½ÃÀ庸°í¼­
»óǰÄÚµå
1621510

¼¼°èÀÇ ¹®ÀÚÀ½¼ºº¯È¯ ½ÃÀå : ÄÄÆ÷³ÍÆ®, À¯Çü, ¾ð¾î, Àü°³ ¸ðµå, ¿ëµµ, ÃÖÁ¾ »ç¿ëÀÚº° ¿¹Ãø(2025-2030³â)

Text-to-Speech Market by Component (Services, Software or Solution), Type (Neural & Custom, Non-Neural), Language, Deployment Mode, Application, End-User - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 189 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

¹®ÀÚÀ½¼ºº¯È¯ ½ÃÀåÀÇ 2023³â ½ÃÀå ±Ô¸ð´Â 55¾ï 9,000¸¸ ´Þ·¯, 2024³â¿¡´Â 61¾ï 4,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, CAGR 9.92%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 108¾ï 3,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

Áö¿ø ±â¼ú¿¡ ÇʼöÀûÀÎ ¹®ÀÚÀ½¼ºº¯È¯(TTS) ½ÃÀåÀº ½Ã°¢ Àå¾ÖÀΰú ÇнÀ Àå¾ÖÀÎ Áö¿ø µîÀÇ Á¢±Ù¼º ¼Ö·ç¼ÇÀÇ Çʿ伺¿¡¼­ ±Þ°ÝÇÑ ¼ºÀåÀ» ÀÌ·ç°í ÀÖ½À´Ï´Ù. ¿£Áö´Ï¾î¸µ, ÀÚµ¿Â÷, ÀüÀÚ ÇнÀ, °¡ÀüÁ¦Ç° µîÀÇ ºÐ¾ß¿¡µµ ÆÛÁ® ÀÖ½À´Ï´Ù. TTS¸¦ ÅëÇÕÇÔ¿¡ µû¶ó ÃÖÁ¾ ¿ëµµÀÇ ¹üÀ§°¡ ³Ð¾îÁö°í ÀÖ½À´Ï´Ù. ½º¸¶Æ® µð¹ÙÀ̽ºÀÇ º¸±Þ°ú IoT ¿¡ÄڽýºÅÛÀÇ °ßÁ¶ÇÑ °³¹ßÀÌ ½ÃÀåÀ» ´õ¿í ¹Ð¾î Çâ»óµÈ ¾ð¾î ó¸®¿Í ´Ù¾çÇÑ ¾ð¾î¿Í ¹æ¾ðÀÇ Æ÷ÇÔÀº ¼¼°è ûÁßÀ» ¼ö¿ëÇϰí Áö¸®Àû ½ÃÀåÀ» È®ÀåÇÏ´Â À¯¸®ÇÑ ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. »ç¿ëÀÚ °æÇèÀÇ ±âȸ¸¦ Á¦°øÇÏ°í ½´ÆÛ °³ÀÎÈ­ÀÇ µ¿ÇâÀ» ÃËÁøÇÕ´Ï´Ù. ±×·¯³ª ½ÃÀå ¼ºÀåÀº ƯÈ÷ ÀΰøÁö´É ±³À°¿¡ ÇÊ¿äÇÑ µ¥ÀÌÅÍ ¼öÁý°ú °ü·ÃµÈ ÇÁ¶óÀ̹ö½Ã ¿ì·Á¿Í °°Àº °úÁ¦¿¡ Á÷¸éÇÕ´Ï´Ù. Ãʱ⠺ñ¿ëÀÌ ³ô°í ´Ù¾çÇÑ Ç÷§Æû¿¡ TTS ½Ã½ºÅÛÀ» ÅëÇÕÇÏ´Â °ÍÀÌ º¹ÀâÇϱ⠶§¹®¿¡ Áß¼Ò±â¾÷ÀÌ ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀ» äÅÃÇÏ´Â °ÍÀ» ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. VOIP ±â¼úÀÇ ¹ßÀü°ú Ŭ¶ó¿ìµå ±â¹Ý ¼­ºñ½º´Â ¿Ïº®ÇÑ ÅëÇÕ°ú ºñ¿ë Àý°¨À» °¡´ÉÇÏ°Ô ÇÏ´Â ÃÖ»óÀÇ Çõ½Å ºÐ¾ßÀÔ´Ï´Ù. °³ÀÎÈ­µÈ À½¼º ÇÁ·ÎÆÄÀϰú °¨Á¤ ÀνÄÀº »ç¿ëÀÚ »óÈ£ ÀÛ¿ëÀ» °³¼±ÇÏ´Â µ¥ ÁßÁ¡À» µÐ ÀáÀçÀûÀÎ ¿¬±¸ ¼ö´ÜÀÌ µÉ °ÍÀÔ´Ï´Ù. AI »ç¿ë °­·ÂÇÑ ±ÔÁ¦ ü°è°¡ Àֱ⠶§¹®¿¡ ÄÄÇöóÀ̾𽺠¿ä±¸ »çÇ×À» ½ÅÁßÇÏ°Ô ±Øº¹ÇؾßÇÕ´Ï´Ù. »óȲÀ» Àß ±Øº¹ÇÏ´Â °ÍÀÌ Áß¿äÇÕ´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ(2023) 55¾ï 9,000¸¸ ´Þ·¯
¿¹Ãø³â(2024) 61¾ï 4,000¸¸ ´Þ·¯
¿¹Ãø³â(2030) 108¾ï 3,000¸¸ ´Þ·¯
CAGR(%) 9.92%

