½ÃÀ庸°í¼­
»óǰÄÚµå
1621389

¼¼°èÀÇ Á¶¸í¿ë ½º¸¶Æ® Àç½Ç°¨Áö ¼¾¼­ ½ÃÀå : ¼¾¼­ À¯Çüº°, µ¿ÀÛº°, ¿ëµµº°-¿¹Ãø(2025-2030³â)

Smart Occupancy Sensors in Lighting Applications Market by Sensor Type (Dual-technology Sensors, Microwave Sensors, Passive Infrared (PIR) Sensors), Operation (Indoor Operation, Outdoor Operation), Application - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 188 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Á¶¸í¿ë ½º¸¶Æ® Àç½Ç°¨Áö ¼¾¼­ ½ÃÀåÀº 2023³â¿¡ 12¾ï 7,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2024³â¿¡´Â 13¾ï 7,000¸¸ ´Þ·¯·Î ÃßÁ¤µÇ¸ç, CAGR 7.85%·Î ¼ºÀåÇÒ Àü¸ÁÀ̰í, 2030³â¿¡´Â 21¾ï 6,000¸¸ ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Á¶¸í¿ë ½º¸¶Æ® Àç½Ç°¨Áö ¼¾¼­´Â »ç¶÷ÀÇ Á¸À縦 °¨ÁöÇÏ°í ±×¿¡ µû¶ó Á¶¸í ½Ã½ºÅÛÀ» Á¦¾îÇÏ¿© ¿¡³ÊÁö ¼Òºñ¸¦ ÃÖÀûÈ­ÇÏ°í »ç¿ëÀÚ °æÇèÀ» Çâ»ó½ÃŰ´Â ÀåÄ¡ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¼¾¼­ÀÇ Çʿ伺Àº ¿¡³ÊÁö ºñ¿ë »ó½Â°ú ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦·Î ÀÎÇØ ÁÖÅðú »ó¾÷ °ø°£ ¸ðµÎ¿¡¼­ ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. ½º¸¶Æ® Á¡À¯ ¼¾¼­ÀÇ ¿ëµµ´Â ¿ÀÇǽº ºôµùÀ̳ª ÁÖÅÿ¡¼­ »ê¾÷ ½Ã¼³À̳ª °ø°ø °ø°£±îÁö Æø³Ð°Ô, ½Ç½Ã°£ Á¡À¯ µ¥ÀÌÅ͸¦ ±â¹ÝÀ¸·Î Á¶¸í ½Ã½ºÅÛÀ» ÀÚµ¿ Á¦¾îÇÒ ¼ö ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ ¿¡³ÊÁö È¿À² Çâ»ó, ¿î¿µ ºñ¿ë Àý°¨, Áö¼Ó °¡´É¼º ¸ñÇ¥ ´Þ¼º¿¡ ±â¿©ÇÕ´Ï´Ù. ÃÖÁ¾ ¿ëµµÀÇ ¹üÀ§¿¡´Â ÁÖ·Î ±â¾÷ÀÇ ¿ÀÇǽº, ÁÖÅÃ, È£½ºÇÇÅ»¸®Æ¼, ÇコÄɾî, ¼Ò¸Å µîÀÇ ºÐ¾ß°¡ Æ÷ÇÔµÇ¾î ¿¡³ÊÁö ¼Òºñ¿Í ¿î¿ë °æºñ¸¦ »è°¨Çϱâ À§ÇÑ Áö¼ÓÀûÀÎ ´ëó°¡ ½ÃÀåÀÇ ¼ö¿ä¸¦ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ(2023³â) 12¾ï 7,000¸¸ ´Þ·¯
¿¹Ãø³â(2024³â) 13¾ï 7,000¸¸ ´Þ·¯
¿¹Ãø³â(2030³â) 21¾ï 6,000¸¸ ´Þ·¯
CAGR(%) 7.85%

