시장보고서
상품코드
1676844

세계의 AI 비전 시장 : 구성 요소, 기술, 배포 모델, 최종 사용자별(2025-2030년)

AI Vision Market by Components, Technology, Deployment Models, End-user - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 196 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

AI 비전 시장은 2024년에는 142억 7,000만 달러로 평가되었으며, 2025년에는 170억 8,000만 달러, CAGR 20.19%로 성장하여 2030년에는 430억 5,000만 달러에 이를 것으로 예측되고 있습니다.

주요 시장 통계
기준 연도(2024년) 142억 7,000만 달러
추정 연도(2025년) 170억 8,000만 달러
예측 연도(2030년) 430억 5,000만 달러
CAGR 20.19%

비전 영역의 인공 지능은 현대 기술 혁신의 초석으로 부상했습니다. 고급 알고리즘과 강력한 이미징 기능의 통합은 산업 운영 방식을 변화시켰을 뿐만 아니라 시각 데이터에서 인사이트를 도출하는 방식도 재정의했습니다. 이 보고서는 AI 비전 시장의 현황에 대한 종합적인 분석을 제시하고, 그 진화 과정과 주요 동인, 성장을 촉진하는 역동적인 힘에 대해 조명합니다. 이미지 분석, 분류, 생성 분야의 파괴적인 혁신은 다양한 분야에서 운영 패러다임을 바꾸고 있습니다. 기업들이 데이터 기반 의사 결정에 점점 더 의존하는 가운데, AI 비전 시장은 기술 혁신과 가시적인 비즈니스 성과가 만나는 곳입니다. 디지털 에코시스템의 확장과 컴퓨팅 모델의 급속한 발전은 업계 발전을 위한 강력한 토대를 마련하고 있습니다. 이러한 맥락에서 기존 조직과 민첩한 신생 기업 모두 원시 데이터를 실행 가능한 인텔리전스로 전환하는 최첨단 솔루션을 모색하고 있습니다. 이러한 변화는 기존 방식에서 워크플로우를 자동화할 뿐만 아니라 의사결정의 정확성과 확장성을 향상시키는 정교한 시스템으로의 전환으로 나타나고 있습니다. 이 보고서는 시장의 변화에 따라 진화하는 에코시스템을 심층적으로 살펴보고, AI 기반 비전 솔루션 영역의 미래 발전을 형성하는 핵심 요소와 트렌드를 강조합니다.

AI 비전 환경을 주도하는 혁신적인 변화

기술의 혁신은 기본 패턴 인식 시스템에서 여러 계층의 인텔리전스를 통합하는 차세대 플랫폼으로의 전환을 촉진했습니다. 머신 러닝, 고급 비전 시스템, 자연어 처리의 결합으로 시장의 잠재력이 증폭되어 이미지 이해와 데이터 해석에 대한 보다 총체적인 접근 방식이 가능해졌습니다. 이제 업계 플레이어들은 파괴적인 기술에 빠르게 적응하는 것이 선택이 아닌 지속 가능한 성장을 위한 필수 요건이 된 환경을 탐색하고 있습니다. 이러한 패러다임의 변화는 소프트웨어와 서비스 구성 요소를 모두 통합하는 솔루션의 등장으로 입증되고 있습니다. 실시간 이미지 분할, 물체 감지, 광학 문자 인식과 같은 고도로 전문화된 용도를 지원하기 위해 고급 통합 서비스 및 유지보수 프로토콜이 적용되고 있습니다.

게다가, 컨볼루션 신경망에서 생성적 적대적 네트워크에 이르기까지 기반 기술의 진화는 AI 기반 시스템을 재정의하는 데 필수적인 역할을 했습니다. 이제 전반적인 환경은 점진적인 개선이 급진적인 혁신과 원활하게 결합되는 경쟁적 환경을 묘사하고 있습니다. 연구 개발에 대한 투자가 증가하고 역동적인 고객의 요구를 충족하기 위해 배포 모델이 진화함에 따라 클라우드 기반 솔루션과 온프레미스 솔루션을 모두 최적화하는 데 전략적 초점이 맞춰지고 있습니다. 이러한 변화의 시기에 시장 참여자들은 계속해서 운영 전략을 재평가하여 글로벌 고객의 정교한 요구사항을 충족하면서 획기적인 기술 발전을 활용할 수 있는 준비를 갖추도록 노력하고 있습니다.