½ÃÀå ¿ªÇÐ: ºü¸£°Ô ÁøÈ­ÇÏ´Â ¹®ÀÚÀ½¼ºº¯È¯ ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

¹®ÀÚÀ½¼ºº¯È¯ ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ ÀÛ¿ë¿¡ ÀÇÇØ º¯¸ð¸¦ ÀÌ·ç°í ÀÖ½À´Ï´Ù. ºñÁî´Ï½º ±âȸ¸¦ ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ °æ°¨ÇÒ ¼ö ÀÖÀ½°ú µ¿½Ã¿¡ ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë°ú ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ»º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • µðÁöÅÐ Çõ½Å°ú ÀüÀÚÅëÄ¡¸¦ ÃßÁøÇÏ´Â Á¤ºÎÀÇ ´ëó
    • Àå¾ÖÀÎ Áö¿øÀ» À§ÇÑ Áö¿ø ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
    • e·¯´×°ú ¿ø°Ý ±³À° Ç÷§ÆûÀÇ »ó½Â
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ¹®ÀÚÀ½¼ºº¯È¯ ±â¼ú°ú °ü·ÃµÈ ³ôÀº Ãʱ⠵µÀÔ ºñ¿ë°ú ¼º´É Á¦ÇÑ
  • ½ÃÀå ±âȸ
    • ÇコÄɾî¿Í ¿ø°ÝÀÇ·á¿¡ TTS ±â¼úÀÇ ÅëÇÕ
    • °³ÀÎÈ­¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í TTS ¼Ö·ç¼ÇÀÇ ´Ù±¹¾î ±â´É¿¡ ´ëÇÑ ¿ä±¸ Áõ°¡
  • ½ÃÀåÀÇ °úÁ¦
    • ¹®ÀÚÀ½¼ºº¯È¯ ¼Ö·ç¼Ç ¹× ¼ÒÇÁÆ®¿þ¾î °ü·Ã ÇÁ¶óÀ̹ö½Ã¿¡ ´ëÇÑ ¿ì·Á

