½ÃÀ庸°í¼­
»óǰÄÚµå
1677247

¼¼°èÀÇ ¹ÙÀÌ¿À¸Å½º ÇÃ¶ó½ºÆ½ ½ÃÀå(2025-2030³â) : Á¦Ç°, ÇüÅÂ, ¿ëµµ, ÃÖÁ¾ ÀÌ¿ë »ê¾÷º° ¿¹Ãø

Biomass Plastic Market by Product, Form, Application, End-Use Industry - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 199 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

¹ÙÀÌ¿À¸Å½º ÇÃ¶ó½ºÆ½ ½ÃÀåÀº 2024³â¿¡´Â 127¾ï 2,000¸¸ ´Þ·¯¸¦ ´Þ¼ºÇÏ¿´°í CAGR 8.43%·Î ¼ºÀåÇÏ¿© 2025³â¿¡´Â 137¾ï 5,000¸¸ ´Þ·¯, 2030³â¿¡´Â 206¾ï 8,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ¿¬µµ(2024) 127¾ï 2,000¸¸ ´Þ·¯
ÃßÁ¤¿¬µµ(2025) 137¾ï 5,000¸¸ ´Þ·¯
¿¹Ãø¿¬µµ(2030) 206¾ï 8,000¸¸ ´Þ·¯
CAGR(%) 8.43%

¹ÙÀÌ¿À¸Å½º ÇÃ¶ó½ºÆ½Àº ±âÁ¸ ¼®À¯ À¯·¡ ÇÃ¶ó½ºÆ½À» ´ëüÇÒ ¼ö ÀÖ´Â Áö¼Ó °¡´ÉÇÑ ¼±ÅÃÀ» Á¦°øÇÏ´Â Àç·á °úÇÐÀÇ Áß¿äÇÑ ÁøÈ­ÀÔ´Ï´Ù. ȯ°æ ¹®Á¦¿¡ ´ëÇÑ °ü½É Áõ°¡¿Í ¹ÙÀÌ¿À ±â¼úÀÇ ±Þ¼ÓÇÑ ¹ßÀüÀ¸·Î ¹ÙÀÌ¿À¸Å½º ÇÃ¶ó½ºÆ½ ½ÃÀåÀº Å« ±â¼¼¸¦ ´Ã¸®°í ÀÖ½À´Ï´Ù. ¾÷°èÀÇ ÀÌÇØ°ü°èÀÚµéÀº Àç»ý °¡´ÉÇÑ ¿ø·á¸¦ µµÀÔÇÔÀ¸·Î½á »ýÅÂÇÐÀû °úÁ¦¸¦ ÇØ°áÇÒ »Ó¸¸ ¾Æ´Ï¶ó Çõ½ÅÀûÀÎ ¿ëµµ¿Í »ç¿ëµÈ Á¦Ç° °ü¸®¸¦ °³¼±ÇÒ ¼ö ÀÖ´Â ±âȸµµ ¿­¾îÁÙ °ÍÀ̶ó°í ÀνÄÇϰí ÀÖ½À´Ï´Ù.

Áö³­ 10³â°£ ¿¬±¸ÀÚ¿Í Á¦Á¶¾÷üµéÀº ¹ÙÀÌ¿À¸Å½º ÇÃ¶ó½ºÆ½ÀÇ ¼º´ÉÀ» ÃÖÀûÈ­Çϱâ À§ÇØ ½Å±Ô ¿ø·áÀÇ È°¿ë°ú °¡°ø ±â¼úÀÇ °³¼±¿¡ ÁÖ·ÂÇØ ¿Ô½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½Å¿¡ ÀÇÇØ »ýºÐÇØ¼ºÀ» ³ôÀ̰í ź¼Ò ¹ßÀÚ±¹À» »è°¨Çϸ鼭 ¾ö°ÝÇÑ ¾÷°è ±âÁØÀ» ¸¸Á·ÇÏ´Â Á¦Ç°ÀÌ ¸¸µé¾îÁ® ¿Ô½À´Ï´Ù. »ó¾÷È­¿Í ´ë±Ô¸ð »ý»ê¿¡ ´ëÇÑ ±æÀº È­ÇÐ Àüȯ °úÁ¤ÀÇ Áøº¸, Àü·«Àû Á¦ÈÞ, ½ÃÀå ¿ªÇп¡ ´ëÇÑ ±íÀº ÀÌÇØ¿¡ ÀÇÇØ °³Ã´µÇ¾ú½À´Ï´Ù. ¿À´Ã³¯ ½ÃÀåÀº º¸´Ù ģȯ°æ Á¦Ç°À» ¿ä±¸ÇÏ´Â ¼ÒºñÀÚ ¼ö¿ä¿Í ȯ°æ Æó±â¹°ÀÇ °¨¼Ò¸¦ ¸ñÇ¥·Î ÇÏ´Â ±ÔÁ¦ ´ç±¹ÀÇ ¾Ð·Â¿¡ ÀÇÇØ ¿òÁ÷À̴ Ư¡À» º¸¿©ÁÝ´Ï´Ù.

¾÷°è°¡ ¼øÈ¯Çü °æÁ¦·Î ÀüȯÇϸ鼭 ¹ÙÀÌ¿À¸Å½º ÇÃ¶ó½ºÆ½Àº Áö¼Ó °¡´ÉÇÑ °³¹ßÀÇ ÇÙ½ÉÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ÀÌ ÀüȯÀº Á¦Á¶ ±â¼úÀ» ¹Ù²Ü»Ó¸¸ ¾Æ´Ï¶ó °ø±Þ¸Á°ú ¼ÒºñÀÚ ÇൿÀ» À籸¼ºÇÕ´Ï´Ù. Á¦Á¶¾÷ü °¢»ç´Â ¼º´ÉÀ» À¯ÁöÇϸ鼭 ¹ÙÀÌ¿À¸Å½º ¿ø·á¸¦ Ȱ¿ëÇÏ´Â ¹ÙÀÌ¿À¸Å½º ´ëü ÇÃ¶ó½ºÆ½ÀÇ ¿¬±¸ °³¹ß¿¡ ´ëÇÑ ÅõÀÚ¸¦ ´Ã·Á¼­ ÇÃ¶ó½ºÆ½ ¿À¿°°ú ÀÚ¿ø °í°¥¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ¿ì·Á¿¡ ´ëóÇϰí ÀÖ½À´Ï´Ù. ¼­¹®¿¡¼­´Â ¹ÙÀÌ¿À¸Å½º ÇÃ¶ó½ºÆ½ÀÇ Çö»óÀ» Á¤ÀÇÇÏ´Â ½ÃÀå µ¿Çâ, ¼¼ºÐÈ­ Àü·« ¹× Áö¿ª °ÝÂ÷¸¦ Á¾ÇÕÀûÀ¸·Î ºÐ¼®ÇÕ´Ï´Ù.