AI 비전 용도의 종합적인 세분화 인사이트

AI 비전 시장에 대한 미묘한 검토를 통해 다양한 생태계를 명확하게 파악할 수 있는 세분화 계층이 드러납니다. 구성 요소를 기준으로 시장을 고려할 때는 서비스와 소프트웨어로 구분하여 분석합니다. 서비스 부문은 원활한 시스템 구현과 지속적인 효율성을 보장하는 업그레이드 서비스와 함께 통합 서비스 및 유지보수가 특징입니다. 반대로 소프트웨어 부문은 이미지 분류, 이미지 생성, 이미지 분할, 물체 감지, 광학 문자 인식과 같은 광범위한 용도을 다루며, 각각 특정 운영 요구 사항과 기술적 추구를 지원합니다.

더 자세히 살펴보면 머신 러닝, 자연어 처리, 비전 시스템이 중추적인 역할을 하는 기술을 기반으로 시장이 세분화되어 있습니다. 머신러닝에서는 컨볼루션 신경망, 생성적 적대 신경망, 순환 신경망과 같은 모델이 다양한 산업 용도에 맞는 강력한 프레임워크를 제공합니다. 자연어 처리는 음성 인식, 텍스트 분석, 번역 도구와 같은 영역으로 기능을 확장하고 비전 시스템은 얼굴 인식, 종합적인 이미지 분석, 객체 인식을 통해 지원을 확장합니다. 배포 모델, 즉 클라우드 기반과 온프레미스에 따른 추가 세분화는 인프라 투자 및 운영 유연성에 대한 다양한 선호도를 반영합니다.

마지막으로 최종 사용자에 따른 세분화는 항공우주 및 방위부터 농업, 자동차, 가전제품, 의료, 물류 및 창고, 제조, 소매업에 이르기까지 광범위한 산업을 강조합니다. 특히 자동차 부문은 자율주행차, 운전자 지원 시스템, 인포테인먼트 시스템으로 세분화되며, 의료 분야는 의료 영상, 환자 모니터링, 웨어러블 디바이스에 중점을 두고 있습니다. 소매 부문에서는 고객 경험 도구, 재고 관리 시스템, 예측 분석이 주요 동인으로, 다양한 용도가 시장 구조를 형성하는 방식을 종합적으로 강조합니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

  • 시장 역학
    • 성장 촉진요인
      • 고급 알고리즘 개발을 통한 AI 비전의 머신 러닝 기능 향상
      • 의료 분야에서 AI 비전 기술의 응용 분야 증가
      • 전자상거래 및 소매업에서 AI 비전의 성장
    • 억제요인
      • AI 비전과 기존 IT 및 운영 프레임워크 통합의 복잡성
    • 기회
      • AI 비전을 통한 교통 관리를 위한 정부와의 지속적인 파트너십
      • AI 비전 기반 운전자 지원 및 자율 주행 차량 기술로 자동차 산업 발전
    • 과제
      • AI 비전 사용 시 데이터 프라이버시 및 보안과 관련된 우려 사항
  • 시장 세분화 분석
    • 구성 요소 : 빠른 데이터 분석을 위한 AI 비전 소프트웨어에 대한 선호도
    • 기술 : 가상 비서 및 전화 기반 고객 서비스 플랫폼을 향상시키기 위한 비전 시스템 도입
    • 배포 모델 : 온라인 플랫폼을 통해 강력한 AI 비전 기능에 액세스하기 위한 클라우드 기반 모델 선호
    • 최종 사용자 : 항공우주 및 방위 산업에서 AI 비전을 활용하여 운영 안전 및 의사 결정 능력 향상
  • Porter's Five Forces 분석
  • PESTEL 분석
    • 정치
    • 경제
    • 사회
    • 기술
    • 법률
    • 환경

제6장 AI 비전 시장 : 구성 요소별

  • 서비스
    • 통합 서비스
    • 유지보수
  • 소프트웨어
    • 이미지 분류
    • 이미지 생성
    • 이미지 분할
    • 물체 감지
    • 광학 문자 인식(OCR)

제7장 AI 비전 시장 : 기술별

  • 머신러닝
    • 컨볼루션 신경망
    • 생성적 적대 신경망
    • 순환 신경망
  • 자연어 처리
    • 음성 인식
    • 텍스트 분석
    • 번역 도구
  • 비전 시스템
    • 얼굴인식
    • 종합적 이미지 분석
    • 객체 인식

