    • 13.3.2. Kromek launches next-generation RayMon detection system with enhanced probes for critical infrastructure protection
  • 13.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Advansid S.r.l. by. Cefla s.c.
  • 2. Berkeley Nucleonics Corporation
  • 3. Broadcom Inc.
  • 4. CAEN SpA
  • 5. Compagnie de Saint-Gobain S.A.
  • 6. Cremat Inc.
  • 7. ET Enterprises, Ltd.
  • 8. Excelitas Technologies Corp.
  • 9. First Sensor AG
  • 10. Hamamatsu Photonics K.K.
  • 11. John Caunt Scientific Ltd.
  • 12. KETEK GmbH
  • 13. Onsemi by Semiconductor Components Industries, LLC
  • 14. Photonics Spectra
  • 15. PicoQuant GmbH
  • 16. Radiation Monitoring Devices, Inc.
  • 17. Thorlabs, Inc.
  • 18. Toshiba Corporation
  • 19. Vertilon Corporation
  • 20. Zecotek Photonics Inc.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