시장보고서
상품코드
1677127

세계의 헬스케어 웨어러블 로봇 시장 : 신체 부위, 유형, 모듈, 용도, 최종사용자별 - 예측(2025-2030년)

Healthcare Wearable Robots Market by Body Part, Type, Module, Application, End-user - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 194 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

헬스케어 웨어러블 로봇 시장은 2024년 4억 6,275만 달러에서 2025년 5억 7,150만 달러에 이르고, 연평균 24.37% 성장하여 2030년에는 17억 1,260만 달러에 달할 것으로 예상됩니다.

주요 시장 통계
기준 연도 : 2024년 4억 6,275만 달러
추정 연도 : 2025년 5억 7,150만 달러
예측 연도 : 2030년 17억 1,260만 달러
CAGR(%) 24.37%

헬스케어 웨어러블 로봇은 실험적인 프로토타입에서 현대의 재활 및 이동 보조에 필수적인 장비로 빠르게 진화하고 있습니다. 이러한 진화는 생체역학, 로봇공학, 디지털 혁신을 융합하여 이동에 어려움을 겪는 사람들에게 전례 없는 지원을 제공하는 기술 발전에 힘입어 이루어지고 있습니다. 최근 몇 년동안 센서 기술, 인공지능, 시스템 통합의 발전에 힘입어 웨어러블 로봇의 적용이 급속도로 발전하고 있습니다.

이 주요 요약 보고서는 헬스케어 웨어러블 로봇의 역동적인 환경을 종합적으로 조사했습니다. 주요 동향, 시장 세분화, 지역 분석, 주요 기업 통찰력을 통해 이 신흥 시장의 현재와 미래에 대해 정리했습니다. 업계가 계속 진화하는 가운데, 다양한 임상 프로파일에서 환자 결과를 개선하기 위해 이러한 혁신을 활용하고자 하는 이해관계자들에게는 기술적 실현 요인과 시장 동력을 모두 이해하는 것이 필수적입니다.

빠르게 발전하는 이 분야는 끊임없는 기술 혁신으로 신경 외상 관련 운동 장애를 포함한 다양한 질환에 대한 수요 증가에 대응하고 있습니다. 탄탄한 연구와 민첩한 제품 개발의 결합을 통해 의료진은 보다 개인화되고 효과적인 재활 솔루션을 제공할 수 있게 되었습니다. 이 소개에서는 웨어러블 로봇의 개입이 전 세계 재활 패러다임을 재구성하는 데 있어 웨어러블 로봇의 중요성에 대해 자세히 논의할 수 있는 장을 마련하고자 합니다.

헬스케어 웨어러블 로봇 시장의 진화하는 역학 관계

최근 몇 년동안 헬스케어 웨어러블 로봇 분야는 모든 면에서 변화를 겪고 있습니다. 기술의 향상으로 전통적인 물리치료와 첨단 모빌리티 솔루션의 경계가 재정의되고 정밀 엔지니어링과 인간 중심 설계가 융합된 새로운 시대가 도래했습니다. 빠른 변화의 속도는 머신러닝 알고리즘의 통합, 간소화된 제어 시스템, 정교한 액추에이터 설계로 특징지어지며, 이는 환자 치료의 안전성과 효과성을 향상시키는 데 도움이 됩니다.

또한, 공학 혁신가, 임상 전문가, 연구 기관의 협업이 진행되면서 웨어러블 로봇의 성숙이 가속화되고 있습니다. 이러한 전략적 파트너십은 현재의 재활 문제를 해결할 뿐만 아니라 부상과 운동 장애를 예방적으로 관리할 수 있는 혁신적인 제품 설계의 기회를 열어주고 있습니다. 그 결과, 장치의 맞춤화, 실시간 모니터링을 위한 연결성, 다양한 치료 환경에서의 적응성 향상 등에 초점을 맞추면서 시장 환경이 재편되고 있습니다.

