시장보고서
상품코드
1676971

세계의 AI 활용 디지털 트윈 시장 : 제품 유형, 제공 형태, 전개 형태, 용도, 최종사용자 산업별 - 예측(2025-2030년)

AI-powered Digital Twins Market by Product, Offering, Organization Type, Deployment Mode, Application, End-User Industry - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 197 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

AI 활용 디지털 트윈 시장의 2024년 시장 규모는 262억 4,000만 달러로 평가되었습니다. 2025년에는 연평균 32.48% 성장하여 345억 6,000만 달러에 이르고, 2030년에는 1,418억 9,000만 달러에 달할 것으로 예상됩니다.

주요 시장 통계
기준 연도 : 2024년 262억 4,000만 달러
추정 연도 : 2025년 345억 6,000만 달러
예측 연도 : 2030년 1,418억 9,000만 달러
CAGR(%) 32.48%

인공지능과 디지털 트윈 기술이 융합되어 전 세계 산업에 혁신의 기회를 가져오고 있습니다. 급속한 디지털 전환으로 정의되는 시대에 AI를 탑재한 디지털 트윈은 물리적 시스템의 지능형 거울 역할을 하여 비즈니스 시뮬레이션, 분석, 운영 최적화를 가능하게 합니다. 이 기술은 현대의 복잡한 인프라를 반영하는 정확하고 역동적인 실시간 모델을 생성하여 의사결정을 개선할 수 있도록 돕습니다.

고급 머신러닝, 예측 분석, 실시간 모니터링을 통해 기업은 이상 징후를 감지하고, 문제를 예측하고, 프로세스를 간소화할 수 있게 되었습니다. 물리적 영역과 디지털 영역의 원활한 통합은 기존 시스템의 성능을 향상시킬 뿐만 아니라 사전 예방적 혁신의 길을 열어줍니다. 이 기술의 진화를 살펴보면, AI 활용 디지털 트윈이 단순한 점진적 혁신이 아니라 보다 스마트하고 강력한 운영 프레임워크를 향한 큰 도약이라는 것을 알 수 있습니다.

이어지는 토론에서는 이 역동적인 시장의 다면적인 측면을 심층적으로 살펴보고, 디지털 트윈 기술의 잠재력을 활용하고자 하는 의사결정권자에게 통찰력과 분석을 제공합니다. 기본 원칙에 대한 명확한 이해를 통해, 이 소개는 변화하는 트렌드와 주요 세분화 요인이 어떻게 상황을 변화시키고 있는지 살펴볼 수 있는 토대를 마련했습니다.

AI 활용 디지털 트윈 시장의 변화

AI 활용 디지털 트윈의 등장은 산업 전반에 걸쳐 일련의 변혁적 변화를 일으켰습니다. 과거에는 과거 데이터와 수동 업데이트에만 의존하던 기업들은 이제 지속적인 실시간 시스템 시뮬레이션의 시대로 전환하고 있습니다. 클라우드 컴퓨팅, 빅데이터 분석, AI의 통합은 디지털 프로세스를 가속화했을 뿐만 아니라 예지보전, 시스템 최적화, 리스크 관리에 대한 조직의 접근 방식을 재정의했습니다.

기반 기술의 혁신은 시장 역학 및 비즈니스 과제에 대한 민첩한 대응을 가능하게 합니다. 센서 기반 데이터 캡처와 에지 컴퓨팅의 채택이 증가함에 따라 디지털 복제본은 물리적 시스템의 복잡성을 전례 없는 정확도로 반영하고 있습니다. 이러한 정밀도는 엔지니어링, 제조, 운영 영역의 협업을 강화할 수 있도록 돕습니다. 또한, 보다 통합된 플랫폼으로의 전환을 통해 기업은 다양한 출처의 방대한 데이터를 통합하여 리더에게 실행 가능한 통찰력을 제공할 수 있게 되었습니다.