Porter's Five Force : ¹®ÀÚÀ½¼ºº¯È¯ ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Porter's Five Force Framework´Â ¹®ÀÚÀ½¼ºº¯È¯ ½ÃÀå °æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÇÇÇÒ ¼ö ÀÖÀ¸¸ç ´õ °­ÀÎÇÑ ½ÃÀå¿¡¼­ Æ÷Áö¼Å´×À» º¸Àå ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : ¹®ÀÚÀ½¼ºº¯È¯ ½ÃÀå¿¡¼­ ¿ÜºÎ·ÎºÎÅÍÀÇ ¿µÇâ ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº ¹®ÀÚÀ½¼ºº¯È¯ ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ»ÇÕ´Ï´Ù. Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹ÃøÇÒ ¼ö ÀÖ´Â Àû±ØÀûÀÎ ÀÇ»ç °áÁ¤À» ÇÒ Áغñ°¡ µÇ¾ú½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® : ¹®ÀÚÀ½¼ºº¯È¯ ½ÃÀå¿¡¼­ °æÀï ±¸µµ ÆÄ¾Ç

¹®ÀÚÀ½¼ºº¯È¯ ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ º¥´õÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ºÐ¸íÈ÷ ÀÌ ºÐ¼®À» ÅëÇØ ½ÃÀå ÁýÁß, ´ÜÆíÈ­, ÅëÇÕ µ¿ÇâÀ» ¹àÇô³»°í º¥´õ´Â °æÀïÀÌ Ä¡¿­ÇØÁö´Â °¡¿îµ¥ ÀÚ½ÅÀÇ ÁöÀ§¸¦ ³ôÀÌ´Â Àü·«Àû ÀÇ»ç°áÁ¤À» Çϱâ À§ÇØ ÇÊ¿äÇÑ Áö°ßÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º : ¹®ÀÚÀ½¼ºº¯È¯ ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â ¹®ÀÚÀ½¼ºº¯È¯ ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ±âº» °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ³× °¡Áö »çºÐ¸éÀ» ÅëÇØ º¥´õ¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ºÐ·ùÇϰí Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê ¹× ¼Ö·ç¼ÇÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× Ãßõ : ¹®ÀÚÀ½¼ºº¯È¯ ½ÃÀå¿¡¼­ ¼º°øÀ» À§ÇÑ ±æÀ» ±×¸®±â

¹®ÀÚÀ½¼ºº¯È¯ ½ÃÀåÀÇ Àü·« ºÐ¼®Àº ¼¼°è ½ÃÀå¿¡¼­ÀÇ ÇÁ·¹Á𽺠°­È­¸¦ ¸ñÇ¥·Î ÇÏ´Â ±â¾÷¿¡ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ Á¢±Ù¹ýÀ» ÅëÇØ °æÀï ±¸µµ¿¡¼­ °úÁ¦¸¦ ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö Àִ üÁ¦¸¦ ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀåÀÇ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ: ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·Â Æò°¡.