이러한 역동적인 진화는 규제 프레임워크, 안전 기준, 상환 정책이 끊임없이 변화하는 환경을 조성하고 있습니다. 이러한 변화는 의료기기가 임상적으로 효과적이고 다양한 사용자에게 안전하다는 것을 보장합니다. 의사결정권자들은 이제 차세대 헬스케어 웨어러블 로보틱스의 무대를 마련하기 위해 높은 정확도와 다양한 용도를 통합하는 기술에 투자해야 한다는 전략적 요구에 직면해 있습니다.

상세 세분화 분석으로 시장 차별화 촉진

시장 세분화에 대한 미묘한 검토를 통해 이러한 다양한 상황을 더 명확하게 이해할 수 있습니다. 신체 부위 측면에서 볼 때, 시장은 전신, 하체, 상체 구현에 걸쳐 면밀히 조사되고 있습니다. 이 중 전신 장치는 점점 더 많은 견인력을 얻고 있지만, 하체 및 상체 솔루션은 매우 특수한 재활 요구를 계속 충족시키고 있습니다. 마찬가지로 중요한 것은 로봇 공학의 유형에 따른 분류입니다. 경직된 로봇공학과 소프트 로봇공학을 비교하면, 각각의 설계 개념은 환자의 안전, 적응성, 사용 편의성 측면에서 뚜렷한 이점을 제공합니다.

또 다른 차별화는 장치를 통신 모듈, 제어 및 처리 모듈, 운동 및 작동 모듈, 동력 모듈로 분해하는 모듈 분해에서 찾아볼 수 있습니다. 이러한 계층적 구분은 웨어러블 로봇의 기술적 고도뿐만 아니라 기능적 다양성을 강조합니다. 응용 측면에서는 척수 손상, 뇌졸중, 외상성 뇌 손상과 같은 증상에 초점을 맞추고 있으며, 각각 고유한 임상 과제와 표적화된 기술 개입의 기회가 있습니다.

또한, 최종사용자 부문에서는 시설 요양과 전문 요양 모두로부터의 역동적인 통합이 강조되고 있습니다. 이 시장은 진료소 및 병원, 정부 기관 및 학술 연구센터, 재활센터 및 전문센터에 이르기까지 다양한 고객에게 서비스를 제공합니다. 이러한 통찰력은 각 부문의 매개변수가 시장 성장 촉진요인, 환자 니즈, 기술 도입 동향에 대한 중요한 단서를 제공하고, 궁극적으로 전략적 투자와 제품 혁신을 유도하는 방법을 보여줍니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

  • 시장 역학
    • 성장 촉진요인
    • 성장 억제요인
    • 기회
    • 과제
  • 시장 세분화 분석
  • Porter's Five Forces 분석
  • PESTEL 분석
    • 정치
    • 경제
    • 사회
    • 기술
    • 법률
    • 환경

제6장 헬스케어 웨어러블 로봇 시장 : 신체 부위별

  • 전신
  • 하반신
  • 상반신

제7장 헬스케어 웨어러블 로봇 시장 : 유형별

  • 리지드 로보틱스
  • 소프트 로보틱스

제8장 헬스케어 웨어러블 로봇 시장 : 모듈별

  • 통신 모듈
  • 제어 및 처리 모듈
  • 모션 및 액추에이션 모듈
  • 파워 모듈

제9장 헬스케어 웨어러블 로봇 시장 : 용도별

  • 척추 손상
  • 뇌졸중
  • 외상성 뇌손상

제10장 헬스케어 웨어러블 로봇 시장 : 최종사용자별

  • 클리닉 및 병원
  • 정부 및 학술 연구센터
  • 재활치료센터
  • 전문센터

제11장 아메리카의 헬스케어 웨어러블 로봇 시장

  • 아르헨티나
  • 브라질
  • 캐나다
  • 멕시코
  • 미국

제12장 아시아태평양의 헬스케어 웨어러블 로봇 시장

  • 호주
  • 중국
  • 인도
  • 인도네시아
  • 일본
  • 말레이시아
  • 필리핀
  • 싱가포르
  • 한국
  • 대만
  • 태국
  • 베트남