제8장 AI 비전 시장 : 배포 모델별

  • 클라우드 기반
  • 온프레미스

제9장 AI 비전 시장 : 최종 사용자별

  • 항공우주 및 방위
  • 농업
  • 자동차
    • 자율주행차
    • 운전자 지원 시스템
    • 인포테인먼트 시스템
  • 가전제품
  • 전자
  • 의료
    • 의료 영상
    • 환자 모니터링
    • 웨어러블 디바이스
  • 물류 및 창고
  • 제조업
  • 소매업
    • 고객 경험 도구
    • 재고 관리 시스템
    • 예측 분석

제10장 아메리카의 AI 비전 시장

  • 아르헨티나
  • 브라질
  • 캐나다
  • 멕시코
  • 미국

제11장 아시아태평양의 AI 비전 시장

  • 호주
  • 중국
  • 인도
  • 인도네시아
  • 일본
  • 말레이시아
  • 필리핀
  • 싱가포르
  • 한국
  • 대만
  • 태국
  • 베트남

제12장 유럽, 중동 및 아프리카의 AI 비전 시장

  • 덴마크
  • 이집트
  • 핀란드
  • 프랑스
  • 독일
  • 이스라엘
  • 이탈리아
  • 네덜란드
  • 나이지리아
  • 노르웨이
  • 폴란드
  • 카타르
  • 러시아
  • 사우디아라비아
  • 남아프리카
  • 스페인
  • 스웨덴
  • 스위스
  • 터키
  • 아랍에미리트(UAE)
  • 영국

제13장 경쟁 구도

  • 시장 점유율 분석(2024년)
  • FPNV 포지셔닝 매트릭스(2024년)
  • 경쟁 시나리오 분석
  • 전략 분석과 제안

기업 목록

  • Adobe Inc.
  • Advanced Micro Devices, Inc.
  • Alibaba Group Holding Limited
  • Amazon Web Services, Inc.
  • Analog Devices, Inc.
  • Apple Inc.
  • Baidu, Inc.
  • Cisco Systems, Inc.
  • Cognex Corporation
  • Facebook, Inc. by Meta Platforms, Inc.
  • Google LLC by Alphabet Inc.
  • Hangzhou Hikvision Digital Technology Co., Ltd.
  • Honeywell International Inc.
  • Huawei Technologies Co., Ltd.
  • IBM Corporation
  • Intel Corporation
  • Keyence Corporation
  • Microsoft Corporation
  • NVIDIA Corporation
  • Omron Corporation
  • Panasonic Corporation
  • Qualcomm Incorporated
  • Samsung Electronics Co., Ltd.
  • Seiko Epson Corporation
  • Siemens AG
  • Sony Corporation
  • Tencent Holdings Limited
  • Texas Instruments Incorporated
  • UiPath, Inc.
  • Zebra Technologies Corporation
HBR 25.03.20

The AI Vision Market was valued at USD 14.27 billion in 2024 and is projected to grow to USD 17.08 billion in 2025, with a CAGR of 20.19%, reaching USD 43.05 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 14.27 billion
Estimated Year [2025] USD 17.08 billion
Forecast Year [2030] USD 43.05 billion
CAGR (%) 20.19%

Artificial Intelligence in the vision domain has emerged as a cornerstone of modern technological innovation. The integration of advanced algorithms with powerful imaging capabilities has not only transformed how industries operate but has also redefined the way insights are derived from visual data. This report presents a comprehensive analysis of the current state of the AI vision market, shedding light on its evolution, key drivers, and the dynamic forces that are propelling its growth. The disruptive innovations in image analysis, classification, and generation are changing operational paradigms across a range of sectors. With enterprises increasingly relying on data-driven decisions, the AI vision market is one where technological breakthroughs meet tangible business outcomes. The expansion of digital ecosystems, coupled with the rapid development of computational models, sets a robust foundation for industry advancements. In this context, both established organizations and agile newcomers are exploring state-of-the-art solutions that transform raw data into actionable intelligence. The unfolding narrative is marked by a transition from conventional methods to sophisticated systems that not only automate workflows but also enhance precision and scalability in decision-making. As the market shifts, this report provides an in-depth look at the evolving ecosystem, highlighting the critical factors and trends that are shaping future developments in the realm of AI-powered vision solutions.