이러한 변화는 확장성, 상호운용성, 보안을 우선시하는 종합적인 접근 방식을 채택할 필요성을 강조하고 있습니다. 강력한 디지털 트윈 생태계에 투자하는 기업은 경쟁 우위를 확보할 수 있을 뿐만 아니라 예측 불가능한 시장 환경에서도 지속 가능한 성장을 보장할 수 있습니다. 이러한 변화는 디지털과 물리적 시스템이 원활하게 동기화되어 작동하는 미래로 업계를 이끌고 있으며, 점진적 이익에 대한 새로운 벤치마크를 설정하고 있습니다.

시장 세분화 및 시장 역학에 대한 자세한 내용

AI 활용 디지털 트윈의 잠재력을 활용하기 위해서는 시장 세분화를 종합적으로 이해하는 것이 중요합니다. 시장은 다양한 측면에서 신중하게 조사되고 있습니다. 제품을 조사할 때, 서비스 및 소프트웨어 영역에서는 더욱 명확한 역학 관계와 채택률이 부각됩니다. 제품 기반 평가는 이해 관계자가 구성 요소, 프로세스 및 시스템을 분석하고 운영의 모든 수준에서 성능을 최적화하는 계층 적 접근 방식을 보여줍니다.

조직은 유형별로도 구분되며, 대기업은 디지털 전환의 규모를 활용하고, 중소기업은 민첩한 혁신을 추진하고 있습니다. 도입 형태는 클라우드 기반 솔루션과 온프레미스 대체 솔루션을 대비시킴으로써 시장의 움직임을 더욱 차별화하고 있습니다.

또 다른 분석 계층은 디지털 트윈의 적용입니다. 이는 커스터마이징, 전략적 의사결정, 예측 분석, 프로세스 자동화, 실시간 모니터링에 이르기까지 다양한 기능에서 특히 두드러집니다. 특정 시장 성장 촉진요인 및 과제에 따라 솔루션을 맞춤화할 수 있다는 점이 시장 성장의 큰 원동력이 되고 있습니다. 마지막으로, 최종 사용자 산업 분석은 항공우주 및 자동차 시스템에서 요구되는 정밀도와 농업의 지속가능성 문제부터 은행, 금융 서비스 및 보험의 강력한 규제 프레임워크에 이르기까지 광범위하게 이루어지고 있습니다. 또한, 건설, 교육, 에너지 및 전력, 정부 및 공공 서비스, 헬스케어, IT 및 통신, 소매 및 소비재 등의 분야에서도 이러한 기술을 적극적으로 활용하고 있습니다. 이러한 세분화된 통찰력은 다양한 요소들이 어떻게 융합되어 다양한 부문의 진화하는 수요에 대응하는 다목적 디지털 트윈 생태계를 구축하는지를 이해할 수 있는 프레임워크를 제공합니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

  • 시장 역학
    • 성장 촉진요인
    • 성장 억제요인
    • 기회
    • 과제
  • 시장 세분화 분석
  • Porter's Five Forces 분석
  • PESTEL 분석
    • 정치
    • 경제
    • 사회
    • 기술
    • 법률
    • 환경

제6장 AI 활용 디지털 트윈 시장 : 제품별

  • 서비스
  • 소프트웨어

제7장 AI 활용 디지털 트윈 시장 : 제공별

  • 성분
  • 프로세스
  • 시스템

제8장 AI 활용 디지털 트윈 시장 : 조직 유형별

  • 대기업
  • 중소기업

제9장 AI 활용 디지털 트윈 시장 : 전개 모드별

  • 클라우드 기반 솔루션
  • 온프레미스 솔루션

제10장 AI 활용 디지털 트윈 시장 : 용도별

  • 커스터마이즈
  • 의사결정
  • 예측 분석
  • 프로세스 자동화
  • 실시간 모니터링

제11장 AI 활용 디지털 트윈 시장 : 최종사용자 업계별

  • `항공우주 및 자동차
  • 농업
  • 은행/금융서비스/보험(BFSI)
  • 건설
  • 교육
  • 에너지 및 전력
  • 정부 및 공공 부문
  • 헬스케어
  • IT 및 통신
  • 소매 및 소비재