¹ÙÀÌ¿À¸Å½º ÇÃ¶ó½ºÆ½ ½ÃÀå ÁöÇüÀ» Çü¼ºÇÏ´Â Àüȯ±â

¹ÙÀÌ¿À¸Å½º ÇÃ¶ó½ºÆ½ ½ÃÀåÀº °æÁ¦, ȯ°æ ¹× ±ÔÁ¦ÀÇ °¢ ¿äÀο¡ µû¶ó Å©°Ô º¯È­Çϰí ÀÖ½À´Ï´Ù. ±Þ¼ÓÇÑ ±â¼ú Çõ½Å°ú ȯ°æ ÀǽÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó Á¦Ç° °³¹ß°ú ¼ÒºñÀÚ ¼ö¿äÀÇ ÆÐ·¯´ÙÀÓ º¯È­°¡ ÀϾ°í ÀÖ½À´Ï´Ù. ¾÷°èÀÇ ¸®´õµéÀº ±â¾÷µéÀÌ Á¦Á¶ °øÁ¤ÀÇ Çö´ëÈ­¿¡ ÅõÀÚÇϰí Á¦Ç°ÀÇ ¶óÀÌÇÁ»çÀÌŬ Æò°¡¸¦ Áß½ÃÇÏ´Â °¡¿îµ¥, Áö¼Ó °¡´ÉÇÑ Àç·áÀÇ Ã¤¿ëÀÌ °¡¼ÓµÇ°í ÀÖÀ½À» ¸ñ°ÝÇϰí ÀÖ½À´Ï´Ù.

ÀÌ·¯ÇÑ Å« º¯È­´Â ¿©·¯ °è±â·Î ½ÃÀ۵Ǿú½À´Ï´Ù. ´Ù¾çÇÑ ¼¼°è ½ÃÀåÀÇ Á¤Ã¥ÀÔ¾ÈÀÚµéÀº Àç»ý ºÒ°¡´ÉÇÑ ÀÚ¿ø¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀ̱â À§ÇØ ´õ¿í ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦¸¦ ½ÃÇàÇϱ⠽ÃÀÛÇß½À´Ï´Ù. µ¿½Ã¿¡ ¼ÒºñÀÚÀÇ ¼±È£µµ´Â ȯ°æ ºÎÇÏ °¨¼Ò¸¦ ¾à¼ÓÇÏ´Â Á¦Ç°À¸·Î Á¡Á¡ ±â¿ï°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±ÔÁ¦±â°ü°ú ÃÖÁ¾ »ç¿ëÀÚ ¸ðµÎÀÇ µ¿½ÃÀûÀÎ ÀÛ¾÷À» ÅëÇØ Á¦Á¶¾÷ü´Â Áö¼Ó °¡´É¼ºÀ» º¸´Ù ¿øÈ°ÇÏ°Ô ÇÙ½É ¾÷¹«¿¡ ÅëÇÕÇÒ Çʿ䰡 ÀÖ½À´Ï´Ù.

°Ô´Ù°¡ È­ÇаøÇаú °øÁ¤°øÇÐÀÇ Áøº¸´Â ¹ÙÀÌ¿À¸Å½º ÇÃ¶ó½ºÆ½ÀÇ °æÀï·ÂÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. »õ·Î¿î ¹æ¹ý·ÐÀº ±âÁ¸ ÇÃ¶ó½ºÆ½ÀÇ ±â´É¼ºÀ» ÀçÇöÇÒ »Ó¸¸ ¾Æ´Ï¶ó Á¾Á¾ À̸¦ ´É°¡ÇÏ´Â °í¼º´É Àç·áÀÇ °³¹ßÀ» ¿ëÀÌÇÏ°Ô ÇÕ´Ï´Ù. È®À强°ú ºñ¿ëÈ¿À²¼º¿¡ ÁßÁ¡À» µÐ °á°ú, ¿ø·á ÃßÃâ¿¡¼­ ÃÖÁ¾ Á¦Ç° À¯Åë¿¡ À̸£±â±îÁö ¹ë·ùüÀÎÀÇ ¸ðµç ´Ü°è¿¡¼­ Çõ½ÅÀÌ ÀϾ°í ÀÖ½À´Ï´Ù. ÀÌ Çõ½ÅÀº ½ÃÀå Àü·«À» Çü¼ºÇÏ°í ¼­·Î ´Ù¸¥ »ê¾÷ °£ÀÇ Çù¾÷À» ÃËÁøÇÏ¿© »ý»ê °øÁ¤¿¡¼­ ÀÚµ¿È­ ¹× µ¥ÀÌÅÍ ºÐ¼®°ú °°Àº µðÁöÅÐ ±â¼úÀÇ ÅëÇÕÀ» À§ÇÑ ±æÀ» ¿­°í ÀÖ½À´Ï´Ù.