2. ½ÃÀå °³Ã´µµ: ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡ÇÏ¸ç ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­: ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, R&D Ȱµ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¾ò°í ÀÇ»ç°áÁ¤À» ÇÒ ¼ö ÀÖµµ·Ï Áß¿äÇÑ Áú¹®¿¡ ´ë´äÇϰí ÀÖ½À´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹® ¹× Áö¿ªÀº ¾îµðÀԴϱî?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ¡¤Ã¶¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • µðÁöÅÐ Çõ½Å°ú ÀüÀÚÁ¤ºÎ¸¦ ÃßÁøÇÏ´Â Á¤ºÎÀÇ ´ëó
      • Àå¾ÖÀÎÀ» Áö¿øÇÏ´Â Áö¿ø ±â¼ú ¼ö¿ä Áõ°¡
      • e·¯´×°ú ¿ø°Ý ±³À° Ç÷§ÆûÀÇ »ó½Â
    • ¾ïÁ¦¿äÀÎ
      • ¹®ÀÚÀ½¼ºº¯È¯ ±â¼ú°ú °ü·ÃµÈ Ãʱ⠱¸Çö ºñ¿ëÀÇ ³ôÀÌ¿Í ¼º´É Á¦ÇÑ
    • ±âȸ
      • TTS ±â¼úÀÇ ÇコÄɾî¿Í ¿ø°Ý ÀÇ·á¿¡ÀÇ ÅëÇÕ
      • Çâ»óµÈ °³ÀÎÈ­ ¼ö¿ä Áõ°¡¿Í TTS ¼Ö·ç¼ÇÀÇ ´Ù±¹¾î ±â´É ¿ä±¸ Áõ°¡
    • °úÁ¦
      • ¹®ÀÚÀ½¼ºº¯È¯ ¼Ö·ç¼Ç ¹× ¼ÒÇÁÆ®¿þ¾î¿Í °ü·ÃµÈ ÇÁ¶óÀ̹ö½Ã¿¡ ´ëÇÑ ¿ì·Á
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
    • ÄÄÆ÷³ÍÆ®: ¼­ºñ½º ¹× ¼ÒÇÁÆ®¿þ¾î¸¦ ÅëÇÑ ¹®ÀÚÀ½¼ºº¯È¯(TTS) ¼Ö·ç¼ÇÀÇ ¼ºÀå ÃËÁø
    • ÀÀ¿ë: ¹®ÀÚÀ½¼ºº¯È¯ ±â¼úÀÇ ±³À°¿¡ÀÇ ÀÀ¿ë È®´ë
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡Àû
    • °æÁ¦
    • »ç±³
    • ±â¼úÀû
    • ¹ý·ü»ó
    • ȯ°æ

Á¦6Àå ¹®ÀÚÀ½¼ºº¯È¯ ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • ¼­ºñ½º
    • ÄÁ¼³ÆÃ
    • ±¸Çö ¹× ÅëÇÕ
    • Áö¿ø ¹× À¯Áö º¸¼ö
  • ¼ÒÇÁÆ®¿þ¾î ¶Ç´Â ¼Ö·ç¼Ç
    • ¿Àµð¿À Ãâ·Â ¼ÒÇÁÆ®¿þ¾î
    • ¹®ÀÚÀ½¼ºº¯È¯ ¼ÒÇÁÆ®¿þ¾î

Á¦7Àå ¹®ÀÚÀ½¼ºº¯È¯ ½ÃÀå : À¯Çüº°

  • ½Å°æ & ¸ÂÃã
  • ºñ½Å°æ°è

Á¦8Àå ¹®ÀÚÀ½¼ºº¯È¯ ½ÃÀå : ¾ð¾îº°

  • ¾Æ¶ø¾î
  • Áß±¹¾î
  • ¿µ¾î
  • Èùµð¾î
  • ½ºÆäÀξî

Á¦9Àå ¹®ÀÚÀ½¼ºº¯È¯ ½ÃÀå : Àü°³ ¸ðµåº°

  • Ŭ¶ó¿ìµå ±â¹Ý
  • ¿ÂÇÁ·¹¹Ì½º

Á¦10Àå ¹®ÀÚÀ½¼ºº¯È¯ ½ÃÀå : ¿ëµµº°

  • Àå¾ÖÀοë Á¢±Ù¼º µµ±¸
  • ÀÚµ¿Â÷
  • ÀºÇà/±ÝÀ¶¼­ºñ½º/º¸Çè(BFSI)
  • °¡Àü
  • ±³À°
  • ÇコÄɾî
  • IoT µð¹ÙÀ̽º
  • ¹Ìµð¾î ¹× ¿£ÅÍÅ×ÀÎ¸ÕÆ®
  • ÆÛ½º³Î ¾î½Ã½ºÅÏÆ®
  • ÃâÆÇ
  • ¼Ò¸Å¾÷ ¹× ÀüÀÚ»ó°Å·¡

Á¦11Àå ¹®ÀÚÀ½¼ºº¯È¯ ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • ±â¾÷
    • ´ë±â¾÷
    • Áß¼Ò±â¾÷
  • Á¤ºÎ ¹× °ø°ø ´Üü
  • °³ÀÎ »ç¿ëÀÚ