½ÃÀå ¼ºÀåÀº ¼¾¼­ ±â¼úÀÇ ¹ßÀü, ¿¡³ÊÁö Àý¾à ÀÇ½Ä Áõ°¡, ½º¸¶Æ® ºôµù ³ë·ÂÀ» ÃßÁøÇÏ´Â Á¤ºÎ Áö¿ø Á¤Ã¥ µîÀÇ ¿äÀο¡ ¿µÇâÀ» ¹Þ½À´Ï´Ù. IoT ¹× AI¿ÍÀÇ ÅëÇÕÀ» Æ÷ÇÔÇÑ ±â¼ú Çõ½ÅÀº °ÅÁÖ ¼¾¼­ÀÇ ±â´É¼º°ú ½Å·Ú¼ºÀ» ³ô¿© ½ÃÀå ±â¾÷¿¡°Ô »õ·Î¿î ±âȸ¸¦ âÃâÇÕ´Ï´Ù. ±Þ¼ºÀåÇÏ´Â ½º¸¶Æ® Ȩ ½ÃÀåÀ̳ª ±âÁ¸ »ó¾÷ ÀÎÇÁ¶óÀÇ ½º¸¶Æ® ¼¾¼­¿¡ ÀÇÇÑ °³¼ö¿¡´Â ÀáÀçÀûÀÎ ºñÁî´Ï½º ±âȸ°¡ Á¸ÀçÇÕ´Ï´Ù. ±â¾÷ÀÌ ÀÌ·¯ÇÑ ±âȸ¸¦ Æ÷ÂøÇϱâ À§Çؼ­´Â ¼¾¼­ÀÇ Á¤È®µµ¸¦ Çâ»ó½ÃŰ°í ºñ¿ë ´ëºñ È¿°ú°¡ ³ôÀº ¼Ö·ç¼ÇÀ» °³¹ßÇϱâ À§ÇÑ ¿¬±¸°³¹ß¿¡ ÅõÀÚÇÏ´Â °ÍÀÌ ±ÇÀåµË´Ï´Ù. ¶Ç, Àü·«Àû ÆÄÆ®³Ê½ÊÀ̳ª Çù¾÷À» ½Ç½ÃÇÏ´Â °ÍÀ¸·Î, Àü¹® Áö½ÄÀ̳ª ÀÚ¿øÀ» °øÀ¯ÇØ, ½ÃÀå È®´ë¸¦ ÃËÁøÇÒ ¼ö ÀÖ½À´Ï´Ù.

±×·¯³ª ³ôÀº Ãʱ⠵µÀÔ ºñ¿ë, ±â¼úÀû º¹À⼺, µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹× º¸¾È¿¡ ´ëÇÑ ¿ì·Á¿Í °°Àº °úÁ¦°¡ ½ÃÀåÀÇ ¼ºÀåÀ» ¸·°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ º¸´Ù Àú·ÅÇÑ ±âÁ¸ Á¶¸í ¼Ö·ç¼ÇÀÇ Á¸Àçµµ ¾ïÁ¦·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¦¾àÀ» ±Øº¹Çϱâ À§ÇØ ±â¾÷Àº ÃÖÁ¾ »ç¿ëÀÚ¿¡°Ô ½º¸¶Æ® Àç½Ç°¨Áö ¼¾¼­ÀÇ Àå±âÀûÀÎ ºñ¿ë ÀÌÁ¡°ú Áö¼Ó °¡´É¼ºÀÇ ¿ìÀ§¼ºÀ» °è¸ùÇÏ´Â µ¥ ÁÖ·ÂÇØ¾ß ÇÕ´Ï´Ù. º¸´Ù »ç¿ëÀÚ Ä£È­ÀûÀÌ°í ¾ÈÀüÇÑ ½Ã½ºÅÛÀ» ¸¸µé±â À§ÇÑ ±â¼ú Çõ½ÅÀº ÇʼöÀûÀÔ´Ï´Ù. Àúºñ¿ë ¼¾¼­ Àç·á ¿¬±¸¿Í ±âÁ¸ ÀÎÇÁ¶ó¿ÍÀÇ ¿øÈ°ÇÑ »óÈ£ ¿î¿ë¼ºÀ» Á¦°øÇÏ´Â ÅëÇÕ ¼Ö·ç¼Ç °³¹ßÀº äÅÃÀ» ÃËÁøÇÒ ¼ö ÀÖ½À´Ï´Ù. ½ÃÀåÀº ¿ªµ¿ÀûÀÌ°í ±Þ¼ÓÇÑ ±â¼ú Áøº¸¿Í ¼ÒºñÀÚ ¿ä±¸ÀÇ ÁøÈ­¸¦ Ư¡À¸·Î Çϰí ÀÖ¾î °æÀï ¿ìÀ§¸¦ À¯ÁöÇϱâ À§Çؼ­´Â Áö¼ÓÀûÀÎ ±â¼ú Çõ½Å°ú ÀûÀÀÀÌ ÇÊ¿äÇÕ´Ï´Ù.