ÅõÀÚÀÚµéÀº ÀÌÁ¦ Áö¼Ó °¡´É¼º°ú ¼öÀͼºÀÌ ´õ ÀÌ»ó »ó¹ÝµÇ´Â °ÍÀÌ ¾Æ´Ï¶ó´Â Æø³ÐÀº ÄÁ¼¾¼­½º¸¦ ¹Ý¿µÇÏ¿© ÀÌ º¯È­¸¦ ¼±µµÇϴ ż¼°¡ °®Ãß¾îÁø ±â¾÷¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ȯ°æÀÇ Áö¼Ó °¡´É¼ºÀÌ ¼¼°è °úÁ¦ÀÇ ÃÖÀü¼±¿¡ ÀÖ´Â ÇöÀç, ¹ÙÀÌ¿À¸Å½º ÇÃ¶ó½ºÆ½ ºÎ¹®Àº ¾÷°è Ç¥ÁØÀ» ÀçÁ¤ÀÇÇÏ°í °¡±î¿î ¹Ì·¡¿¡ »õ·Î¿î ½ÃÀå ¿ªÇÐÀ» ÃÊ·¡ÇÏ´Â ±Þ°ÝÇÑ º¯È­ÀÇ ¾Õ¿¡ ÀÖ½À´Ï´Ù.

»ó¼¼ÇÑ ½ÃÀå ¼¼ºÐÈ­¿¡¼­ ¾òÀº ÁÖ¿ä ÀλçÀÌÆ®

¹ÙÀÌ¿À¸Å½º ÇÃ¶ó½ºÆ½ ½ÃÀåÀÇ »ó¼¼ÇÑ ¼¼ºÐÈ­ ºÐ¼®À» ÅëÇØ ½ÃÀå ¿ªÇÐÀ» ÀÌÇØÇϰí Àü·«Àû ÀÇ»ç°áÁ¤ÀÇ ÁöħÀÌ µÇ´Â º¹ÀâÇÑ Â÷º°È­ °èÃþÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. Á¦Ç° ±â¹Ý ¼¼ºÐÈ­¿¡¼­ ½ÃÀåÀº »ýºÐÇØ¼º ¹üÁÖ¿Í ºñ»ýºÐÇØ¼º ¹üÁÖ·Î ³ª´¹´Ï´Ù. »ýºÐÇØ¼º Ä«Å×°í¸®´Â Æú¸®ºÎÆ¿·»¼÷½Ã³×ÀÌÆ®, Æú¸®±Û¸®ÄÝ»ê, Æú¸®ÇÏÀ̵å·Ï½Ã¾ËÄ«³ë¿¡ÀÌÆ®, Æú¸®À¯»ê, ÀüºÐ È¥ÇÕ¹° µî¿¡ °ÉÃÄ Á¦Ç°À» ¸é¹ÐÈ÷ Á¶»çÇß½À´Ï´Ù. ÀÌ·¯ÇÑ Àç·áµéÀº °¢°¢ ƯÁ¤ ¿ëµµ ¹× »ç¿ë ½Ã³ª¸®¿À¿¡ ÀûÇÕÇÑ µ¶Æ¯ÇÑ Æ¯¼ºÀ» °¡Áö°í ÀÖÀ¸¸ç, ÀÌ¿¡ µû¶ó ´Ù¾çÇÑ Á¦Ç°ÀÌ »ý¼ºµË´Ï´Ù. À̿ʹ ´ëÁ¶ÀûÀ¸·Î, ºñ»ýºÐÇØ¼º Ä«Å×°í¸®´Â ¹ÙÀÌ¿ÀÆú¸®¾Æ¹Ìµå, ¹ÙÀÌ¿ÀÆú¸®¿¡Æ¿·», ¹ÙÀÌ¿ÀÆú¸®¿¡Æ¿·»Å×·¹ÇÁÅ»·¹ÀÌÆ®, ¹ÙÀÌ¿ÀÆú¸®ÇÁ·ÎÇÊ·», Æú¸®Æ®¸®¸ÞÆ¿·»Å×·¹ÇÁÅ»·¹ÀÌÆ® µîÀÇ ÇÏÀ§ À¯Çü¿¡ ´ëÇØ ¶È°°ÀÌ Á¤È®ÇÏ°Ô ºÐ¼®ÇÕ´Ï´Ù. ÀÌ µÎ °¡Áö Á¢±Ù¹ýÀº ´Ù¾çÇÑ °øÁ¤°ú ¿ø·á°¡ Àü¹ÝÀûÀÎ ¼º´É°ú ½ÃÀå ¼ö¿ë¼º¿¡ ¾î¶»°Ô ±â¿©ÇÏ´ÂÁö¿¡ ´ëÇÑ Áß¿äÇÑ ÀλçÀÌÆ®¸¦ Á¦°øÇÕ´Ï´Ù.

½ÃÀå ¼¼ºÐÈ­´Â Á¦Ç° Â÷¿øÀ» ³Ñ¾î Æû ÆÑÅͱîÁö È®ÀåµË´Ï´Ù. ¹ë·ùüÀÎÀÇ °¢ ´Ü°è´Â »ýºÐÇØ¼º ºñ´ÒºÀÅõ, º´, Çʸ§, ½Äǰ ¿ë±â¿Í °°Àº ´Ù¾çÇÑ Á¦Ç° ÇüÅÂÀÇ ¿µÇâÀ» ¹Þ½À´Ï´Ù. ÀÌ·¯ÇÑ ÇüÅ´ ¹ÙÀÌ¿À¸Å½º ÇÃ¶ó½ºÆ½ÀÇ ´Ù¾ç¼ºÀ» º¸¿©ÁÖ¸ç ´Ù¾çÇÑ ÃÖÁ¾ »ç¿ëÀÚ ¿ëµµ¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃæÁ·ÇÕ´Ï´Ù. µðÀÚÀΰú ±â´É¼ºÀÇ Çõ½Å¿¡¼­ ÆÄ»ýµÈ Çü»ó ±â¹Ý ¼¼ºÐÈ­´Â ¹ÙÀÌ¿À¸Å½º ÇÃ¶ó½ºÆ½ÀÌ ÀÏ»ó Á¦Ç° ¹× »ê¾÷ ÀÀ¿ë ºÐ¾ßÀÇ ´Ù¾çÇÑ ¿ä±¸¿¡ ºÎÀÀÇϱâ À§ÇØ ¾î¶»°Ô ÁøÈ­ÇÏ´ÂÁö¿¡ ´ëÇÑ Áß¿äÇÑ ÀλçÀÌÆ®¸¦ Á¦°øÇÕ´Ï´Ù.