제13장 유럽, 중동 및 아프리카의 헬스케어 웨어러블 로봇 시장

  • 덴마크
  • 이집트
  • 핀란드
  • 프랑스
  • 독일
  • 이스라엘
  • 이탈리아
  • 네덜란드
  • 나이지리아
  • 노르웨이
  • 폴란드
  • 카타르
  • 러시아
  • 사우디아라비아
  • 남아프리카공화국
  • 스페인
  • 스웨덴
  • 스위스
  • 터키
  • 아랍에미리트(UAE)
  • 영국

제14장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 시나리오 분석
  • 전략 분석과 제안

기업 리스트

  • Astrek Innovations
  • Bioservo Technologies AB
  • Blatchford Group Ltd.
  • CYBERDYNE, INC.
  • Ekso Bionics Holdings, Inc.
  • Fillauer, Inc.
  • German Bionic Systems GmbH
  • Hanger, Inc.
  • Hocoma By DIH International
  • Hyundai Motor Company
  • Interactive Motion Technologies, Inc.
  • Lifeward, Inc.
  • Myomo Inc
  • OTTOBOCK SE & CO. KGaA
  • ReWalk Robotics Ltd.
  • Rex Bionics Ltd.
  • Samsung Electronics Co., Ltd.
  • Wandercraft SAS
  • Wearable Robotics S.r.l.
  • WIRobotics Inc.
  • Ossur hf
LSH 25.03.24

The Healthcare Wearable Robots Market was valued at USD 462.75 million in 2024 and is projected to grow to USD 571.50 million in 2025, with a CAGR of 24.37%, reaching USD 1,712.60 million by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 462.75 million
Estimated Year [2025] USD 571.50 million
Forecast Year [2030] USD 1,712.60 million
CAGR (%) 24.37%

Healthcare wearable robots have rapidly transitioned from experimental prototypes to vital instruments in modern rehabilitation and mobility assistance. This evolution is underpinned by technological strides that merge biomechanics, robotics, and digital innovation to offer unprecedented support for individuals facing mobility challenges. Recent years have witnessed a significant surge in the application of wearable robotics, largely inspired by advances in sensor technologies, artificial intelligence, and system integration, which have collectively propelled these devices into mainstream clinical and research settings.

This executive summary provides a comprehensive exploration of the dynamic environment of healthcare wearable robots. It delves into critical trends, market segmentation, regional analysis, and key company insights that collectively define the current and future state of this emerging market. As the industry continues to evolve, understanding both the technological enablers and market forces is essential for stakeholders who aim to harness these innovations to improve patient outcomes across diverse clinical profiles.

In this rapidly evolving field, continuous innovation is meeting rising demand from a range of medical conditions including mobility impairments related to neurological trauma. The convergence of robust research and agile product development is making it possible for healthcare practitioners to offer more personalized and effective rehabilitation solutions. This introduction sets the stage for a detailed discussion, foregrounding the significance of wearable robotic interventions in reshaping rehabilitation paradigms worldwide.

Evolving Dynamics in the Healthcare Wearable Robot Market

Recent years have seen transformative shifts that touch every aspect of the healthcare wearable robot field. Technological improvements have redefined the boundaries between conventional physical therapy and advanced mobility solutions, bringing forth a new era where precision engineering meets human-centric design. The rapid pace of change is characterized by the integration of machine learning algorithms, streamlined control systems, and refined actuator design that together offer enhanced safety and efficacy in patient care.

Furthermore, increased collaboration between engineering innovators, clinical experts, and research institutions has accelerated the maturation of wearable robotics. These strategic partnerships have opened up opportunities for innovative product designs that not only address current rehabilitation challenges but also pave the way for proactive management of injuries and mobility disorders. As a result, the market landscape is being reshaped with a focus on device customizability, connectivity for real-time monitoring, and improved adaptability in various therapeutic settings.

This evolving dynamic has fostered an environment in which regulatory frameworks, safety standards, and reimbursement policies are continually adapting. Changes in these areas ensure that the devices are both clinically effective and safe for a broad spectrum of users. Decision-makers are now confronted with a strategic imperative-to invest in technologies that merge high precision with versatile application, setting the stage for the next generation of healthcare wearable robotics.