½ÃÀå ¿ªÇÐ : ºü¸£°Ô ÁøÈ­ÇÏ´Â Á¶¸í¿ë ½º¸¶Æ® Àç½Ç°¨Áö ¼¾¼­ ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

Á¶¸í¿ë ½º¸¶Æ® Àç½Ç°¨Áö ¼¾¼­ ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ ÀÛ¿ë¿¡ ÀÇÇØ º¯¸ð¸¦ ÀÌ·ç°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐÀÇ ÁøÈ­¸¦ ÀÌÇØÇÔÀ¸·Î½á ±â¾÷Àº ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÅõÀÚ°áÁ¤, Àü·«Àû °áÁ¤ Á¤¹ÐÈ­, »õ·Î¿î ºñÁî´Ï½º ±âȸ ȹµæ¿¡ ´ëºñÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ °æ°¨ÇÒ ¼ö ÀÖÀ» »Ó¸¸ ¾Æ´Ï¶ó ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë ¶Ç´Â ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • Á¶¸í ¿ëµµÀÇ ¿¡³ÊÁö È¿À²À» ÃËÁøÇÏ´Â Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºê
    • ADAS ¹× Àü±âÀÚµ¿Â÷ÀÇ Á¶¸í °ü¸®¿¡¼­ Àç½Ç°¨Áö ¼¾¼­ÀÇ »ç¿ë
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ´Ù¸¥ Á¶¸í Á¦¾î ½Ã½ºÅÛ°ú ·¹°Å½Ã ÀÎÇÁ¶ó °£ÀÇ È£È¯¼º ¹®Á¦
  • ½ÃÀå ±âȸ
    • Á¶¸í¿ë Àç½Ç°¨Áö ¼¾¼­ÀÇ ¸ðµ¨°ú ¼³°èÀÇ Áøº¸
    • ½º¸¶Æ® ºôµù ¹× ÁÖÅà °Ç¼³ ÅõÀÚ Áõ°¡
  • ½ÃÀåÀÇ °úÁ¦
    • Àç½Ç°¨Áö ¼¾¼­ÀÇ ¿À°ËÁö³ª ºÎÁ¤È®¼º¿¡ ¼ö¹ÝÇÏ´Â ÇѰè