¶ÇÇÑ ¿ëµµº° ¼¼ºÐÈ­¿¡¼­´Â ÇöÀúÇÑ º¯¸ð¸¦ ÀÌ·ç°í ÀÖ´Â ºÐ¾ß¸¦ ºÐ¼®Çϰí ÀÖ½À´Ï´Ù. 3D ÇÁ¸°ÆÃ, »çÃâ ¼ºÇü, ´Ü¿­Àç ¹× ¹è°üÀÇ Æ¯¼ö ¿ëµµ¿Í °°Àº Ãֽбâ¼ú¿¡ ´ëÇÑ ¹ÙÀÌ¿À¸Å½º ÇÃ¶ó½ºÆ½ÀÇ Ã¤¿ëÀº ÀÌ Àç·áÀÇ ÀûÀÀ¼ºÀ» µÞ¹ÞħÇÕ´Ï´Ù. °¢ ¿ëµµ¿¡´Â µ¶Æ¯ÇÑ °úÁ¦¿Í ±âȸ°¡ ÀÖÀ¸¸ç, Á¦Á¶¾÷ü´Â ¼º´É°ú Áö¼Ó °¡´É¼ºÀÇ ±ÕÇüÀ» °í·ÁÇÑ ¹èÇÕÀ» Á¶Á¤ÇÒ Çʿ䰡 ÀÖ½À´Ï´Ù. ÀÌ »ó¼¼ÇÑ ºÐ¼®À» ÅëÇØ Àç·á °úÇаú ¿£Áö´Ï¾î¸µ °øÁ¤ÀÇ »óÈ£ÀÛ¿ëÀ» °­Á¶Çϰí, ¹ÙÀÌ¿À¸Å½º ÇÃ¶ó½ºÆ½ÀÇ ÁøÈ­°¡ º¸´Ù ±¤¹üÀ§ÇÑ ±â¼úÀÇ Áøº¸¿Í ¾î¶»°Ô ¾ôÇô ÀÖ´ÂÁö¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

¶ÇÇÑ ÃÖÁ¾ ÀÌ¿ë »ê¾÷À» ±â¹ÝÀ¸·Î ÇÑ ºÐ¼®À¸·Î ¼¼ºÐÈ­ »óȲÀÌ ´õ¿í dzºÎÇØÁ³½À´Ï´Ù. ³ó¾÷, ÀÚµ¿Â÷, °Ç¼³, ¼ÒºñÀç, ÇコÄɾî, Æ÷Àå, ¼¶À¯ µî Áß¿äÇÑ ¼½ÅͰ¡ ´Ù¾çÇÑ ÇüÅ·Π¼ö¿ä¸¦ °ßÀÎÇϰí ÀÖ½À´Ï´Ù. Æ÷Àå ¼Ö·ç¼Ç¿¡ ¿ä±¸µÇ´Â »ýºÐÇØ¼º Çâ»ó°ú ÀÚµ¿Â÷ ºÎǰ¿¡ ¿ä±¸µÇ´Â °ß°í¼º µî °¢ »ê¾÷ ºÐ¾ß´Â ¹ÙÀÌ¿À¸Å½º ÇÃ¶ó½ºÆ½ÀÇ µ¶Æ¯ÇÑ Æ¯¼ºÀ¸·ÎºÎÅÍ ÇýÅÃÀ» ´©¸®°í ÀÖ½À´Ï´Ù. ÀÌ ´Ù¸éÀû ¼¼ºÐÈ­ÀÇ Æ²Àº Æ´»õ ½ÃÀåÀ» ÆÄ¾ÇÇÏ°í ¸¶ÄÉÆÃ Àü·«À» Á¶Á¤ÇÏ¸ç ¹Ì·¡ µ¿ÇâÀ» ¿¹ÃøÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • ¼¼°èÀûÀ¸·Î ³ô¾ÆÁö´Â ÇÃ¶ó½ºÆ½ ¿À¿°°ú Æó±â¹° °ü¸®¿¡ ´ëÇÑ ¿ì·Á
      • ȯ°æ ÀǽÄÀÇ °íÁ¶¿Í Áö¼Ó °¡´ÉÇÑ ¼ÒÀçÀÇ ¼ö¿ä
      • Àç»ý °¡´É ÀÚ¿øÀÇ ÀÌ¿ëÀ» ÃËÁøÇÏ´Â ¼øÈ¯Çü °æÁ¦ÀÇ °³³ä¿¡ ´ëÇÑ ¼¼°èÀûÀÎ ÁÖ¸ñ °íÁ¶
    • ¾ïÁ¦¿äÀÎ
      • ¹ÙÀÌ¿À¸Å½º ÇÃ¶ó½ºÆ½ ¿ø·áÀÇ ÃßÃâ°ú °¡°øÀÇ º¹À⼺
    • ±âȸ
      • Æ÷Àå¿ë ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½ °³¹ßÀÇ Áö¼ÓÀûÀÎ ¹ßÀü
      • ¹ÙÀÌ¿À¸Å½º ÇÃ¶ó½ºÆ½ÀÇ ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß ÀÀ¿ë È®´ë
    • °úÁ¦
      • ´Ù¾çÇÑ ¿ëµµ¿¡¼­ ¹ÙÀÌ¿À¸Å½º ÇÃ¶ó½ºÆ½ÀÇ Ç°Áú°ú ³»±¸¼º¿¡ ´ëÇÑ ¿ì·Á
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
    • Á¦Ç° : Áö¼Ó °¡´ÉÇϰí ȯ°æÄ£È­ÀûÀÎ ¼Ö·ç¼ÇÀ¸·Î »ýºÐÇØ¼º Á¦Ç°¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ¼±È£µµ »ó½Â
    • ÃÖÁ¾ ÀÌ¿ë »ê¾÷ : »ýºÐÇØ¼º Ư¼º¿¡ ÀÇÇØ Æ÷Àå ¾÷°è¿¡¼­ ¹ÙÀÌ¿À¸Å½º ÇÃ¶ó½ºÆ½ ÀÌ¿ë È®´ë
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡
    • °æÁ¦
    • »çȸ
    • ±â¼ú
    • ¹ý·ü
    • ȯ°æ