Transformative Shifts Driving the AI Vision Landscape

In recent years, the AI vision market has experienced transformative shifts that challenge traditional conceptions of technology deployment and service delivery. Innovations in computational techniques have fueled a transition from basic pattern recognition systems to next-generation platforms that integrate multiple layers of intelligence. The combined rise of machine learning, advanced vision systems, and natural language processing has amplified the market's potential, enabling a more holistic approach towards image understanding and data interpretation. Industry players are now navigating environments where rapid adaptation to disruptive technologies is not optional, but a requisite for sustainable growth. This paradigm shift is evidenced by the emergence of solutions that integrate both software and service components. Advanced integration services and maintenance protocols are being adapted to support highly specialized applications such as real-time image segmentation, object detection, and optical character recognition.

Furthermore, the evolution of underlying technologies-from convolutional neural networks to generative adversarial networks-has played an essential role in redefining AI-powered systems. The overall landscape now portrays a competitive milieu where incremental improvements seamlessly merge with radical innovations. As investment increases in research and development, and as deployment models evolve to meet dynamic customer needs, the strategic focus remains on optimizing both cloud-based and on-premise solutions. This transformative phase continues to drive market participants to reassess their operational strategies, ensuring that they remain poised to leverage groundbreaking technological advancements while meeting the sophisticated demands of their global clientele.

Comprehensive Segmentation Insights in AI Vision Applications

A nuanced review of the AI vision market unveils distinct segmentation layers that provide clarity on the diverse ecosystem. When considering the market based on components, the analysis delineates between services and software. The service segment is characterized by integration services and maintenance alongside upgradation services that ensure seamless system implementation and ongoing efficiency. Conversely, the software segment covers an extensive array of applications such as image classification, image generation, image segmentation, object detection, and optical character recognition, each supporting specific operational needs and technological pursuits.

Delving deeper, the market is also segmented based on technology, where machine learning, natural language processing, and vision systems play pivotal roles. Within machine learning, models such as convolutional neural networks, generative adversarial networks, and recurrent neural networks deliver robust frameworks tailored to varied industry applications. Natural language processing extends capabilities into areas like speech recognition, text analysis, and translation tools, while vision systems extend support via facial recognition, comprehensive image analysis, and object recognition. Additional segmentation based on deployment models, namely cloud-based and on-premise, reflects varying preferences regarding infrastructure investment and operational flexibility.

Finally, the segmentation according to end-users underlines a broad range of industries - from aerospace and defense to agriculture, automotive, consumer electronics, healthcare, logistics and warehousing, manufacturing, and retail. In particular, the automotive segment dissects further into autonomous vehicles, driver assistance systems, and infotainment systems, while the healthcare vertical focuses on medical imaging, patient monitoring, and wearable devices. In the retail sector, customer experience tools, inventory management systems, and predictive analytics are key drivers, collectively highlighting how diverse applications shape the market structure.

Based on Components, market is studied across Services and Software. The Services is further studied across Integration Services and Maintenance & Upgradation Services. The Software is further studied across Image Classification, Image Generation, Image Segmentation, Object Detection, and Optical Character Recognition (OCR).

Based on Technology, market is studied across Machine Learning, Natural Language Processing, and Vision Systems. The Machine Learning is further studied across Convolutional Neural Networks, Generative Adversarial Networks, and Recurrent Neural Networks. The Natural Language Processing is further studied across Speech Recognition, Text Analysis, and Translation Tools. The Vision Systems is further studied across Facial Recognition, Image Analysis, and Object Recognition.

Based on Deployment Models, market is studied across Cloud-Based and On-Premise.

Based on End-user, market is studied across Aerospace & Defense, Agriculture, Automotive, Consumer Electronics, Electronics, Healthcare, Logistics & Warehousing, Manufacturing, and Retail. The Automotive is further studied across Autonomous Vehicles, Driver Assistance Systems, and Infotainment Systems. The Healthcare is further studied across Medical Imaging, Patient Monitoring, and Wearable Devices. The Retail is further studied across Customer Experience Tools, Inventory Management Systems, and Predictive Analytics.