Porter's Five Forces : Á¶¸í¿ë ½º¸¶Æ® Àç½Ç°¨Áö ¼¾¼­ ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Porter's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ½ÃÀå »óȲÀÇ °æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Porter's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÇ °æÀï·ÂÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ ã±â À§ÇÑ ¸íÈ®ÇÑ ±â¹ýÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ÆÇµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÀλçÀÌÆ®¸¦ ÅëÇØ ±â¾÷Àº ÀÚ»çÀÇ °­Á¡À» Ȱ¿ëÇϰí, ¾àÁ¡¿¡ ´ëóÇϸç, ÀáÀçÀûÀÎ °úÁ¦¸¦ ȸÇÇÇÒ ¼ö ÀÖÀ¸¸ç, º¸´Ù °­ÀÎÇÑ ½ÃÀå¿¡¼­ÀÇ Æ÷Áö¼Å´×À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : Á¶¸í¿ë ½º¸¶Æ® Àç½Ç°¨Áö ¼¾¼­ ½ÃÀå¿¡¼­ ¿ÜºÎ·ÎºÎÅÍÀÇ ¿µÇâ ÆÄ¾Ç

¿ÜºÎ °Å½ÃÀû ȯ°æ ¿äÀÎÀº Á¶¸í¿ë ½º¸¶Æ® Àç½Ç°¨Áö ¼¾¼­ ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇϴµ¥ À־ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀÎÀÇ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ±âÈ£, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¾ÕÀ» ³»´Ùº» Àû±ØÀûÀÎ ÀÇ»ç°áÁ¤À» ÇÒ Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® : Á¶¸í¿ë ½º¸¶Æ® Àç½Ç°¨Áö ¼¾¼­ ½ÃÀå¿¡¼­°æÀï ±¸µµ ÆÄ¾Ç

Á¶¸í¿ë ½º¸¶Æ® Àç½Ç°¨Áö ¼¾¼­ ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¼öÀÍ, °í°´ ±â¹Ý, ¼ºÀå·ü µîÀÇ ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÔÀ¸·Î½á °æÀï»óÀÇ Æ÷Áö¼Å´×À» ¹àÈú ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®¿¡ ÀÇÇØ ½ÃÀåÀÇ ÁýÁß, ´ÜÆíÈ­, ÅëÇÕÀÇ µ¿ÇâÀÌ ¹àÇôÁ® º¥´õ´Â °æÀïÀÌ °ÝÈ­µÇ´Â °¡¿îµ¥ ÀÚ»çÀÇ ÁöÀ§¸¦ ³ôÀÌ´Â Àü·«Àû ÀÇ»ç°áÁ¤À» ½Ç½ÃÇϱâ À§ÇØ ÇÊ¿äÇÑ Áö°ßÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º : Á¶¸í¿ë ½º¸¶Æ® Àç½Ç°¨Áö ¼¾¼­ ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â Á¶¸í¿ë ½º¸¶Æ® Àç½Ç°¨Áö ¼¾¼­ ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ ¸ÅÆ®¸¯½º¸¦ ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº º¥´õÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ¹ÙÅÁÀ¸·Î Æò°¡ÇÔÀ¸·Î½á ¸ñÇ¥¿¡ µû¸¥ ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç°áÁ¤À» ÇÒ ¼ö ÀÖ½À´Ï´Ù. 4°³ÀÇ »çºÐ¸éÀ» ÅëÇØ º¥´õ¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ¼¼±×¸ÕƮȭÇϰí, Àü·« ¸ñÇ¥¿¡ ÃÖÀûÀÎ ÆÄÆ®³Ê³ª ¼Ö·ç¼ÇÀ» ƯÁ¤ÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× Ãßõ : Á¶¸í¿ë ½º¸¶Æ® Àç½Ç°¨Áö ¼¾¼­ ½ÃÀå¿¡¼­ ¼º°øÀ» À§ÇÑ ±æÀ» ±×¸®±â

Á¶¸í¿ë ½º¸¶Æ® Àç½Ç°¨Áö ¼¾¼­ ½ÃÀåÀÇ Àü·« ºÐ¼®Àº ¼¼°è ½ÃÀå¿¡¼­ÀÇ ÇÁ·¹Á𽺠°­È­¸¦ ¸ñÇ¥·Î ÇÏ´Â ±â¾÷¿¡ ÇʼöÀûÀÎ ¿ä¼ÒÀÔ´Ï´Ù. ÁÖ¿ä ÀÚ¿ø, ´É·Â ¹× ¼º°ú ÁöÇ¥¸¦ °ËÅäÇÔÀ¸·Î½á ±â¾÷Àº ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í °³¼±À» À§ÇØ ³ë·ÂÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀ» ÅëÇØ °æÀï ±¸µµ¿¡¼­ °úÁ¦¸¦ ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö Àִ üÁ¦¸¦ ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀåÀÇ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ : ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·ÂÀ» Æò°¡ÇÕ´Ï´Ù.