In-depth Segmentation Analysis: Driving Market Differentiation

A nuanced examination of market segmentation provides a clearer understanding of this diverse landscape. When considered from the perspective of body part, the market is meticulously studied across full body, lower body, and upper body implementations. Among these, full body devices are gaining traction, yet lower body and upper body solutions continue to cater to highly specific rehabilitation needs. Equally important is the classification based on the type of robotics-comparing rigid robotics with soft robotics, where each design philosophy offers distinct advantages concerning patient safety, adaptability, and ease of use.

Further differentiation is observed in the modular breakdown, which dissects devices into communication modules, control and processing modules, motion and actuation modules, and power modules. This layered segmentation not only highlights the technical sophistication of wearable robots but also their functional versatility. In terms of application, the focus spans conditions such as spinal cord injury, stroke, and traumatic brain injury, each presenting unique clinical challenges and opportunities for targeted technological intervention.

Additionally, the end-user segmentation underscores the dynamic integration from both institutional and specialized care providers. The market serves a diverse clientele, from clinics and hospitals to government and academic research centers, as well as rehabilitation centers and specialty centers. These insights illustrate how each segmentation parameter offers critical clues about market drivers, patient needs, and technology adoption trends that ultimately guide strategic investments and product innovations.

Based on Body Part, market is studied across Full body, Lower body, and Upper body.

Based on Type, market is studied across Rigid Robotics and Soft Robotics.

Based on Module, market is studied across Communication Module, Control & Processing Module, Motion & Actuation Module, and Power Module.

Based on Application, market is studied across Spinal Cord Injury, Stroke, and Traumatic Brain Injury.

Based on End-user, market is studied across Clinics & Hospitals, Government & Academic Research Centers, Rehabilitation Centers, and Specialty Centers.

Regional Landscape and Geographic Variations

An analysis of the regional landscape further illuminates the global distribution and growth trajectories within the wearable robotics sector. In the Americas, established healthcare systems and a strong commitment to integrating advanced rehabilitation technologies support steady growth and continued adoption of wearable robotics. The region benefits from robust healthcare infrastructure and significant R&D investments, ensuring that technological advancements quickly translate into clinical practice.

Across Europe, the Middle East, and Africa, there is a confluence of conservative regulatory approaches and innovative research initiatives that together spur market evolution. These regions are witnessing increasing collaborations between public and private entities, which catalyze the development and deployment of wearable robotic solutions. Clinical and academic institutions in these areas are actively embracing technologies that promote patient-specific rehabilitation strategies.

In the Asia-Pacific, dynamic economic growth and a rapidly maturing healthcare sector play critical roles in propelling market expansion. Driven by a youthful demographic, rising awareness, and a strong focus on technological innovation, this region is positioned as a key player in the rollout of advanced medical robotics. Predicted to lead in terms of volume and future opportunities, Asia-Pacific remains a hotbed for investment and technological adoption in wearable robotics.

Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

Industry Leaders and Pioneers in Wearable Robotics

A snapshot of key companies in the market reveals an ecosystem rich in innovation and competitive vigor. Pioneers such as Astrek Innovations are reshaping design paradigms with breakthrough concepts, while Bioservo Technologies AB has garnered attention for its advanced control interfaces. The longstanding reputations of companies like Blatchford Group Ltd. and CYBERDYNE, INC. underscore the credibility and technological depth within the wearable robotics space.

Leading entities including Ekso Bionics Holdings, Inc. and Fillauer, Inc. have consistently pushed the envelope in developing systems that offer heightened mobility and improved patient outcomes. The commitment to excellence is further evidenced by the strategic advancements from German Bionic Systems GmbH and Hanger, Inc. Their efforts have translated into devices that not only enhance physical rehabilitation but also integrate seamlessly with existing clinical frameworks.

Noteworthy innovation is also driven by players such as Hocoma By DIH International and Hyundai Motor Company, which are setting new standards in terms of device flexibility and ergonomic design. Interactive Motion Technologies, Inc. and Lifeward, Inc. have emerged as influential voices, enriching the market with solutions that carefully balance technological sophistication with user-friendly designs. Companies like Myomo Inc and OTTOBOCK SE & CO. KGaA continue to refine the interface between robotics and human physiology, while ReWalk Robotics Ltd. and Rex Bionics Ltd. excel in improving patient autonomy through agile design adaptations.