제12장 아메리카의 AI 활용 디지털 트윈 시장

  • 아르헨티나
  • 브라질
  • 캐나다
  • 멕시코
  • 미국

제13장 아시아태평양의 AI 활용 디지털 트윈 시장

  • 호주
  • 중국
  • 인도
  • 인도네시아
  • 일본
  • 말레이시아
  • 필리핀
  • 싱가포르
  • 한국
  • 대만
  • 태국
  • 베트남

제14장 유럽, 중동 및 아프리카의 AI 활용 디지털 트윈 시장

  • 덴마크
  • 이집트
  • 핀란드
  • 프랑스
  • 독일
  • 이스라엘
  • 이탈리아
  • 네덜란드
  • 나이지리아
  • 노르웨이
  • 폴란드
  • 카타르
  • 러시아
  • 사우디아라비아
  • 남아프리카공화국
  • 스페인
  • 스웨덴
  • 스위스
  • 터키
  • 아랍에미리트(UAE)
  • 영국

제15장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 시나리오 분석
  • 전략 분석과 제안

기업 리스트

  • ABB Ltd.
  • Accenture PLC
  • Altair Engineering Inc.
  • ANSYS, Inc.
  • C3.ai, Inc.
  • GE Vernova
  • International Business Machines Corporation
  • Kellton
  • KION Group AG
  • McKinsey & Company
  • Nokia Corporation
  • NVIDIA Corporation
  • Robert Bosch GmbH
  • SAP SE
  • Siemens AG
  • Sprinklr, Inc.
  • Toobler Technologies.
LSH 25.03.21

The AI-powered Digital Twins Market was valued at USD 26.24 billion in 2024 and is projected to grow to USD 34.56 billion in 2025, with a CAGR of 32.48%, reaching USD 141.89 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 26.24 billion
Estimated Year [2025] USD 34.56 billion
Forecast Year [2030] USD 141.89 billion
CAGR (%) 32.48%

Artificial intelligence and digital twin technology have converged to create transformative opportunities for industries around the globe. In an era defined by rapid digital transformation, AI-powered digital twins serve as intelligent mirrors of physical systems, enabling businesses to simulate, analyze, and optimize operations. This technology facilitates improved decision-making by creating accurate, dynamic, and real-time models that reflect the complexities of modern infrastructures.

By leveraging advanced machine learning, predictive analytics, and real-time monitoring, organizations are now able to detect anomalies, anticipate challenges, and streamline processes. The seamless integration of physical and digital realms not only enhances the performance of existing systems but also paves the way for proactive innovation. As we explore the evolution of this technology, it becomes evident that the AI-powered digital twin is not merely an incremental innovation but a significant leap toward a smarter and more resilient operational framework.

The discussions that follow provide a deep dive into the multifaceted aspects of this dynamic market, offering insights and analysis for decision-makers seeking to harness the potential of digital twin technology. By setting the stage with a clear understanding of the underlying principles, this introduction lays the foundation for exploring how transformative trends and key segmentation factors are reshaping the landscape.

Transformative Shifts in the Digital Twin Landscape

The advent of AI-powered digital twins has triggered a set of transformative shifts across industries. Companies that once relied solely on historical data and manual updates are now shifting to an era of continuous, real-time system simulation. The integration of cloud computing, big data analytics, and AI has not only accelerated digital processes but also redefined how organizations approach predictive maintenance, system optimization, and risk management.

Innovation in underlying technologies enables a more agile response to market dynamics and operational challenges. With the increasing adoption of sensor-driven data capture and edge computing, digital replicas now mirror the intricacies of physical systems with unprecedented accuracy. This level of precision fosters enhanced collaboration across engineering, manufacturing, and business operation domains. Furthermore, the shift towards more integrated platforms allows companies to synthesize vast amounts of data from diverse sources, empowering leaders with actionable insights.

These transformative changes underscore the need for adopting a holistic approach that prioritizes scalability, interoperability, and security. Businesses that invest in robust digital twin ecosystems not only gain a competitive edge but also ensure sustained growth in an unpredictable market environment. Such shifts are setting new benchmarks for incremental gains, driving the industry towards a future where digital and physical systems operate in seamless synchrony.