Á¦12Àå ¾Æ¸Þ¸®Ä«ÀÇ ¹®ÀÚÀ½¼ºº¯È¯ ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦13Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¹®ÀÚÀ½¼ºº¯È¯ ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦14Àå À¯·´¡¤Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ¹®ÀÚÀ½¼ºº¯È¯ ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦15Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼® 2023
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2023
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
    • ReadSpeaker¿Í Qualitus°¡ ILIAS Ç÷§Æû¿ë °í±Þ TTS Ç÷¯±×ÀÎÀ» Ãâ½ÃÇÏ¿© °ß°íÇÑ µ¥ÀÌÅÍ º¸¾È ±â´ÉÀ» °®Ãá 50°³ ¾ð¾îÀÇ 200°³ÀÇ À½¼ºÀ» Á¦°ø
    • MicrosoftÀÇ VALL-E 2´Â ¹®ÀÚÀ½¼ºº¯È¯À¸·Î Àΰ£°ú µ¿µîÀÇ ¼º´ÉÀ» ´Þ¼ºÇßÁö¸¸, ¾Ç¿ë ¿ì·Á ¶§¹®¿¡ ¹Ì¹ß¸Å
    • MicrosoftÀÇ VALL-E 2´Â À±¸®ÀûÀÎ ¿ì·Á¿Í ±³À°, ¿£ÅÍÅ×ÀÎ¸ÕÆ® ¹× °í°´ ¼­ºñ½º¿¡ ´ëÇÑ ÀáÀçÀû ÀÀ¿ëÀ» À§ÇØ ½ÅÁßÇÏ°Ô ¹èÆ÷Çϸ鼭 Àΰ£°ú °°Àº ÅØ½ºÆ® ¼Ò¸®¸¦ ³¾ ¼ö ÀÖ½À´Ï´Ù.
    • MicrosoftÀÇ VALL-E 2 ¹®ÀÚÀ½¼ºº¯È¯ AI´Â Àΰ£°ú °°Àº ´ëÈ­¸¦ ½ÇÇö, ¾Ç¿ë ¿ì·Á ¶§¹®¿¡ »ï°¡ÇØ, À±¸®ÀûÀÎ AI¿Í Àå·¡ÀÇ ¾÷°è ±ÔÁ¦¸¦ ÃßÁø
    • Smallest.ai´Â ÷´Ü ¹®ÀÚÀ½¼ºº¯È¯ ¸ðµ¨ÀÎ AWAAZ¸¦ Ãâ½ÃÇÏ¿© ³ôÀº MOS Æò°¡¿Í ´Ù±¹¾î ±â´ÉÀ¸·Î Àεµ ¾ð¾î¿¡ Çõ¸íÀ» ÀÏÀ¸Åµ´Ï´Ù.
    • ElevenLabs°¡ Çõ½ÅÀûÀÎ AI À½¼º ¼Ö·ç¼ÇÀ¸·Î 8,000¸¸ ´Þ·¯ÀÇ ÀÚ±Ý Á¶´Þ ¶ó¿îµå¸¦ ȹµæÇØ, Æò°¡¾×À» 11¾ï ´Þ·¯·Î Àλó
    • Meta°¡ ¹®ÀÚÀ½¼ºº¯È¯ »ý¼ºÇü AI ¸ðµ¨ Voicebox¸¦ µµÀÔ
  • Àü·« ºÐ¼®°ú Á¦¾È