The momentum is further sustained by global giants such as Samsung Electronics Co., Ltd. and pioneering specialized firms including Wandercraft SAS, Wearable Robotics S.r.l., WIRobotics Inc., and Ossur hf. Each of these organizations contributes unique strengths ranging from advanced materials and miniaturized electronics to integrative software systems. Their contributions collectively fortify the market's capability to offer scalable, customized wearable robotics solutions that cater to an ever-expanding patient demographic.

The report delves into recent significant developments in the Healthcare Wearable Robots Market, highlighting leading vendors and their innovative profiles. These include Astrek Innovations, Bioservo Technologies AB, Blatchford Group Ltd., CYBERDYNE, INC., Ekso Bionics Holdings, Inc., Fillauer, Inc., German Bionic Systems GmbH, Hanger, Inc., Hocoma By DIH International, Hyundai Motor Company, Interactive Motion Technologies, Inc., Lifeward, Inc., Myomo Inc, OTTOBOCK SE & CO. KGaA, ReWalk Robotics Ltd., Rex Bionics Ltd., Samsung Electronics Co., Ltd., Wandercraft SAS, Wearable Robotics S.r.l., WIRobotics Inc., and Ossur hf. Actionable Recommendations for Industry Leaders

Industry leaders are encouraged to adopt a dual strategy focusing on both innovation and market penetration. A primary recommendation is to enhance R&D investments that concentrate on modular design improvements, thereby capturing the unique advantages conferred by communication, control, motion, and power modules. Leaders should foster interdisciplinary collaborations that integrate biomedical engineering, data analytics, and patient care insights to develop devices that are both efficient and highly adaptive.

It is crucial to monitor regulatory trends and align product development with emerging global standards. Proactive engagement with policy makers and healthcare providers will help ensure that products not only meet clinical requirements but also comply with safety guidelines. Diversifying product portfolios to address specific conditions such as spinal cord injuries, strokes, and traumatic brain injuries will further meet evolving market demands.

Finally, real-time data integration and robust feedback loops from end-users-across clinics, academic research institutions, rehabilitation, and specialty centers-should be embedded into the innovation cycle. This continuous improvement process will secure competitive advantages and foster sustained adoption in an increasingly sophisticated market.

Conclusion: Navigating a Future of Unprecedented Innovation

The healthcare wearable robots market stands at a pivotal juncture characterized by significant technological breakthroughs and evolving clinical demand. The increasing acceptance of robotic solutions within healthcare is not simply a reflection of modernized treatment options but a testament to the interdisciplinary synergy that underpins this innovation. Detailed segmentation analysis-from body part to type, module, application, and end-user-reveals a market that is as complex as it is promising.

In parallel, regional assessments highlight that growth is globally distributed, with mature markets in the Americas, innovative coalitions in Europe, the Middle East and Africa, and high-growth potential in the Asia-Pacific region. Furthermore, a competitive landscape enriched by leading companies underscores the diversity of strategies employed to navigate and shape the market. Emphasis on integrating advanced control systems, ergonomic designs, and adaptive functionalities continues to drive significant improvements in patient care.

As the market evolves, stakeholders must remain agile, leveraging technological insights and pragmatic feedback to guide investment and development initiatives. Collectively, these insights point toward a future where wearable robotics play an increasingly central role in enhancing human capabilities and transforming healthcare delivery.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Increasing prevalence of chronic diseases necessitating need to healthcare wearable robots for long-term patient care and rehabilitation
      • 5.1.1.2. Growing preference for minimally invasive procedures and home-based patient care solutions demand for healthcare wearable robots
      • 5.1.1.3. Rising global awareness and acceptance of robotics as a viable healthcare assistive solution
    • 5.1.2. Restraints
      • 5.1.2.1. High development and manufacturing cost of advanced healthcare wearable robotics technology
    • 5.1.3. Opportunities
      • 5.1.3.1. Technological advances in healthcare wearable robots to improve device performance and precision
      • 5.1.3.2. Rising collaborations between tech innovators and healthcare institutions accelerate the development of wearable solutions
    • 5.1.4. Challenges
      • 5.1.4.1. Regulatory Hurdles and Compliance Issues associated with adoption of healthcare wearable robots
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Body Part: Increasing adoption of lower body wearable robots to improve walking stability and enhance posture
    • 5.2.2. End-user: Utilization of healthcare wearable robotics in clinics & hospitals
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Healthcare Wearable Robots Market, by Body Part