2. ½ÃÀå °³Ã´µµ : ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡ÇÏ¸ç ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, ¿¬±¸°³¹ß Ȱµ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¾ò°í ÀÇ»ç°áÁ¤À» ÇÒ ¼ö ÀÖµµ·Ï Áß¿äÇÑ Áú¹®¿¡ ´ë´äÇϰí ÀÖ½À´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð ¹× ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹® ¹× Áö¿ªÀº ¾îµðÀԴϱî?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ ¹× ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À² ¹× °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ ¹× ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • Á¶¸í ¿ëµµ¿¡¼­ ¿¡³ÊÁö È¿À²À» ÃËÁøÇÏ´Â Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºê
      • ADAS ¹× Àü±âÀÚµ¿Â÷ÀÇ Á¶¸í °ü¸®¿¡¼­ Àç½Ç°¨Áö ¼¾¼­ÀÇ »ç¿ë
    • ¾ïÁ¦¿äÀÎ
      • ´Ù¾çÇÑ Á¶¸í Á¦¾î ½Ã½ºÅÛ°ú ±âÁ¸ ÀÎÇÁ¶ó °£ÀÇ È£È¯¼º ¹®Á¦
    • ±âȸ
      • Á¶¸í¿ë Àΰ¨ ¼¾¼­ÀÇ ¸ðµ¨°ú ¼³°èÀÇ Áøº¸
      • ½º¸¶Æ® ºôµù ¹× ½º¸¶Æ® ÁÖÅà °Ç¼³ ÅõÀÚ Áõ°¡
    • °úÁ¦
      • Àç½Ç°¨Áö ¼¾¼­ÀÇ ¿À°ËÁö¿Í ºÎÁ¤È®¼º¿¡ °ü·ÃµÈ Á¦ÇÑ
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
    • ¼¾¼­ À¯Çüº° : µà¾ó Å×Å©³î·ÎÁö ¼¾¼­ÀÇ ½Å·Ú¼º°ú Á¤¹Ðµµ Çâ»ó
    • ¿î¿µº° : ½Ç³» Àç½Ç°¨Áö ¼¾¼­ÀÇ Àú·ÅÇÑ °¡°Ý°ú °£´ÜÇÑ ¼³Ä¡ ±â´É
    • ¿ëµµº° : Àç½Ç°¨Áö ¼¾¼­¸¦ ÅëÇÕÇÑ °Ç¹° Á¶¸íÀ¸·Î, ¿¡³ÊÁö Àý¾à°ú °ÅÁÖÀÚÀÇ ÄèÀû¼ºÀÇ Çâ»ó È®ÀÎ
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡Àû
    • °æÁ¦
    • »ç±³
    • ±â¼úÀû
    • ¹ý·ü»ó
    • ȯ°æ

Á¦6Àå Á¶¸í¿ë ½º¸¶Æ® Àç½Ç°¨Áö ¼¾¼­ ½ÃÀå : ¼¾¼­ À¯Çüº°

  • µà¾ó Å×Å©³î·ÎÁö ¼¾¼­
  • ¸¶ÀÌÅ©·ÎÆÄ ¼¾¼­
  • ÆÐ½Ãºê Àû¿Ü¼±(PIR) ¼¾¼­
  • ÃÊÀ½ÆÄ ¼¾¼­