Á¦6Àå ¹ÙÀÌ¿À¸Å½º ÇÃ¶ó½ºÆ½ ½ÃÀå : Á¦Ç°º°

  • »ýºÐÇØ¼º
    • Æú¸®ºÎÆ¿·»¼÷½Ã³×ÀÌÆ®
    • Æú¸®±Û¸®ÄÝ»ê
    • Æú¸®ÇÏÀ̵å·Ï½Ã¾ËÄ­»ê
    • Æú¸®À¯»ê
    • ÀüºÐ ºí·»µå
  • »ýºÐÇØ¼º ¾øÀ½
    • ¹ÙÀÌ¿ÀÆú¸®¾Æ¹Ìµå
    • ¹ÙÀÌ¿ÀÆú¸®¿¡Æ¿·»
    • ¹ÙÀÌ¿ÀÆú¸®¿¡Æ¿·»Å×·¹ÇÁÅ»·¹ÀÌÆ®
    • ¹ÙÀÌ¿ÀÆú¸®ÇÁ·ÎÇÊ·»
    • Æú¸®Æ®¸®¸ÞÆ¿·»Å×·¹ÇÁÅ»·¹ÀÌÆ®

Á¦7Àå ¹ÙÀÌ¿À¸Å½º ÇÃ¶ó½ºÆ½ ½ÃÀå : Çüź°

  • »ýºÐÇØ¼º ºñ´ÒºÀÅõ
  • º´
  • Çʸ§
  • ½Äǰ ¿ë±â

Á¦8Àå ¹ÙÀÌ¿À¸Å½º ÇÃ¶ó½ºÆ½ ½ÃÀå : ¿ëµµº°

  • 3D ÇÁ¸°ÆÃ
  • »çÃâ ¼ºÇü
  • ´Ü¿­Àç ¹× ¹è°ü

Á¦9Àå ¹ÙÀÌ¿À¸Å½º ÇÃ¶ó½ºÆ½ ½ÃÀå : ÃÖÁ¾ ÀÌ¿ë »ê¾÷º°

  • ³ó¾÷
  • ÀÚµ¿Â÷
  • °Ç¼³
  • ¼ÒºñÀç
  • ÇコÄɾî
  • Æ÷Àå
  • ¼¶À¯

Á¦10Àå ¾Æ¸Þ¸®Ä« ¹ÙÀÌ¿À¸Å½º ÇÃ¶ó½ºÆ½ ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦11Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¹ÙÀÌ¿À¸Å½º ÇÃ¶ó½ºÆ½ ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦12Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ¹ÙÀÌ¿À¸Å½º ÇÃ¶ó½ºÆ½ ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦13Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®(2024)
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º(2024)
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
  • Àü·« ºÐ¼®°ú Á¦¾È

±â¾÷ ¸ñ·Ï

  • ANKOR Bioplastics
  • Arkema SA
  • Asahi Kasei Corporation
  • Avantium NV
  • BASF SE
  • Biobent Polymers
  • Biome Bioplastics Limited
  • Braskem
  • Cardia Bioplastics
  • Danimer Scientific
  • FKuR Kunststoff GmbH
  • Fujitsu Limited
  • Green Dot Bioplastics
  • Hanwha Corporation
  • Henan Yinfeng Plastic Co., Ltd.
  • Kingfa Sci. & Tech. Co., Ltd.
  • Kuraray Co., Ltd.
  • LG Chem Ltd.
  • Mitsubishi Chemical Corporation
  • NatureWorks LLC
  • Neste Corporation
  • Novamont SpA
  • Shenzhen Esun Industrial Co., Ltd.
  • SKC Co.
  • Sumitomo Chemical Co., Ltd.
  • Teijin Limited
  • Toray Industries, Inc.
  • TotalEnergies Corbion bv
  • Trellis Earth Products, Inc.
  • Yield10 Bioscience, Inc.
CSM 25.03.21

The Biomass Plastic Market was valued at USD 12.72 billion in 2024 and is projected to grow to USD 13.75 billion in 2025, with a CAGR of 8.43%, reaching USD 20.68 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 12.72 billion
Estimated Year [2025] USD 13.75 billion
Forecast Year [2030] USD 20.68 billion
CAGR (%) 8.43%

Biomass plastics represent a significant evolution in material science, offering a sustainable alternative to traditional petroleum-based plastics. With the increasing environmental concerns and rapid advancements in bio-based technologies, the market for biomass plastics has gained tremendous momentum. Industry stakeholders now recognize that the incorporation of renewable raw materials not only addresses ecological challenges but also opens up opportunities for innovative applications and improved end-of-life management.

Over the past decade, researchers and manufacturers have focused on harnessing novel feedstocks and refining processing techniques to optimize the performance of biomass plastics. This infusion of innovation has resulted in products that meet rigorous industry standards while offering enhanced biodegradability and a reduced carbon footprint. The pathway to commercialization and large-scale production has been paved by advancements in chemical conversion processes, strategic collaborations, and a deeper understanding of market dynamics. Today, the market exhibits characteristics driven by both consumer demand for greener products and regulatory pressures aimed at reducing environmental waste.

As the industry transitions towards a circular economy, biomass plastics emerge as a cornerstone of sustainable development. This transformative shift is not only altering manufacturing methodologies but is also reshaping supply chains and consumer behavior. Manufacturers are increasingly investing in the research and development of biomass alternatives that leverage bio-based feedstocks while maintaining performance. By doing so, they are addressing longstanding concerns related to plastic pollution and resource depletion. This introductory discussion sets the stage for a comprehensive analysis of the market trends, segmentation strategies, and regional disparities that define the current landscape of biomass plastics.