  • 6.1. Introduction
  • 6.2. Full body
  • 6.3. Lower body
  • 6.4. Upper body

7. Healthcare Wearable Robots Market, by Type

  • 7.1. Introduction
  • 7.2. Rigid Robotics
  • 7.3. Soft Robotics

8. Healthcare Wearable Robots Market, by Module

  • 8.1. Introduction
  • 8.2. Communication Module
  • 8.3. Control & Processing Module
  • 8.4. Motion & Actuation Module
  • 8.5. Power Module

9. Healthcare Wearable Robots Market, by Application

  • 9.1. Introduction
  • 9.2. Spinal Cord Injury
  • 9.3. Stroke
  • 9.4. Traumatic Brain Injury

10. Healthcare Wearable Robots Market, by End-user

  • 10.1. Introduction
  • 10.2. Clinics & Hospitals
  • 10.3. Government & Academic Research Centers
  • 10.4. Rehabilitation Centers
  • 10.5. Specialty Centers

11. Americas Healthcare Wearable Robots Market

  • 11.1. Introduction
  • 11.2. Argentina
  • 11.3. Brazil
  • 11.4. Canada
  • 11.5. Mexico
  • 11.6. United States

12. Asia-Pacific Healthcare Wearable Robots Market

  • 12.1. Introduction
  • 12.2. Australia
  • 12.3. China
  • 12.4. India
  • 12.5. Indonesia
  • 12.6. Japan
  • 12.7. Malaysia
  • 12.8. Philippines
  • 12.9. Singapore
  • 12.10. South Korea
  • 12.11. Taiwan
  • 12.12. Thailand
  • 12.13. Vietnam

13. Europe, Middle East & Africa Healthcare Wearable Robots Market

  • 13.1. Introduction
  • 13.2. Denmark
  • 13.3. Egypt
  • 13.4. Finland
  • 13.5. France
  • 13.6. Germany
  • 13.7. Israel
  • 13.8. Italy
  • 13.9. Netherlands
  • 13.10. Nigeria
  • 13.11. Norway
  • 13.12. Poland
  • 13.13. Qatar
  • 13.14. Russia
  • 13.15. Saudi Arabia
  • 13.16. South Africa
  • 13.17. Spain
  • 13.18. Sweden
  • 13.19. Switzerland
  • 13.20. Turkey
  • 13.21. United Arab Emirates
  • 13.22. United Kingdom

14. Competitive Landscape

  • 14.1. Market Share Analysis, 2024
  • 14.2. FPNV Positioning Matrix, 2024
  • 14.3. Competitive Scenario Analysis
    • 14.3.1. REEV secures USD 9.2M to advance wearable robotic mobility solutions
    • 14.3.2. Japan-Developed wearable robot suits aid injured
    • 14.3.3. Samsung unveils Bot Fit pioneering the next wave in healthcare wearable robots
  • 14.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Astrek Innovations
  • 2. Bioservo Technologies AB
  • 3. Blatchford Group Ltd.
  • 4. CYBERDYNE, INC.
  • 5. Ekso Bionics Holdings, Inc.
  • 6. Fillauer, Inc.
  • 7. German Bionic Systems GmbH
  • 8. Hanger, Inc.
  • 9. Hocoma By DIH International
  • 10. Hyundai Motor Company
  • 11. Interactive Motion Technologies, Inc.
  • 12. Lifeward, Inc.
  • 13. Myomo Inc
  • 14. OTTOBOCK SE & CO. KGaA
  • 15. ReWalk Robotics Ltd.
  • 16. Rex Bionics Ltd.
  • 17. Samsung Electronics Co., Ltd.
  • 18. Wandercraft SAS
  • 19. Wearable Robotics S.r.l.
  • 20. WIRobotics Inc.
  • 21. Ossur hf
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제