±â¾÷ ¸ñ·Ï

  • Acapela Group by Tobii Dynavox AB
  • Amazon Web Services, Inc.
  • Baidu, Inc.
  • CereProc Ltd. by Capacity
  • Colossyan Inc.
  • Eleven Labs Inc.
  • Fliki by Nine Thirty-Five LLC
  • GL Communications Inc.
  • Google LLC by Alphabet, Inc.
  • GoVivace Inc.
  • iFLYTEK Co., Ltd.
  • International Business Machines Corporation
  • iSpeech, Inc.
  • Listnr Co.
  • LOVO, Inc.
  • Microsoft Corporation
  • Murf Inc.
  • NextUP Technologies, LLC by Appfire Technologies, LLC
  • Play HT
  • Rask AI by Brask Inc.
  • ReadSpeaker BV by HOYA Corporation
  • Samsung Electronics Co., Ltd.
  • Speechify Inc.
  • Synthesia Limited
  • Veed Limited by Fiverr
  • Vonage America, LLC
  • WellSaid Labs, Inc.
JHS 25.01.02

The Text-to-Speech Market was valued at USD 5.59 billion in 2023, expected to reach USD 6.14 billion in 2024, and is projected to grow at a CAGR of 9.92%, to USD 10.83 billion by 2030.

The Text-to-Speech (TTS) market, an integral part of assistive technologies, has seen exponential growth due to its necessity in accessibility solutions, including aiding those with visual impairments and learning disabilities. Its applications have expanded beyond accessibility, penetrating sectors like telecommunications, robotics, automotive, e-learning, and consumer electronics. The end-use scope broadens as businesses integrate TTS for customer service automation, content creation, and multimedia applications. Key growth factors include advancements in neural networks and artificial intelligence, which enhance voice quality and realism, and the increasing demand for hands-free operations and automation. The proliferation of smart devices and the robust development of IoT ecosystems further propel the market. Enhanced language processing and the inclusion of diverse languages and dialects cater to a global audience, offering lucrative opportunities to expand geographic markets. Innovations in voice cloning and emotional speech synthesis present opportunities for personalized user experiences, driving a trend towards hyper-personalization. However, market growth faces challenges such as privacy concerns, especially with data collection necessary for AI training. High initial costs and the complexity of integrating TTS systems across various platforms can inhibit SMEs from adopting these solutions. VOIP technology advances and cloud-based services represent the best innovation areas, enabling seamless integration and cost reduction. Personalized voice profiles and emotion recognition offer potential research avenues, focusing on improving user interaction. For businesses, the market exhibits a competitive nature with rapid technological changes, but a strong regulatory framework aimed at data protection and ethical AI use will necessitate carefully navigating compliance requirements. Overall, while the market is ripe with opportunities, successful navigation through technological, ethical, and regulatory landscapes is crucial for sustainable growth.

KEY MARKET STATISTICS
Base Year [2023] USD 5.59 billion
Estimated Year [2024] USD 6.14 billion
Forecast Year [2030] USD 10.83 billion
CAGR (%) 9.92%

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Text-to-Speech Market

The Text-to-Speech Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Government initiatives to drive digital innovations and e-governance
    • Increasing demand for assistive technologies to support individuals with disabilities
    • Rise of e-learning and remote education platforms
  • Market Restraints
    • High initial implementation cost and performance limitations associated with text-to-speech technology
  • Market Opportunities
    • Integration of TTS technology into healthcare and telemedicine
    • Rising demand for enhanced personalization and growing need for multilingual capabilities within TTS solutions
  • Market Challenges
    • Privacy concerns associated with text-to-speech solutions and software

Porter's Five Forces: A Strategic Tool for Navigating the Text-to-Speech Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Text-to-Speech Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Text-to-Speech Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Text-to-Speech Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Text-to-Speech Market

A detailed market share analysis in the Text-to-Speech Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Text-to-Speech Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Text-to-Speech Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Text-to-Speech Market

A strategic analysis of the Text-to-Speech Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Text-to-Speech Market, highlighting leading vendors and their innovative profiles. These include Acapela Group by Tobii Dynavox AB, Amazon Web Services, Inc., Baidu, Inc., CereProc Ltd. by Capacity, Colossyan Inc., Eleven Labs Inc., Fliki by Nine Thirty-Five LLC, GL Communications Inc., Google LLC by Alphabet, Inc., GoVivace Inc., iFLYTEK Co., Ltd., International Business Machines Corporation, iSpeech, Inc., Listnr Co., LOVO, Inc., Microsoft Corporation, Murf Inc., NextUP Technologies, LLC by Appfire Technologies, LLC, Play HT, Rask AI by Brask Inc., ReadSpeaker B.V. by HOYA Corporation, Samsung Electronics Co., Ltd., Speechify Inc., Synthesia Limited, Veed Limited by Fiverr, Vonage America, LLC, and WellSaid Labs, Inc..