Critical Regional Insights Across Global Markets

The international dynamics of the AI vision market reflect robust activity across various geographical regions. Analysis indicates that the Americas continue to set a pace for innovation, underpinned by extensive technological investments and a well-established industrial base. In parallel, Europe, the Middle East, and Africa are witnessing critical developments that are spurred by policy initiatives, regional collaborations, and an emerging focus on digital transformation. The Asia-Pacific region stands out due to its rapid technological adoption combined with increasing investments in research and development, making it a hotbed for both incremental and radical AI vision innovations. These regional dynamics reveal a spectrum of opportunities and challenges that are unique to each territory, yet collectively contribute to a holistic global progression in AI vision technologies.

Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

In-Depth Company Insights Driving Market Innovation

A meticulous examination of leading companies within the AI vision domain reveals an ecosystem where market pioneers are continuously at the forefront of technological excellence. Industry behemoths such as Adobe Inc. and Apple Inc. have leveraged strong creative and technological ecosystems to offer innovative imaging and processing solutions. Manufacturers like Advanced Micro Devices, Inc. and Intel Corporation continue to push the boundaries of semiconductor technology, thereby enhancing computational efficiencies critical to AI vision applications. Giants including Alibaba Group Holding Limited and Amazon Web Services, Inc. exhibit substantial prowess in cloud infrastructures that seamlessly integrate and support complex algorithms.

Other notable entities such as Analog Devices, Inc., Cisco Systems, Inc., and IBM Corporation are investing heavily in research to refine hardware and software integration for superior performance outcomes. Companies including Baidu, Inc., Facebook, Inc. by Meta Platforms, Inc., and Google LLC by Alphabet Inc. are redefining how artificial intelligence is leveraged across digital platforms, thereby influencing both consumer and enterprise segments. In addition, firms like Hangzhou Hikvision Digital Technology Co., Ltd. and Honeywell International Inc. have tailored their offerings to address specific industry requirements, while Huawei Technologies Co., Ltd., NVIDIA Corporation, and Qualcomm Incorporated have established themselves as frontrunners in providing cutting-edge components essential for real-time data processing. Prominent players such as Keyence Corporation, Microsoft Corporation, Omron Corporation, Panasonic Corporation, Samsung Electronics Co., Ltd., Seiko Epson Corporation, Siemens AG, Sony Corporation, Tencent Holdings Limited, Texas Instruments Incorporated, UiPath, Inc., and Zebra Technologies Corporation contribute to establishing a competitive benchmark for innovation and market resilience.

The report delves into recent significant developments in the AI Vision Market, highlighting leading vendors and their innovative profiles. These include Adobe Inc., Advanced Micro Devices, Inc., Alibaba Group Holding Limited, Amazon Web Services, Inc., Analog Devices, Inc., Apple Inc., Baidu, Inc., Cisco Systems, Inc., Cognex Corporation, Facebook, Inc. by Meta Platforms, Inc., Google LLC by Alphabet Inc., Hangzhou Hikvision Digital Technology Co., Ltd., Honeywell International Inc., Huawei Technologies Co., Ltd., IBM Corporation, Intel Corporation, Keyence Corporation, Microsoft Corporation, NVIDIA Corporation, Omron Corporation, Panasonic Corporation, Qualcomm Incorporated, Samsung Electronics Co., Ltd., Seiko Epson Corporation, Siemens AG, Sony Corporation, Tencent Holdings Limited, Texas Instruments Incorporated, UiPath, Inc., and Zebra Technologies Corporation. Actionable Recommendations to Accelerate Industry Leadership

Market leaders and potential entrants in the AI vision domain must adopt a strategic approach to align their innovations with evolving market demands. Leaders are encouraged to focus on diversifying their technology portfolios to encompass both foundational software analytics and comprehensive service channels that facilitate integration and continuous upgrade. Emphasizing research and development is critical, particularly in high-growth areas such as deep learning frameworks and real-time image processing. Leveraging innovative deployment models, whether through cloud-based solutions or on-premise implementations, enables organizational scalability and operational efficiency.

Furthermore, strategic partnerships can serve as significant accelerators, allowing companies to tap into niche expertise and cutting-edge research. Organizations should also invest in workforce training to ensure that technical teams are well-equipped to manage complex AI ecosystems. The emphasis on continuous improvement and agile adaptation will be integral in overcoming evolving challenges. By aligning capital investments with technology roadmaps and customer requirements, market leaders are positioned to capture new revenue streams while streamlining operational efficiencies. This multi-pronged strategy instills a robust framework for sustainable growth, fostering an environment that not only inspires innovation but also guarantees a competitive edge in a dynamic market landscape.