Á¦7Àå Á¶¸í¿ë ½º¸¶Æ® Àç½Ç°¨Áö ¼¾¼­ ½ÃÀå : Á¶ÀÛº°

  • ½Ç³»Á¶ÀÛ
  • ¿Á¿Ü Á¶ÀÛ

Á¦8Àå Á¶¸í¿ë ½º¸¶Æ® Àç½Ç°¨Áö ¼¾¼­ ½ÃÀå : ¿ëµµº°

  • ÀÚµ¿Â÷¿ë Á¶¸í
  • °Ç¹° Á¶¸í

Á¦9Àå ¾Æ¸Þ¸®Ä«ÀÇ Á¶¸í¿ë ½º¸¶Æ® Àç½Ç°¨Áö ¼¾¼­ ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦10Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Á¶¸í¿ë ½º¸¶Æ® Àç½Ç°¨Áö ¼¾¼­ ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦11Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ Á¶¸í¿ë ½º¸¶Æ® Àç½Ç°¨Áö ¼¾¼­ ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦12Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®(2023³â)
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º(2023³â)
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
    • Signify, ´õ±Û¶ó½º ¶óÀÌÆÃ ÄÁÆ®·ÑÁîÀÇ ÁÖ¿ä ÀÚ»ê Àμö
    • Cosmicnode, Á¶¸í ¼¾¼­ ¾÷°è ¸®´õ¿Í Èï¹Ì·Î¿î ÆÄÆ®³Ê½Ê ¹ßÇ¥
    • Current, NX Dual Tech OMNI ¸ðµâ Ãâ½Ã
  • Àü·« ºÐ¼® ¹× Á¦¾È

±â¾÷ ¸ñ·Ï

  • AP Associates
  • Accu-Tech Lighting Solutions
  • Acuity Brands, Inc.
  • Alan Manufacturing, Inc.
  • Analog Devices, Inc.
  • Eaton Corporation PLC
  • Enlighted, Inc. by Siemens SE
  • General Electric Company
  • Honeywell International Inc.
  • Hubbell Incorporated
  • Johnson Controls International PLC
  • Legrand SA
  • Leviton Manufacturing Co., Inc.
  • Lutron Electronics Co., Inc.
  • Novelda AS
  • Paamvi Group
  • Panasonic Corporation
  • PointGrab Inc.
  • Schneider Electric SE
  • Signify NV by Koninklijke Philips NV
  • Starrbot Automations Pvt. Ltd.
  • TE Connectivity Ltd.
  • Telkonet, Inc.
AJY 25.01.02

The Smart Occupancy Sensors in Lighting Applications Market was valued at USD 1.27 billion in 2023, expected to reach USD 1.37 billion in 2024, and is projected to grow at a CAGR of 7.85%, to USD 2.16 billion by 2030.

Smart occupancy sensors in lighting applications are devices that detect human presence and control lighting systems accordingly to optimize energy consumption and enhance user experience. The necessity of these sensors arises from the increasing demand for energy-efficient solutions in both residential and commercial spaces due to rising energy costs and stringent environmental regulations. Applications of smart occupancy sensors range from office buildings and homes to industrial facilities and public spaces, allowing for automated control of lighting systems based on real-time occupancy data. This enhances energy efficiency, reduces operational costs, and contributes to sustainability goals. The end-use scope primarily includes sectors like corporate offices, residential buildings, hospitality, healthcare, and retail, where continuous efforts to reduce energy consumption and operational expenditures fuel the market demand.

KEY MARKET STATISTICS
Base Year [2023] USD 1.27 billion
Estimated Year [2024] USD 1.37 billion
Forecast Year [2030] USD 2.16 billion
CAGR (%) 7.85%

Market growth is influenced by factors such as advancements in sensor technologies, increasing awareness of energy conservation, and supportive government policies promoting smart building initiatives. Technological innovations, including integration with IoT and AI, enhance the functionality and reliability of occupancy sensors, creating new opportunities for market players. Potential opportunities exist in the burgeoning smart home market and retrofitting existing commercial infrastructures with smart sensors. For businesses to seize these opportunities, investing in research and development to improve sensor accuracy and develop cost-effective solutions is recommended. Implementing strategic partnerships and collaborations can also facilitate market expansion by leveraging shared expertise and resources.