In-Depth Segmentation Insights and Market Dynamics

A comprehensive understanding of the market's segmentation is crucial for leveraging the potential of AI-powered digital twins. The market is carefully studied across various dimensions. When examining the product, the service and software domains further highlight distinct dynamics and adoption rates. Evaluations based on the offering reveal a layered approach whereby stakeholders analyze components, processes, and systems to optimize performance at every level of operation.

Organizations are also segmented by type, where large enterprises are harnessing the scale of digital transformation alongside small and medium enterprises that drive nimble innovation. The deployment mode further differentiates market behavior by contrasting cloud-based solutions with on-premise alternatives, each offering unique advantages in terms of flexibility, security, and infrastructure investment.

Another layer of analysis involves the application of digital twins. This is particularly evident through functionalities that range from customization and strategic decision-making to predictive analytics, process automation, and real-time monitoring. The ability to tailor solutions based on specific operational challenges or innovation demands is a significant driver for market growth. Finally, the end-user industry analysis spans a broad spectrum-from the precision required in aerospace and automotive systems, and the sustainability challenges in agriculture, to the robust regulatory frameworks in banking, financial services, and insurance. Further, sectors like construction, education, energy & power, government and public services, healthcare, IT & telecommunication, and retail & consumer goods are actively leveraging these technologies. Together, these segmented insights provide a framework for understanding how different elements converge to create a versatile digital twin ecosystem that meets the evolving demands of numerous sectors.

Based on Product, market is studied across Services and Software.

Based on Offering, market is studied across Component, Process, and System.

Based on Organization Type, market is studied across Large Enterprises and Small & Medium Enterprises.

Based on Deployment Mode, market is studied across Cloud-Based Solutions and On-Premise Solutions.

Based on Application, market is studied across Customization, Decision Making, Predictive Analytics, Process Automation, and Real-Time Monitoring.

Based on End-User Industry, market is studied across Aerospace & Automotive, Agriculture, Banking, Financial Services, and Insurance (BFSI), Construction, Education, Energy & Power, Government & Public Sector, Healthcare, IT & Telecommunication, and Retail & Consumer Goods.

Regional Outlook and Emerging Opportunities

Examining the market from a geographic standpoint underscores significant regional shifts and emerging opportunities. The Americas continue to be a robust arena with high investment in AI and digital twin technologies, driven by advancements in industrial automation and process optimization. Regional factors such as strong research and development facilities and supportive policy frameworks further facilitate market growth in this area.

In Europe, the Middle East, and Africa, the driving forces stem from a blend of innovation hubs and strategic governmental initiatives aimed at boosting digital transformation. These regions are witnessing increased collaboration between public and private sectors, resulting in accelerated adoption of digital twin frameworks that enhance operational efficiency and foster sustainable development.

The Asia-Pacific region exhibits rapid expansion characterized by a blend of longstanding industrial expertise and cutting-edge technological adoption. With economies eager to modernize their infrastructure, there exists both a high level of digital readiness and a pronounced appetite for integrating AI-driven solutions. This diverse regional landscape offers unique insights into how varying economic drivers, regulatory environments, and cultural factors contribute to the evolution of the digital twin market. Overall, understanding these geographic trends allows industry participants to identify growth opportunities and tailor their strategies for maximum impact in each region.

Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

Key Company Players Shaping the Market

The competitive landscape is defined by an array of influential companies that are driving innovation and market transformation. Leading organizations such as ABB Ltd., Accenture PLC, and Altair Engineering Inc. have played pivotal roles in incubating the early stages of digital twin technology, nurturing its evolution from conceptual models to full-scale operational systems. Other key players like ANSYS, Inc. and C3.ai, Inc. further contribute advanced simulation and analytics capabilities, fostering environments where real-time, data-driven decision-making becomes a norm.

Industry giants including GE Vernova and International Business Machines Corporation continue to set industry benchmarks with their comprehensive approach to digital integration. Mid-market influencers like Kellton and KION Group AG are rapidly catching up by offering niche solutions tailored for specific industrial applications, while consulting and strategy firms such as McKinsey & Company provide valuable insight and advisory support to navigate complex market dynamics. Furthermore, technology leaders such as Nokia Corporation and NVIDIA Corporation are instrumental in the development of robust hardware and software platforms that empower digital twin ecosystems.