Conclusion and Future Outlook on AI Vision Advancements

The comprehensive review of the AI vision market underscores the transformative impact of technological advancements and evolving consumer demands. With substantial strides in both software and service domains, organizations are increasingly integrating advanced AI capabilities to drive operational excellence and digital transformation. The interplay between cutting-edge machine learning models, state-of-the-art deployment strategies, and specialized industry applications is creating an ecosystem that thrives on innovation and strategic agility.

As companies navigate this complex landscape, it is imperative to remain abreast of emerging trends and maintain a forward-thinking approach. The current market analysis provides a framework for understanding the inherent opportunities and challenges, while offering insights that are fundamental for long-term success. These capabilities, when strategically aligned, set the stage for both incremental improvements and disruptive breakthroughs in AI vision technology.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Enhancing machine learning capabilities in AI vision through advanced algorithm developments
      • 5.1.1.2. Rising applications of AI vision technologies in healthcare
      • 5.1.1.3. Growth of AI vision in e-commerce and retail
    • 5.1.2. Restraints
      • 5.1.2.1. Complexity in integration of AI vision with existing IT and operational frameworks
    • 5.1.3. Opportunities
      • 5.1.3.1. Ongoing partnership with the government for transportation management with AI vision
      • 5.1.3.2. Advancing the automotive industry with AI vision-based driver assistance and autonomous vehicle technologies
    • 5.1.4. Challenges
      • 5.1.4.1. Concerns associated with data privacy and security of using AI vision
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Components: Preference for AI vision software for quick data analysis
    • 5.2.2. Technology: Adoption of vision system to enhance virtual assistants and telephone-based customer service platforms
    • 5.2.3. Deployment Models: Preference cloud based model to access powerful AI vision capabilities via online platforms
    • 5.2.4. End-user: Utilization of AI vision in aerospace & defense to enhance operational safety and decision-making capabilities
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. AI Vision Market, by Components

  • 6.1. Introduction
  • 6.2. Services
    • 6.2.1. Integration Services
    • 6.2.2. Maintenance & Upgradation Services
  • 6.3. Software
    • 6.3.1. Image Classification
    • 6.3.2. Image Generation
    • 6.3.3. Image Segmentation
    • 6.3.4. Object Detection
    • 6.3.5. Optical Character Recognition (OCR)

7. AI Vision Market, by Technology

  • 7.1. Introduction
  • 7.2. Machine Learning
    • 7.2.1. Convolutional Neural Networks
    • 7.2.2. Generative Adversarial Networks
    • 7.2.3. Recurrent Neural Networks
  • 7.3. Natural Language Processing
    • 7.3.1. Speech Recognition
    • 7.3.2. Text Analysis
    • 7.3.3. Translation Tools
  • 7.4. Vision Systems
    • 7.4.1. Facial Recognition
    • 7.4.2. Image Analysis
    • 7.4.3. Object Recognition

8. AI Vision Market, by Deployment Models

  • 8.1. Introduction
  • 8.2. Cloud-Based
  • 8.3. On-Premise

9. AI Vision Market, by End-user

  • 9.1. Introduction
  • 9.2. Aerospace & Defense
  • 9.3. Agriculture
  • 9.4. Automotive
    • 9.4.1. Autonomous Vehicles
    • 9.4.2. Driver Assistance Systems
    • 9.4.3. Infotainment Systems
  • 9.5. Consumer Electronics
  • 9.6. Electronics
  • 9.7. Healthcare
    • 9.7.1. Medical Imaging
    • 9.7.2. Patient Monitoring
    • 9.7.3. Wearable Devices
  • 9.8. Logistics & Warehousing
  • 9.9. Manufacturing
  • 9.10. Retail
    • 9.10.1. Customer Experience Tools
    • 9.10.2. Inventory Management Systems
    • 9.10.3. Predictive Analytics

10. Americas AI Vision Market

  • 10.1. Introduction
  • 10.2. Argentina
  • 10.3. Brazil
  • 10.4. Canada
  • 10.5. Mexico
  • 10.6. United States