Market Segmentation & Coverage

This research report categorizes the Text-to-Speech Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Component, market is studied across Services and Software or Solution. The Services is further studied across Consulting, Implementation & Integration, and Support & Maintenance. The Software or Solution is further studied across Audio Output Software and Speech Synthesis Software.
  • Based on Type, market is studied across Neural & Custom and Non-Neural.
  • Based on Language, market is studied across Arabic, Chinese, English, Hindi, and Spanish.
  • Based on Deployment Mode, market is studied across Cloud Based and On-Premise.
  • Based on Application, market is studied across Accessibility Tools for Disabilities, Automotive, Banking, Financial Services, and Insurance (BFSI), Consumer Electronics, Education, Healthcare, IoT Devices, Media & Entertainment, Personal Assistants, Publishing, and Retail & Ecommerce.
  • Based on End-User, market is studied across Enterprises, Government & Public Entities, and Individual Users. The Enterprises is further studied across Large Enterprises and Small & Medium Enterprises (SMEs).
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Government initiatives to drive digital innovations and e-governance
      • 5.1.1.2. Increasing demand for assistive technologies to support individuals with disabilities
      • 5.1.1.3. Rise of e-learning and remote education platforms
    • 5.1.2. Restraints
      • 5.1.2.1. High initial implementation cost and performance limitations associated with text-to-speech technology
    • 5.1.3. Opportunities
      • 5.1.3.1. Integration of TTS technology into healthcare and telemedicine
      • 5.1.3.2. Rising demand for enhanced personalization and growing need for multilingual capabilities within TTS solutions
    • 5.1.4. Challenges
      • 5.1.4.1. Privacy concerns associated with text-to-speech solutions and software
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Component: Fueling the growth of text-to-speech (TTS) solutions through services and software
    • 5.2.2. Application: Expanding application of text-to-speech technology for education
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Text-to-Speech Market, by Component

  • 6.1. Introduction
  • 6.2. Services
    • 6.2.1. Consulting
    • 6.2.2. Implementation & Integration
    • 6.2.3. Support & Maintenance
  • 6.3. Software or Solution
    • 6.3.1. Audio Output Software
    • 6.3.2. Speech Synthesis Software

7. Text-to-Speech Market, by Type

  • 7.1. Introduction
  • 7.2. Neural & Custom
  • 7.3. Non-Neural

8. Text-to-Speech Market, by Language

  • 8.1. Introduction
  • 8.2. Arabic
  • 8.3. Chinese
  • 8.4. English
  • 8.5. Hindi
  • 8.6. Spanish

9. Text-to-Speech Market, by Deployment Mode

  • 9.1. Introduction
  • 9.2. Cloud Based
  • 9.3. On-Premise

10. Text-to-Speech Market, by Application

  • 10.1. Introduction
  • 10.2. Accessibility Tools for Disabilities
  • 10.3. Automotive
  • 10.4. Banking, Financial Services, and Insurance (BFSI)
  • 10.5. Consumer Electronics
  • 10.6. Education
  • 10.7. Healthcare
  • 10.8. IoT Devices
  • 10.9. Media & Entertainment
  • 10.10. Personal Assistants
  • 10.11. Publishing
  • 10.12. Retail & Ecommerce