Institutions like Robert Bosch GmbH, SAP SE, Siemens AG, and Sprinklr, Inc. have also made significant contributions through continuous research and technological refinement. Emerging players such as Toobler Technologies are complementing the established ecosystem by introducing innovative methodologies, thereby expanding the horizons of AI-powered solutions. The collective impact of these companies underscores a competitive environment where constant innovation is the key to success and market differentiation.

The report delves into recent significant developments in the AI-powered Digital Twins Market, highlighting leading vendors and their innovative profiles. These include ABB Ltd., Accenture PLC, Altair Engineering Inc., ANSYS, Inc., C3.ai, Inc., GE Vernova, International Business Machines Corporation, Kellton, KION Group AG, McKinsey & Company, Nokia Corporation, NVIDIA Corporation, Robert Bosch GmbH, SAP SE, Siemens AG, Sprinklr, Inc., and Toobler Technologies.. Actionable Recommendations for Leading Industry Innovators

For industry leaders aiming to capitalize on the burgeoning potential of AI-powered digital twins, strategic initiatives must be prioritized that address both technological and operational facets. Firstly, investing in scalable and secure cloud-based solutions can significantly reduce time to market while ensuring that systems remain agile and responsive. Leaders should also evaluate on-premise deployments where data security or latency concerns necessitate more controlled environments.

Integrating comprehensive data analytics platforms that support real-time monitoring and predictive maintenance will further enhance accuracy and efficiency. Initiatives to upgrade legacy systems with digital twin technologies should be accompanied by robust cybersecurity frameworks to safeguard against vulnerabilities. In addition, adopting a modular approach to solution development-where components, processes, and systems are continuously refined-can further streamline operational workflows.

It is also imperative to invest in skilled talent and foster partnerships with technology innovators to bridge the gap between traditional operational models and digital transformation. Organizations must not only focus on technological upgrades but also prioritize change management initiatives that facilitate smooth transitions for employees and stakeholders. In a rapidly evolving market, proactive and comprehensive strategy development is the key to sustaining a competitive advantage, making it essential for companies to remain at the forefront of innovation while maintaining rigorous operational standards.

Concluding Reflections on Industry Trends

In summary, the evolution of AI-powered digital twins represents a paradigm shift that is reshaping industries across the global landscape. The convergence of advanced analytics, real-time monitoring, and data-driven decision-making has created an ecosystem where operational efficiency is increasingly becoming intertwined with digital innovation. As the market segments reveal, the convergence of various factors-from product differentiation and deployment modalities to application-specific implementations and industry-specific needs-underscores the multidimensional growth potential of this technology.

Moreover, regional analyses indicate that diverse geographical dynamics are contributing to a vibrant and ever-changing market landscape. As companies continue to drive innovation, the blend of established industry giants and nimble startups promises to redefine market norms and unlock new opportunities for operational excellence. The strategic insights garnered from this analysis not only reinforce the importance of digital twin technology but also serve as a roadmap for future developments across industries.

Ultimately, by synthesizing pioneering technological advancements with robust market strategies, organizations are well-positioned to navigate the challenges of today while preparing strategically for the future. The journey towards fully integrated digital ecosystems is ongoing, and those who invest in innovative solutions today will be the trailblazers of tomorrow.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Increased focus on sustainable development goals boosting the use of AI-powered digital twins
      • 5.1.1.2. Rising adoption of digital transformation strategies fueling demand for AI-driven digital twins
    • 5.1.2. Restraints
      • 5.1.2.1. High initial costs associated with AI-powered digital twins
    • 5.1.3. Opportunities
      • 5.1.3.1. Enhancements in AI algorithms and machine learning techniques transforming digital twin capabilities
      • 5.1.3.2. Collaboration between tech vendors and startups to spur advancements in AI-driven digital twin solutions
    • 5.1.4. Challenges
      • 5.1.4.1. Navigating regulatory complexities that impact data privacy and usage in AI digital twin applications
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Product: Increasing usage of the component-level digital twins for real-time monitoring and maintenance predictions
    • 5.2.2. End-User Industry: Expanding adoption of the ai-powered-digital-twins across aerospace & automotive sectors
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. AI-powered Digital Twins Market, by Product