11. Asia-Pacific AI Vision Market

  • 11.1. Introduction
  • 11.2. Australia
  • 11.3. China
  • 11.4. India
  • 11.5. Indonesia
  • 11.6. Japan
  • 11.7. Malaysia
  • 11.8. Philippines
  • 11.9. Singapore
  • 11.10. South Korea
  • 11.11. Taiwan
  • 11.12. Thailand
  • 11.13. Vietnam

12. Europe, Middle East & Africa AI Vision Market

  • 12.1. Introduction
  • 12.2. Denmark
  • 12.3. Egypt
  • 12.4. Finland
  • 12.5. France
  • 12.6. Germany
  • 12.7. Israel
  • 12.8. Italy
  • 12.9. Netherlands
  • 12.10. Nigeria
  • 12.11. Norway
  • 12.12. Poland
  • 12.13. Qatar
  • 12.14. Russia
  • 12.15. Saudi Arabia
  • 12.16. South Africa
  • 12.17. Spain
  • 12.18. Sweden
  • 12.19. Switzerland
  • 12.20. Turkey
  • 12.21. United Arab Emirates
  • 12.22. United Kingdom

13. Competitive Landscape

  • 13.1. Market Share Analysis, 2024
  • 13.2. FPNV Positioning Matrix, 2024
  • 13.3. Competitive Scenario Analysis
    • 13.3.1. Inflection AI enhances enterprise capabilities with strategic acquisitions of BoostKPI and Jelled.ai
    • 13.3.2. LTIMindtree and Microsoft collaborate to accelerate AI-driven digital transformation
    • 13.3.3. Rockwell Automation launches AI-powered FactoryTalk Analytics VisionAI for enhanced manufacturing quality control
    • 13.3.4. Advex AI secures USD 3.5m to transform manufacturing with GenAI synthetic data platform
    • 13.3.5. SEA.AI secures major government contract to enhance autonomous maritime safety with AI vision technology
    • 13.3.6. Mindtech global secures GBP 4.4M to enhance AI vision training and expand globally
    • 13.3.7. Honda invests in SiLC technologies to enhance AI vision with advanced FMCW LiDAR solutions
    • 13.3.8. Air India launches AI-driven AEYE vision for enhanced mobile app experience
    • 13.3.9. Axelera AI secures USD 68 million Series B funding to drive AI hardware expansion
    • 13.3.10. Palantir secures USD 480 million AI vision contract with US army
    • 13.3.11. Shield AI acquires Sentient Vision Systems to enhance ISR capabilities and establish Australian Presence
    • 13.3.12. Cognex launches in-sight L38, first AI-powered 3D vision system for manufacturing automation
    • 13.3.13. ABB acquires Sevensense to enhance AI-powered 3D vision robotics
    • 13.3.14. Centific and Telaid partner to enhance retail using AI and computer vision
  • 13.4. Strategy Analysis & Recommendation
    • 13.4.1. Google LLC by Alphabet Inc.
    • 13.4.2. NVIDIA Corporation
    • 13.4.3. Microsoft Corporation
    • 13.4.4. IBM Corporation

Companies Mentioned

  • 1. Adobe Inc.
  • 2. Advanced Micro Devices, Inc.
  • 3. Alibaba Group Holding Limited
  • 4. Amazon Web Services, Inc.
  • 5. Analog Devices, Inc.
  • 6. Apple Inc.
  • 7. Baidu, Inc.
  • 8. Cisco Systems, Inc.
  • 9. Cognex Corporation
  • 10. Facebook, Inc. by Meta Platforms, Inc.
  • 11. Google LLC by Alphabet Inc.
  • 12. Hangzhou Hikvision Digital Technology Co., Ltd.
  • 13. Honeywell International Inc.
  • 14. Huawei Technologies Co., Ltd.
  • 15. IBM Corporation
  • 16. Intel Corporation
  • 17. Keyence Corporation
  • 18. Microsoft Corporation
  • 19. NVIDIA Corporation
  • 20. Omron Corporation
  • 21. Panasonic Corporation
  • 22. Qualcomm Incorporated
  • 23. Samsung Electronics Co., Ltd.
  • 24. Seiko Epson Corporation
  • 25. Siemens AG
  • 26. Sony Corporation
  • 27. Tencent Holdings Limited
  • 28. Texas Instruments Incorporated
  • 29. UiPath, Inc.
  • 30. Zebra Technologies Corporation
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제