However, market growth is challenged by factors such as high initial installation costs, technological complexities, and concerns regarding data privacy and security. The presence of less expensive, traditional lighting solutions also acts as a deterrent. To overcome these limitations, businesses should focus on educating end-users about the long-term cost benefits and sustainability advantages of smart occupancy sensors. Innovating to create more user-friendly and secure systems is vital. Researching into low-cost sensor materials and developing integrated solutions that offer seamless interoperability with existing infrastructures can drive adoption forward. The market is dynamic, characterized by rapid technological advancements and evolving consumer demands, necessitating continuous innovation and adaptation to maintain competitive advantage.

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Smart Occupancy Sensors in Lighting Applications Market

The Smart Occupancy Sensors in Lighting Applications Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Government initiatives promoting energy efficiency in lighting applications
    • Use of occupancy sensors in ADAS and electric vehicle lighting management
  • Market Restraints
    • Compatibility issues between different lighting control systems and legacy infrastructure
  • Market Opportunities
    • Advancements in models and designs of occupancy sensors for lights
    • Rising investments in constructing smart buildings and homes
  • Market Challenges
    • Limitations associated with false positives and inaccuracy of occupancy sensors

Porter's Five Forces: A Strategic Tool for Navigating the Smart Occupancy Sensors in Lighting Applications Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Smart Occupancy Sensors in Lighting Applications Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Smart Occupancy Sensors in Lighting Applications Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Smart Occupancy Sensors in Lighting Applications Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Smart Occupancy Sensors in Lighting Applications Market

A detailed market share analysis in the Smart Occupancy Sensors in Lighting Applications Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Smart Occupancy Sensors in Lighting Applications Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Smart Occupancy Sensors in Lighting Applications Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Smart Occupancy Sensors in Lighting Applications Market

A strategic analysis of the Smart Occupancy Sensors in Lighting Applications Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Smart Occupancy Sensors in Lighting Applications Market, highlighting leading vendors and their innovative profiles. These include A.P. Associates, Accu-Tech Lighting Solutions, Acuity Brands, Inc., Alan Manufacturing, Inc., Analog Devices, Inc., Eaton Corporation PLC, Enlighted, Inc. by Siemens SE, General Electric Company, Honeywell International Inc., Hubbell Incorporated, Johnson Controls International PLC, Legrand SA, Leviton Manufacturing Co., Inc., Lutron Electronics Co., Inc., Novelda AS, Paamvi Group, Panasonic Corporation, PointGrab Inc., Schneider Electric SE, Signify N.V. by Koninklijke Philips N.V., Starrbot Automations Pvt. Ltd., TE Connectivity Ltd., and Telkonet, Inc..

Market Segmentation & Coverage

This research report categorizes the Smart Occupancy Sensors in Lighting Applications Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Sensor Type, market is studied across Dual-technology Sensors, Microwave Sensors, Passive Infrared (PIR) Sensors, and Ultrasonic Sensors.
  • Based on Operation, market is studied across Indoor Operation and Outdoor Operation.
  • Based on Application, market is studied across Automotive Lightings and Building Lightings.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Government initiatives promoting energy efficiency in lighting applications
      • 5.1.1.2. Use of occupancy sensors in ADAS and electric vehicle lighting management
    • 5.1.2. Restraints
      • 5.1.2.1. Compatibility issues between different lighting control systems and legacy infrastructure
    • 5.1.3. Opportunities
      • 5.1.3.1. Advancements in models and designs of occupancy sensors for lights
      • 5.1.3.2. Rising investments in constructing smart buildings and homes
    • 5.1.4. Challenges
      • 5.1.4.1. Limitations associated with false positives and inaccuracy of occupancy sensors
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Sensor Type: Increased reliability and accuracy of dual technology sensors
    • 5.2.2. Operation: Affordability and easy installation capabilities of indoor occupancy sensors
    • 5.2.3. Application: Improved energy savings and occupant comfort observed in building lightings integrated with occupancy sensors
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Smart Occupancy Sensors in Lighting Applications Market, by Sensor Type