  • 6.1. Introduction
  • 6.2. Services
  • 6.3. Software

7. AI-powered Digital Twins Market, by Offering

  • 7.1. Introduction
  • 7.2. Component
  • 7.3. Process
  • 7.4. System

8. AI-powered Digital Twins Market, by Organization Type

  • 8.1. Introduction
  • 8.2. Large Enterprises
  • 8.3. Small & Medium Enterprises

9. AI-powered Digital Twins Market, by Deployment Mode

  • 9.1. Introduction
  • 9.2. Cloud-Based Solutions
  • 9.3. On-Premise Solutions

10. AI-powered Digital Twins Market, by Application

  • 10.1. Introduction
  • 10.2. Customization
  • 10.3. Decision Making
  • 10.4. Predictive Analytics
  • 10.5. Process Automation
  • 10.6. Real-Time Monitoring

11. AI-powered Digital Twins Market, by End-User Industry

  • 11.1. Introduction
  • 11.2. Aerospace & Automotive
  • 11.3. Agriculture
  • 11.4. Banking, Financial Services, and Insurance (BFSI)
  • 11.5. Construction
  • 11.6. Education
  • 11.7. Energy & Power
  • 11.8. Government & Public Sector
  • 11.9. Healthcare
  • 11.10. IT & Telecommunication
  • 11.11. Retail & Consumer Goods

12. Americas AI-powered Digital Twins Market

  • 12.1. Introduction
  • 12.2. Argentina
  • 12.3. Brazil
  • 12.4. Canada
  • 12.5. Mexico
  • 12.6. United States

13. Asia-Pacific AI-powered Digital Twins Market

  • 13.1. Introduction
  • 13.2. Australia
  • 13.3. China
  • 13.4. India
  • 13.5. Indonesia
  • 13.6. Japan
  • 13.7. Malaysia
  • 13.8. Philippines
  • 13.9. Singapore
  • 13.10. South Korea
  • 13.11. Taiwan
  • 13.12. Thailand
  • 13.13. Vietnam

14. Europe, Middle East & Africa AI-powered Digital Twins Market

  • 14.1. Introduction
  • 14.2. Denmark
  • 14.3. Egypt
  • 14.4. Finland
  • 14.5. France
  • 14.6. Germany
  • 14.7. Israel
  • 14.8. Italy
  • 14.9. Netherlands
  • 14.10. Nigeria
  • 14.11. Norway
  • 14.12. Poland
  • 14.13. Qatar
  • 14.14. Russia
  • 14.15. Saudi Arabia
  • 14.16. South Africa
  • 14.17. Spain
  • 14.18. Sweden
  • 14.19. Switzerland
  • 14.20. Turkey
  • 14.21. United Arab Emirates
  • 14.22. United Kingdom

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2024
  • 15.2. FPNV Positioning Matrix, 2024
  • 15.3. Competitive Scenario Analysis
    • 15.3.1. KION Group teams with NVIDIA and Accenture to transform warehouses using AI-powered digital twins
    • 15.3.2. Hyderabad airport becomes 1st in India to get AI-powered digital twin platform
    • 15.3.3. Fujitsu and Carnegie Mellon leverage AI digital twins to enhance 3D traffic analysis in Pittsburgh
  • 15.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. ABB Ltd.
  • 2. Accenture PLC
  • 3. Altair Engineering Inc.
  • 4. ANSYS, Inc.
  • 5. C3.ai, Inc.
  • 6. GE Vernova
  • 7. International Business Machines Corporation
  • 8. Kellton
  • 9. KION Group AG
  • 10. McKinsey & Company
  • 11. Nokia Corporation
  • 12. NVIDIA Corporation
  • 13. Robert Bosch GmbH
  • 14. SAP SE
  • 15. Siemens AG
  • 16. Sprinklr, Inc.
  • 17. Toobler Technologies.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제