11. Text-to-Speech Market, by End-User

  • 11.1. Introduction
  • 11.2. Enterprises
    • 11.2.1. Large Enterprises
    • 11.2.2. Small & Medium Enterprises (SMEs)
  • 11.3. Government & Public Entities
  • 11.4. Individual Users

12. Americas Text-to-Speech Market

  • 12.1. Introduction
  • 12.2. Argentina
  • 12.3. Brazil
  • 12.4. Canada
  • 12.5. Mexico
  • 12.6. United States

13. Asia-Pacific Text-to-Speech Market

  • 13.1. Introduction
  • 13.2. Australia
  • 13.3. China
  • 13.4. India
  • 13.5. Indonesia
  • 13.6. Japan
  • 13.7. Malaysia
  • 13.8. Philippines
  • 13.9. Singapore
  • 13.10. South Korea
  • 13.11. Taiwan
  • 13.12. Thailand
  • 13.13. Vietnam

14. Europe, Middle East & Africa Text-to-Speech Market

  • 14.1. Introduction
  • 14.2. Denmark
  • 14.3. Egypt
  • 14.4. Finland
  • 14.5. France
  • 14.6. Germany
  • 14.7. Israel
  • 14.8. Italy
  • 14.9. Netherlands
  • 14.10. Nigeria
  • 14.11. Norway
  • 14.12. Poland
  • 14.13. Qatar
  • 14.14. Russia
  • 14.15. Saudi Arabia
  • 14.16. South Africa
  • 14.17. Spain
  • 14.18. Sweden
  • 14.19. Switzerland
  • 14.20. Turkey
  • 14.21. United Arab Emirates
  • 14.22. United Kingdom

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2023
  • 15.2. FPNV Positioning Matrix, 2023
  • 15.3. Competitive Scenario Analysis
    • 15.3.1. ReadSpeaker and Qualitus launch advanced TTS plugin for ILIAS platform, offering 200 voices in 50 languages with robust data security features
    • 15.3.2. Microsoft's VALL-E 2 achieves human parity in text-to-speech but remains unreleased due to misuse concerns
    • 15.3.3. Microsoft's VALL-E 2 achieves human-like text-to-speech, with cautious rollout due to ethical concerns and potential applications in education, entertainment, and customer service.
    • 15.3.4. Microsoft's VALL-E 2 text-to-speech AI achieves human-like speech, withheld due to misuse concerns, promoting ethical AI and future industry regulations
    • 15.3.5. Smallest.ai launches AWAAZ, a cutting-edge text-to-speech model, revolutionizing Indian languages with high MOS ratings and multilingual capabilities
    • 15.3.6. ElevenLabs secures USD 80 Million funding round, boosts valuation to USD 1.1 Billion with innovative AI voice solutions
    • 15.3.7. Meta introduces text-to-speech generative AI model Voicebox
  • 15.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Acapela Group by Tobii Dynavox AB
  • 2. Amazon Web Services, Inc.
  • 3. Baidu, Inc.
  • 4. CereProc Ltd. by Capacity
  • 5. Colossyan Inc.
  • 6. Eleven Labs Inc.
  • 7. Fliki by Nine Thirty-Five LLC
  • 8. GL Communications Inc.
  • 9. Google LLC by Alphabet, Inc.
  • 10. GoVivace Inc.
  • 11. iFLYTEK Co., Ltd.
  • 12. International Business Machines Corporation
  • 13. iSpeech, Inc.
  • 14. Listnr Co.
  • 15. LOVO, Inc.
  • 16. Microsoft Corporation
  • 17. Murf Inc.
  • 18. NextUP Technologies, LLC by Appfire Technologies, LLC
  • 19. Play HT
  • 20. Rask AI by Brask Inc.
  • 21. ReadSpeaker B.V. by HOYA Corporation
  • 22. Samsung Electronics Co., Ltd.
  • 23. Speechify Inc.
  • 24. Synthesia Limited
  • 25. Veed Limited by Fiverr
  • 26. Vonage America, LLC
  • 27. WellSaid Labs, Inc.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