  • 6.1. Introduction
  • 6.2. Dual-technology Sensors
  • 6.3. Microwave Sensors
  • 6.4. Passive Infrared (PIR) Sensors
  • 6.5. Ultrasonic Sensors

7. Smart Occupancy Sensors in Lighting Applications Market, by Operation

  • 7.1. Introduction
  • 7.2. Indoor Operation
  • 7.3. Outdoor Operation

8. Smart Occupancy Sensors in Lighting Applications Market, by Application

  • 8.1. Introduction
  • 8.2. Automotive Lightings
  • 8.3. Building Lightings

9. Americas Smart Occupancy Sensors in Lighting Applications Market

  • 9.1. Introduction
  • 9.2. Argentina
  • 9.3. Brazil
  • 9.4. Canada
  • 9.5. Mexico
  • 9.6. United States

10. Asia-Pacific Smart Occupancy Sensors in Lighting Applications Market

  • 10.1. Introduction
  • 10.2. Australia
  • 10.3. China
  • 10.4. India
  • 10.5. Indonesia
  • 10.6. Japan
  • 10.7. Malaysia
  • 10.8. Philippines
  • 10.9. Singapore
  • 10.10. South Korea
  • 10.11. Taiwan
  • 10.12. Thailand
  • 10.13. Vietnam

11. Europe, Middle East & Africa Smart Occupancy Sensors in Lighting Applications Market

  • 11.1. Introduction
  • 11.2. Denmark
  • 11.3. Egypt
  • 11.4. Finland
  • 11.5. France
  • 11.6. Germany
  • 11.7. Israel
  • 11.8. Italy
  • 11.9. Netherlands
  • 11.10. Nigeria
  • 11.11. Norway
  • 11.12. Poland
  • 11.13. Qatar
  • 11.14. Russia
  • 11.15. Saudi Arabia
  • 11.16. South Africa
  • 11.17. Spain
  • 11.18. Sweden
  • 11.19. Switzerland
  • 11.20. Turkey
  • 11.21. United Arab Emirates
  • 11.22. United Kingdom

12. Competitive Landscape

  • 12.1. Market Share Analysis, 2023
  • 12.2. FPNV Positioning Matrix, 2023
  • 12.3. Competitive Scenario Analysis
    • 12.3.1. Signify Acquires Key Assets of Douglas Lighting Controls
    • 12.3.2. Cosmicnode Announces Exciting Partnership With Industry Leader In Lighting Sensors
    • 12.3.3. Current Launches NX Dual Tech OMNI Module
  • 12.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. A.P. Associates
  • 2. Accu-Tech Lighting Solutions
  • 3. Acuity Brands, Inc.
  • 4. Alan Manufacturing, Inc.
  • 5. Analog Devices, Inc.
  • 6. Eaton Corporation PLC
  • 7. Enlighted, Inc. by Siemens SE
  • 8. General Electric Company
  • 9. Honeywell International Inc.
  • 10. Hubbell Incorporated
  • 11. Johnson Controls International PLC
  • 12. Legrand SA
  • 13. Leviton Manufacturing Co., Inc.
  • 14. Lutron Electronics Co., Inc.
  • 15. Novelda AS
  • 16. Paamvi Group
  • 17. Panasonic Corporation
  • 18. PointGrab Inc.
  • 19. Schneider Electric SE
  • 20. Signify N.V. by Koninklijke Philips N.V.
  • 21. Starrbot Automations Pvt. Ltd.
  • 22. TE Connectivity Ltd.
  • 23. Telkonet, Inc.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