Transformative Shifts Shaping the Biomass Plastic Market Landscape

The market for biomass plastics has experienced transformative shifts driven by compelling economic, environmental, and regulatory factors. Rapid technological innovation combined with heightened environmental awareness has set the stage for a paradigm shift in product development and consumer demand. Industry leaders are witnessing accelerated adoption of sustainable materials as companies invest in the modernization of manufacturing processes and emphasize product lifecycle assessments.

Several catalysts have initiated these profound changes. Policy makers across various global markets have started implementing stricter environmental regulations to reduce reliance on non-renewable resources. At the same time, consumer preferences are increasingly leaning towards products that promise reduced environmental impact. This simultaneous push from both regulatory bodies and end users is compelling manufacturers to integrate sustainability into their core operations more seamlessly.

In addition, advancements in chemical and process engineering are driving the competitive edge of biomass plastics. Novel methodologies have facilitated the creation of high-performance materials that can not only replicate but often exceed the functionality of conventional plastics. The emphasis on scalability and cost efficiency has led to innovation across every stage of the value chain - from raw material extraction to end product distribution. This innovation is shaping market strategies, fostering cross-industry collaborations, and paving the way for the integration of digital technologies such as automation and data analytics in production processes.

Investors are now placing their bets on companies that are well-positioned to lead this transformation, reflecting a broad consensus that sustainability and profitability are no longer mutually exclusive. With environmental sustainability now at the forefront of global agendas, the biomass plastics sector is poised to witness radical shifts that will redefine industry standards and lead to new market dynamics in the foreseeable future.

Key Insights Derived from Detailed Market Segmentation

An in-depth segmentation analysis of the biomass plastic market reveals complex layers of differentiation that are instrumental in understanding market dynamics and guiding strategic decision-making. The product-based segmentation bifurcates the market into the biodegradable and non-biodegradable categories. Under the biodegradable category, products are meticulously studied across variants such as polybutylene succinate, polyglycolic acid, polyhydroxyalkanoate, polylactic acid, and starch blends. Each of these variants offers unique properties that make them suitable for specific applications and usage scenarios, thereby creating a diversified product landscape. In contrast, the non-biodegradable category is dissected with equal precision, examining sub-types that include bio-polyamide, bio-polyethylene, bio-polyethylene terephthalate, bio-polypropylene, and polytrimethylene terephthalate. This dual approach provides key insights into how different processes and raw materials contribute to overall performance and market acceptance.

Beyond the product dimension, the market segmentation extends to the form factor. Every stage of the value chain is impacted by different product formats including biodegradable bags, bottles, films, and food containers. These forms highlight the versatility of biomass plastics, addressing demands of various end user applications. Informed by innovation in design and functionality, the form-based segmentation provides critical insight into how biomass plastics are evolving to meet the varied requirements of everyday products and industrial uses.

Furthermore, the application-based segmentation delves into areas that are witnessing significant transformation. The adoption of biomass plastics in modern technologies such as 3D printing, injection molding, and specialized applications in insulation and piping underscores the material's adaptability. Each application offers a unique set of challenges and opportunities, driving manufacturers to tailor formulations that balance performance with sustainability. This detailed analysis underscores the interplay between material science and engineering processes, revealing how the evolution of biomass plastics is interwoven with broader technological advancements.

The segmentation landscape is further enriched by analyses based on the end-use industry. Critical sectors including agriculture, automotive, construction, consumer goods, healthcare, packaging, and textiles are driving demand in diverse ways. Each industry segment benefits from the unique properties of biomass plastics, whether it is the enhanced biodegradability for packaging solutions or the robustness required for automotive components. This multifaceted segmentation framework is crucial for identifying niche opportunities, tailoring marketing strategies, and forecasting future trends, ensuring that industry players can align production capacities and innovation pipelines with evolving market needs.

Based on Product, market is studied across Biodegradable and Non-Biodegradable. The Biodegradable is further studied across Polybutylene Succinate, Polyglycolic Acid, Polyhydroxyalkanoate, Polylactic Acid, and Starch Blends. The Non-Biodegradable is further studied across Bio-Polyamide, Bio-Polyethylene, Bio-Polyethylene Terephthalate, Bio-Polypropylene, and Polytrimethylene Terephthalate.

Based on Form, market is studied across Biodegradable Bags, Bottles, Films, and Food Containers.

Based on Application, market is studied across 3D Printing, Injection Molding, and Insulation & Piping.

Based on End-Use Industry, market is studied across Agriculture, Automotive, Construction, Consumer Goods, Healthcare, Packaging, and Textiles.

Regional Insights: Analyzing Global Market Dynamics

The global landscape for biomass plastics is marked by distinct regional profiles that shape both opportunities and challenges. In the Americas, a dynamic mix of mature markets and emerging trends propels growth. The region demonstrates significant potential driven by robust industrial infrastructures, progressive policy frameworks, and increasing consumer demand for sustainable products. This vibrant environment encourages research, development, and commercialization initiatives that are fundamental to the success of biomass plastic products.

In the Europe, Middle East & Africa region, the regulatory environment plays a pivotal role in shaping market behavior. Here, stringent environmental standards and ambitious sustainability targets have spurred investments in green technologies and cleaner production processes. The synthesis of strict legal mandates with consumer advocacy for eco-friendly alternatives fosters an active market where innovations in biomass plastics are rapidly adopted and scaled. This region's emphasis on environmental stewardship not only accelerates technological advancements but also creates a fertile ground for cross-border collaborations that drive global best practices.

Asia-Pacific, on the other hand, is emerging as a bellwether for industrial transformation due to its rapid urbanization and expanding manufacturing bases. Accelerated economic growth, coupled with supportive government initiatives, has resulted in a significant shift toward sustainable production methods. The prognostications for this region indicate that enhanced investments in infrastructure and research will further catalyze the integration of biomass plastic solutions into a wide range of industries. Collectively, these regional insights underscore the heterogeneity of the global market, highlighting how localized trends are contributing to a broader narrative of sustainable innovation and market expansion.

Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The competitive landscape of the biomass plastic market is fortified by the presence of numerous pioneering companies that are actively shaping industry trends through technological innovations, product diversification, and strategic investments. Major players include ANKOR Bioplastics and Arkema SA, which have been at the forefront of harnessing technology to enhance material properties and optimize cost efficiency. Companies such as Asahi Kasei Corporation, Avantium N.V., and BASF SE have been instrumental in driving advancements in bio-based chemicals and polymer technologies, thereby accelerating the adoption of biomass plastics across various segments.

Further reinforcing this momentum are firms like Biobent Polymers, Biome Bioplastics Limited, and Braskem, whose deep focus on sustainability has led to the successful penetration of new markets and innovative product development. Cardia Bioplastics and Danimer Scientific continue to push the boundaries of conventional plastics by introducing materials that offer both functional excellence and reduced environmental impact. Other industry leaders, including FKuR Kunststoff GmbH, Fujitsu Limited, Green Dot Bioplastics, and Hanwha Corporation, are contributing through robust research initiatives and expanding production capacities.

Noteworthy contributions also come from enterprises such as Henan Yinfeng Plastic Co., Ltd., Kingfa Sci. & Tech. Co., Ltd., Kuraray Co., Ltd., and LG Chem Ltd., each of which is driving progress through strategic investments in sustainable manufacturing processes. Additionally, the participation of Mitsubishi Chemical Corporation, NatureWorks LLC, Neste Corporation, and Novamont S.p.A. underscores the global commitment to adopting greener technologies. Shenzhen Esun Industrial Co., Ltd., SKC Co., Sumitomo Chemical Co., Ltd., Teijin Limited, and Toray Industries, Inc. further exemplify how market leaders are navigating competitive pressures by aligning their product portfolios with evolving consumer demands. Strategic moves by TotalEnergies Corbion bv, Trellis Earth Products, Inc., and Yield10 Bioscience, Inc. reflect an acute understanding of the market's future trajectory. These companies collectively embody a drive towards sustainability, efficiency, and innovation, positioning the biomass plastic sector as a forward-thinking industry dedicated to revolutionizing traditional manufacturing paradigms.

The report delves into recent significant developments in the Biomass Plastic Market, highlighting leading vendors and their innovative profiles. These include ANKOR Bioplastics, Arkema SA, Asahi Kasei Corporation, Avantium N.V., BASF SE, Biobent Polymers, Biome Bioplastics Limited, Braskem, Cardia Bioplastics, Danimer Scientific, FKuR Kunststoff GmbH, Fujitsu Limited, Green Dot Bioplastics, Hanwha Corporation, Henan Yinfeng Plastic Co., Ltd., Kingfa Sci. & Tech. Co., Ltd., Kuraray Co., Ltd., LG Chem Ltd., Mitsubishi Chemical Corporation, NatureWorks LLC, Neste Corporation, Novamont S.p.A., Shenzhen Esun Industrial Co., Ltd., SKC Co., Sumitomo Chemical Co., Ltd., Teijin Limited, Toray Industries, Inc., TotalEnergies Corbion bv, Trellis Earth Products, Inc., and Yield10 Bioscience, Inc.. Actionable Recommendations for Advancing Industry Strategies

Industry leaders aiming to capitalize on the rising tide of biomass plastics must adopt a multifaceted approach that balances technological advancement with strategic market positioning. First and foremost, the integration of advanced research and development methodologies is paramount. Investments in process automation, digital production monitoring, and state-of-the-art material testing can foster substantial improvements in product quality and operational efficiency.

Another critical recommendation is the need for deeper collaboration across the supply chain. Engaging with raw material suppliers, downstream manufacturers, and research institutions can facilitate the exchange of cutting-edge information and best practices. It also helps create a robust ecosystem that supports end-to-end innovation from the conceptual stage to final product delivery.

Additionally, firms should focus on expanding their market presence through strategic geographic diversification. By tailoring products to meet the specific regulatory and cultural nuances of different regions, companies can better penetrate markets that are characterized by diverse demand profiles. This geographic flexibility is especially important in regions experiencing rapid economic growth and evolving consumer preferences.

Furthermore, building strong alliances and pursuing joint ventures with technology innovators and academic institutions can accelerate the development of next-generation biomass plastics. These alliances not only offer access to advanced research capabilities but also create avenues for co-investment in sustainable infrastructure. Strategic partnerships that focus on shared risks and returns can be instrumental in propelling the industry forward.

Engaging in continuous market intelligence and trend analysis is also essential. By monitoring emerging trends in consumer behavior, technological innovation, and regulatory changes, companies can stay ahead of market shifts and swiftly adjust their strategies. Embracing a proactive approach to risk management and regulatory compliance will ensure that firms remain resilient in the face of market uncertainties. Ultimately, a holistic strategy that integrates technological innovation, strategic partnerships, geographic expansion, and robust market intelligence will empower industry leaders to navigate the evolving landscape of biomass plastics effectively.

Conclusive Overview and Future Outlook

The biomass plastic market is at a pivotal juncture, where sustainability meets innovation and traditional paradigms are reinvented in light of environmental imperatives and technological breakthroughs. Comprehensive analysis reveals a market that is not only evolving in terms of product variety and application domains but is also undergoing a strategic realignment driven by regulatory pressures and consumer expectations. The evolution of both biodegradable and non-biodegradable product lines underscores a commitment to balancing functionality with environmental stewardship.

This in-depth exploration of market segmentation, regional disparities, and competitive dynamics presents a clear roadmap for future growth. Companies that have embraced technological innovation and strategic market positioning are well-poised to benefit from the burgeoning demand for eco-friendly materials. The advancements in material science have provided new methodologies to enhance the performance attributes of biomass plastics, ensuring that they can compete on both performance and cost with their traditional counterparts.

As the industry moves forward, the emphasis on sustainable manufacturing practices and integrated supply chains will define the competitive landscape. The proactive steps taken by leading companies signal a promising trajectory toward reducing carbon footprints and minimizing environmental impact. With a well-informed strategy that leverages comprehensive market insights, the biomass plastic sector is set to foster a robust and resilient future.

Looking ahead, the intersection of policy, technology, and market demand will continue to shape the evolution of biomass plastics. The ongoing drive toward innovation, coupled with an unwavering commitment to sustainability, is expected to unlock new opportunities and redefine industry benchmarks. The future of biomass plastics lies in the delicate balance between environmental imperatives and economic viability, ensuring that sustainable progress is both responsible and profitable.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Rising concerns over plastic pollution and waste management globally
      • 5.1.1.2. Growing environmental awareness and demand for sustainable materials
      • 5.1.1.3. Increasing global focus on circular economy concepts promoting use of renewable resources
    • 5.1.2. Restraints
      • 5.1.2.1. Complexities in extracting and processing raw materials for biomass plastics
    • 5.1.3. Opportunities
      • 5.1.3.1. Ongoing advancements in the development of bioplastics in packaging
      • 5.1.3.2. Expanding application of biomass plastics in various industries
    • 5.1.4. Challenges
      • 5.1.4.1. Concerns associated with the quality and durability of biomass plastics for diverse applications
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Product: Increasing consumer preferences for biodegradable products due to sustainable and environmentally friendly solutions
    • 5.2.2. End Use Industry: Expanding utilisation of biomass plastic in packaging industry due to their biodegradable properties
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Biomass Plastic Market, by Product

  • 6.1. Introduction
  • 6.2. Biodegradable
    • 6.2.1. Polybutylene Succinate
    • 6.2.2. Polyglycolic Acid
    • 6.2.3. Polyhydroxyalkanoate
    • 6.2.4. Polylactic Acid
    • 6.2.5. Starch Blends
  • 6.3. Non-Biodegradable
    • 6.3.1. Bio-Polyamide
    • 6.3.2. Bio-Polyethylene
    • 6.3.3. Bio-Polyethylene Terephthalate
    • 6.3.4. Bio-Polypropylene
    • 6.3.5. Polytrimethylene Terephthalate

7. Biomass Plastic Market, by Form

  • 7.1. Introduction
  • 7.2. Biodegradable Bags
  • 7.3. Bottles
  • 7.4. Films
  • 7.5. Food Containers

8. Biomass Plastic Market, by Application

  • 8.1. Introduction
  • 8.2. 3D Printing
  • 8.3. Injection Molding
  • 8.4. Insulation & Piping

9. Biomass Plastic Market, by End-Use Industry

  • 9.1. Introduction
  • 9.2. Agriculture
  • 9.3. Automotive
  • 9.4. Construction
  • 9.5. Consumer Goods
  • 9.6. Healthcare
  • 9.7. Packaging
  • 9.8. Textiles

10. Americas Biomass Plastic Market

  • 10.1. Introduction
  • 10.2. Argentina
  • 10.3. Brazil
  • 10.4. Canada
  • 10.5. Mexico
  • 10.6. United States

11. Asia-Pacific Biomass Plastic Market

  • 11.1. Introduction
  • 11.2. Australia
  • 11.3. China
  • 11.4. India
  • 11.5. Indonesia
  • 11.6. Japan
  • 11.7. Malaysia
  • 11.8. Philippines
  • 11.9. Singapore
  • 11.10. South Korea
  • 11.11. Taiwan
  • 11.12. Thailand
  • 11.13. Vietnam

12. Europe, Middle East & Africa Biomass Plastic Market

  • 12.1. Introduction
  • 12.2. Denmark
  • 12.3. Egypt
  • 12.4. Finland
  • 12.5. France
  • 12.6. Germany
  • 12.7. Israel
  • 12.8. Italy
  • 12.9. Netherlands
  • 12.10. Nigeria
  • 12.11. Norway
  • 12.12. Poland
  • 12.13. Qatar
  • 12.14. Russia
  • 12.15. Saudi Arabia
  • 12.16. South Africa
  • 12.17. Spain
  • 12.18. Sweden
  • 12.19. Switzerland
  • 12.20. Turkey
  • 12.21. United Arab Emirates
  • 12.22. United Kingdom

13. Competitive Landscape

  • 13.1. Market Share Analysis, 2024
  • 13.2. FPNV Positioning Matrix, 2024
  • 13.3. Competitive Scenario Analysis
    • 13.3.1. RDM Group and Paques Biomaterials join forces to develop large-scale PHA biopolymer using recycled process water
    • 13.3.2. Detpak innovates with compostable PBS packaging to meet new legislation and support sustainable practices in Australia
    • 13.3.3. Balrampur Chini Mills embarks on India's first eco-friendly PLA plant initiative
  • 13.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. ANKOR Bioplastics
  • 2. Arkema SA
  • 3. Asahi Kasei Corporation
  • 4. Avantium N.V.
  • 5. BASF SE
  • 6. Biobent Polymers
  • 7. Biome Bioplastics Limited
  • 8. Braskem
  • 9. Cardia Bioplastics
  • 10. Danimer Scientific
  • 11. FKuR Kunststoff GmbH
  • 12. Fujitsu Limited
  • 13. Green Dot Bioplastics
  • 14. Hanwha Corporation
  • 15. Henan Yinfeng Plastic Co., Ltd.
  • 16. Kingfa Sci. & Tech. Co., Ltd.
  • 17. Kuraray Co., Ltd.
  • 18. LG Chem Ltd.
  • 19. Mitsubishi Chemical Corporation
  • 20. NatureWorks LLC
  • 21. Neste Corporation
  • 22. Novamont S.p.A.
  • 23. Shenzhen Esun Industrial Co., Ltd.
  • 24. SKC Co.
  • 25. Sumitomo Chemical Co., Ltd.
  • 26. Teijin Limited
  • 27. Toray Industries, Inc.
  • 28. TotalEnergies Corbion bv
  • 29. Trellis Earth Products, Inc.
  • 30. Yield10 Bioscience, Inc.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